

Linux Shell

 Trang 1

CChhưươơnngg II :: GGiiớớii tthhiiệệuu

1. LỊCH SỬ RA ĐỜI CỦA LINUX
 Vào năm 1991 tại Phần Lan, Linus B. Torvalds lúc đó là sinh viên ở
trường Đại học tổng hợp Hensinki đã dùng một máy tính cá nhân có trang bị bộ
xử lí 386 để nghiên cứu cách làm việc của nó . Do hệ điều hành MS-DOS
không khai thác đầy đủ các đặc tính của bộ xử lí 386 , Linus đã sử dụng một hệ
điều hành thương mại khác là Minix . Hệ điều hành Minix là hệ điều hành Unix
cỡ nhỏ .
 Do đối mặt với các hạn chế của hệ điều hành này , Linus bắt đầu viết lại
một số một số của phần mềm để thêm chức năng và các điểm đặc trưng . Sau
đó , ông thông báo kết quả của mình miễn phí bằng Internet dưới tên gọi Linux -
chữ viết tắt của Linus và Unix . Phiên bản đầu tiên của Linux là 0.01 được tung
ra vào tháng 8/1991 .
 Các phiên bản đầu tiên có rất nhiều hạn chế . Tuy nhiên , sự kiện các mã
nguồn được truyền bá rộng rãi đã giúp phát triển hệ điều hành rất nhanh . Nhiều
năm qua , số lượng các công ty khai thác đã không ngừng tăng lên . Ngày nay ,
Linux được phát triển bởi nhiều người rải rác khắp nơi trên thế giới .
 World Wide Web đóng một vai trò quan trọng do nó hỗ trợ mở rộng nhanh
hệ điều hành . Thực tế chúng ta có thể tưởng tượng rằng một nhà khai thác cài
đặt Linux trên máy của mình , anh ta phát hiện lỗi , sữa chữa nó và gởi file
nguồn đến Linus . Một vài ngày sau đó (đôi khi chỉ vài phút sau) phần chính yếu
được cải tiến có thể sẽ được truyền trên mạng .
 Mặc dù năm phiên bản đầu tiên của Linux tương đối không ổn định ,
nhưng phiên bản đầìu tiên được tuyên bố là ổn định (1.0) đã được công bố vào
khoảng tháng 3/1994 . Số phiên bản đi kèm với kernel có một ý nghĩa đặc trưng
bởi vì nó liên quan đến chu kì phát triển . Thực tế , quá trình phát triển Linux
diễn ra theo một chuỗi hai giai đoạn :

♦ Giai đoạn phát triển : ở đây kernel không có độ tin cậy cao và tiến trình
là bổ sung chức năng cho nó , tối ưu hóa nó và thử nghiệm các ý
tưởng mới . Giai đoạn này đem lại sự gia tăng số lượng các phiên
bản đánh số lẻ , chẳng hạn như 1.1, 1.3 , vv.... Đây là thời điểm mà
lượng công việc tối đa được thực hiện trên kernel .

♦ Giai đoạn ổn định : ở giai đoạn này , mục đích là tạo ra một kernel
càng ổn định càng tốt . Trong trường hợp này , chỉ cho phép thực
hiện các hiệu chỉnh , sửa đổi nhỏ . Số phiên bản của các kernel được
gọi là ổn định là các số chẵn , chẳng hạn 1.0 , 1.2 và mới nhất là 2.2.

Ngày nay , Linux hoàn toàn là một hệ điều hành Unix . Nó ổn định và liên
tục phát triển . Nó không chỉ có khả năng phát triển trên các thiết bị ngoại vi mới
nhất trên thị trường (bộ nhớ flash quang , đĩa quang ...) mà hiệu năng của nó
còn có thể so sánh với một số hệ điều hành Unix thương mại và thậm chí còn có
một số điểm ưu việt hơn . Sau cùng, mặc dù Linux đã có một khoảng thời gian
bị giới hạn trong môi trường các trường đại học , bây giờ nó đang được tiếp
nhận ở các hãng công nghiệp . Do công suất và độ linh hoat của hệ điều hành
này và tính miễn phí của nó mà hiện nay nó đang thu hút một số lượng các
công ty ngày càng gia tăng .

Linux Shell

 Trang 2

2. CÁC CHỨC NĂNG CỦA LINUX

Hệ điều hành Linux có rất nhiều chức năng và chúng khai thác khả năng của
các hệ Unix hiện đại theo các cách sau :
 Đa xử lí , các bộ đa xử lí : có thể thực hiện nhiều chương trình đồng thời
bất kể sử dụng một hay nhiều bộ xử lí .
 Đa nền .
 Cho phép nhiều người sử dụng : giống như tất cả các hệ Unix , Linux cho
phép nhiều người sử dụng cùng làm việc trên một máy ở cùng thời điểm .
 Hỗ trợ truyền thông giao xử lí (Pipes , IPC , Sockets) .
 Quản lí các thông điệp điều khiển khác nhau .
 Hệ thống quản lí thiết bị đầu cuối tuân thủ theo tiêu chuẩn POSIX . Linux
cũng giả các thiết bị đầu cuối cũng như điều khiển quá trình .
 Hỗ trợ một dải rộng các thiết bị ngoịa vi , chẳng hạn như các cạc âm
thanh , giao diện đồ hoạ , mạng , giao diện hệ máy tính nhỏ
 Buffer cache : vùng bộ nhớ được dành để làm vùng đệm cho các đầu vào
và đầu ra từ các quá trình khác nhau .
 Hệ thống quản lí bộ nhớ trang yêu cầu . Một trang sẽ không được nạp
chừng nào nó không thực sự cần thiết ở bộ nhớ .
 Các thư viện động và dùng chung : Các thư viện động chỉ được tải khi
chún thật sự cần thiết và mã của chúng được dùng chung nếu nhiều ứng
dụng đang dùng chúng
 Các hệ thống file có thể quản lí tốt và đồng đều các phân hoạch file Linux
được sử dụng bởi filesystem làm các phân hoạch có các định dạng khác (
MS-DOS , ISO9660, vv. ..).
 Thiết bị của TCP/IP và các giao thức mạng khác .
Tóm lại , Linux là một hệ Unix đầy đủ và mạnh . Nó có thể được ứng dụng

dễ dàng . Ngoài ra sự sử dụng công cộng rộng rãi đang trợ giúp nó phát triển
một cách nhanh chóng .
3. GIỚI THIỆU CHUNG VỀ LINUX:

Linux là hệ điều hành gần giống Unix , có thêí hoạt động độc lập với phần
cứng , đa nhiệm , đa người dùng , bảo mật cao , tổ chức tập tin phân cấp , tốc
độ cao , đáng tin cậy , có khả năng làm Server cho mạng Internet . Linux có
điểm khá nổi bật đó là Tính ổn định .Thật khó mà làm cho Linux bị ngưng trệ và
tê liệt ! Đã có nơi thử nghiệm nhiều hệ thống chạy Linux liên tục hằng năm trời
mà không phải khởi động lại . Ngoài ra , Linux có thể chạy trên các máy tính thế
hệ cũ vốn không thể chạy Windows 9x , thậm chí
cả những máy 486 vứt trong kho .

Ta có thể chia Linux thành 2 phần :
- Linux Kernel :(Hệ lõi) Xác lập nhiều chương trình cấp thấp và tương tác

trực tiếp với CPU . Hệ lõi cung cấp 2 chức năng cho hệ điều hành :
Nó cung cấp một hệ giao tiếp chung cho các phần cứng khác nhau từng

cạc âm thanh với các chương trình người dùng .
Nó xác lập rào chắn giữa 2 chương trình khác nhau , nếu một chương

trình bị hỏng chương trình kia không bị nó làm ảnh hưởng . Đây chính là ưu
điểm nhất của Linux so với DOS và Windows .

Linux Shell

 Trang 3

- Linux Shell : (Hệ vỏ) Dùng để cung cấp cho người dùng một hệ giao
tiếp được thi hành dễ dàng , giống như COMMAND.COM của DOS . Đồng thời
nó cũng có nhiệm vụ bảo vệ hạt nhân của hệ điều hành khỏi tác động trực tiếp
của người sử dụng bởi HĐH Linux được thiết kế để các Shell này độc lập với
các thành phần chính của HĐH .
 Khi bạn sử dụng một chương trình Shell và gõ một lệnh nào đó , Shell sẽ
thông dịch và thực hiện lệnh này ngay sau đó . Nó sẽ đưa ra các thông báo ,
báo lỗi hoặc các thao tác tương ứng . Ngoài ra , người sử dụng có thể lập trình
với Shell . Các chương trình này được gọi là Script (ngôn ngữ kịch bản) và
chúng được thông dịch , thực hiện bởi các Shell .
 Hiện nay có nhiều loại Shell như : sh (Bourn Shell), bash (Bourn Again
Shell), tcsh , csh , pdksh (Public Domain Shell) , zsh , ash và mc . Nhưng phổ
biến là : sh (Bourn Shell), csh (C Shell) , ksh (Korn Shell) .
 Để có thể truy cập vào hệ thống , trước hết bạn phải có quyền truy cập ,
biết được mật khẩu (Hệ điều hành Unix luôn có sự phân biệt chữ hoa và chữ
thường , chữ hoa chỉ dùng để viết tên riêng và mật khẩu) . Khi bạn dã truy cập
được vào hệ thống , các tiện ích và ứng dụng có sẵn sẽ xuất hiện theo một trong
hai cách sau :
 * Sử dụng hệ thống thực đơn : tạo cho người dùng sự tiện lợi khi sử dụng
và đồng thời cung cấp cho người quản trị hệ thống một phạm vi bảo mật to lớn .
Người quản trị hệ thống có thể sắp xếp lại hệ thống thực đơn của bạn để bạn có
thể truy cập đến những ứng dụng và dịch vụ cần thiết .
 * Môi trường Shell : Nó đòi hỏi bạn phải thành thạo với các lệnh và cấu
trúc của Linux . Nếu bạn không có hệ thống thực đơn , môi trường Linux Shell
sẽ được kích hoạt ngay sau khi bạn đăng nhập hệ thống . Để biết được bạn
đang ở đâu và xem nội dung thư mục , bạn hãy gõ dòng lệnh :

$pwd { print working directory }
 Để chuyển đổi thư mục làm việc bạn sử dụng lệnh cd cùng với tên thư
mục mà bạn muốn chuyển tới . Chẳng hạn bạn muốn chuyển đến thư mục
research thì bạn phải gõ : $cd research
 Để thoát khỏi hệ thống (loging out) bạn gõ vào dòng lệnh :
 $exit
 hoặc $logout
 hoặc nhấn tổ hợp phím Ctrl - D
 Sau khi thoát thoát khỏi hệ thống trên màn hình xuất hiện dòng
thông báo :
 Login :_
 Để chấm dứt hoạt động của hệ thống (phải chắc chắn rằng bạn đã thoát
khỏi tất cả các ứng dụng và đóng tất cả các tệp đã sử dụng) bạn gõ vào dòng
lệnh :
 % shut down
 Sau khi các quá trình trên đã hoàn tất , trên màn hình của bạn sẽ xuất
hiện dòng chữ sau : System is down .

Linux Shell

 Trang 4

Chương II :

Tìm hiểu & sử dụng Linux
shell

I- Các lệnh cơ bản trong Linux Shell :
1. Phép kết gán :
 Phép kết gán cho phép ánh xạ một phím cụ thể theo một hành động .
Ví dụ , khi chúng ta gõ phím ^A tại dấu nhắc hệ vỏ con trỏ sẽ nhảy đến đầu
dòng. Để thuận lợi , nhiều hệ vỏ gán sẵn cho người dùng các phím gán sau :
 ^A Dời con trỏ đến đầu dòng
 ^C Gửi một SIGINTR (ngắt) ra hệ vỏ
 ^D Hiển thị danh sách các tập tin
 ^E Dời đến cuối dòng
 ^K Triệt từ con trỏ đến cuối dòng
 ^N Dời xuống trong danh sách
 ^P Dời lên trong danh sách
 ^U Triệt nguyên cả dòng
 ^I Hoàn tất tập tin

Linux Shell

 Trang 5

 Trong trường hợp có nhiều tập tin bắt đầìu bằng các kí tự giống nhau , hệ
vỏ sẽ đưa vào nhiều kí tự rồi phát tiếng kêu beep thông báo cho chúng ta biết
có các khả năng khác . Ví dụ : >rmdir direct (^I)
 >rmdir directory_I_want_to_

Đến đây chúng ta có thể gõ lệnh K hoặc D , ^D để có một danh
sách các tập tin trong thư mục hiện hành bắt đầìu bằng các kí tự
đó .

 Đây chính là tính năng rất tiện dụng đối với các tập tin hay thư mục có tên
dài .
2. Chức năng của một số kí tự :

Kí
tự

Chức năng

 * ? [] Kí tự đại diện hay theo mẫu .
& Chạy ứng dụng ở chế độ nền , trả lại dấu nhắc hệ thống cho

các tác vụ khác .
; Dấu phân cách nhiều lệnh trên một dòng lệnh .
\ Tắt tác dụng của những kí tự đặc biệt như *, ?, [,], &, ; , >, <, |

',,,' Khi tham số là nhóm từ (có khoảng trống) .
"... " Khi tham số có khoảng trống và các kí tự đặc biệt ngoại trừ kí

tự $ và '
> Định hướng dữ liệu xuất ra file .
< Định hướng dữ liệu nhập từ file .

>> Định hướng dữ liệu xuất ra cuối file nếu file đã tồn tại .
| Định hướng dữ liệu xuất là dữ liệu nhập cho lệnh tiếp theo .

'...' Dấu huyền dữ liệu xuất của một lệnh làm tham số .
$ Sử dụng biến môi trường .

3. Cấu trúc thư mục :
 Linux tổ chức thư mục và tập tin theo cấu trúc cây giống như DOS và
Windows . Về đường dẫn , ta có thêí dùng đường dẫn tương đối hoặc đường
dẫn tuyệt đối như DOS . Nhưng thay vì dùng dấu " \ " để phân cách các cấp thư
mục như trong DOS thì Linux lại dùng dấu " / " .
 /etc Cấu hình hệ thống cục bộ theo máy
 /usr/bin Chứa hầu hết các lệnh người dùng
 /dev Các tập tin thiết bị
 /usr/man Chứa các tài liệu trực tuyến
 /usr/include Chứa các tạp tin chuẩn của C
 /var/log Chứa các tập tin lưu trữ thông tin làm việc hiện hành của

người dùng
 /home Chứa các thư mục con của các User
 /usr/local Các chương trình bổ sung không thuộc thành phần của một

hệ thống . Thông thường ./usr/local có các thư mục con
như sau :

 /usr/local/bin /usr/local/lib
 /usr/local/man /usr/local/include
 /usr/src Vị trí của mã nguồn (kể cả mã nguồn của
HĐH Linux)
 /usr/lib Chứa các tập tin thư viện của các chương trình người dùng

Linux Shell

 Trang 6

 Trong Linux : " . " cho biết đó là thư mục hiện hành , " .. " chỉ thư mục cao
hơn một cấp (thư mục mẹ) . Nếu đường dẫn bắt đầu bằng "/ " thì hệ thống xem
đó như là một tên đường dẫn đầy đủ (tuyệt đối) . Đường dẫn bắt đầu bằng " ~ "
là một đường dẫn tương đối. Những kí hiệu này có thể được sử dụng cùng với
nhau . Ví dụ :

" ~/.." có nghĩa là thư mục mẹ của thư mục riêng.
"../.." để chỉ một thư mục cao hơn thư mục mẹ .
/home/user01# more ~/document/baocao
tương đương với
/home/user01# more home/user01/document/baocao

4.Cú pháp dòng lệnh :
Các lệnh trong Linux thường bắt đầu bằng tên lệnh (command) , sau đó

làcờ (flag) và đối số (argument) :
 Command [flag] argument1 argument2

 Các cờ (còn gọi là lựa chọn (option)) trong DOS thường đứng sau " / ",
trong khi
Linux lại dùng " - ". Ví dụ: trong DOS bạn gõ " dir /a /o:d " thì trong Linux bạn gõ
là "ls - lac " .

Hầu hết các trường hợp nhiều đối số một chữ cái có thể kết hợp dùng một
dấu " - " . Ví dụ : thay vì dùng lệnh " ls -l -F " ta có thể dùng lệnh tương đương "
ls -lF " .
 Các đối số phải cách nhau bởi dấu cách (space) hoặc Tab . Nếu trong đối
số có khoảng cách thì phải đặt nó trong cặp ngoặc kép (xem thêm mục 5.11)
5. Một số lệnh thường dùng:

5.1. Tạo thư mục :
 Cú pháp : mkdir <dir1> <dir2> ... <dirN>
 Trong đó <dir1> <dir2> ... <dirN> là các thư mục cần tạo .
 Ví dụ : mkdir thuchanh tạo thư mục thuchanh
 mkdir thuchanh/baitap1 tạo thư mục baitap1 là thư mục

con của thư mục thuchanh
5.2. Chuyển thư mục :
 Cú pháp : cd <directory>
 Dùng " . " để chuyển đến thư mục hiện hành , " .." để chuyển đến thư
mục cha .
 Ví dụ : cd /usr/local/bin
5.3. Xem thư mục hiện hành :
 Cú pháp : pwd
5.4. Xoá thư mục rỗng :
 Cú pháp : rmdir <dir1> <dir2> <dirN>
5.5. Xoá tập tin hoặc thư mục :
 Cú pháp : rm <file1> <file2> <fileN>
5.6. Hiển thị thông tin về tập tin và thư mục :
 Cú pháp : ls <danh sách file> | <Danh sách thư mục> <tham số>

 <tham số> : - F : dùng để hiển thị vài thông tin về tập tin .
Sau tên file , hiển thị dấu sao (*) nếu là file thi hành , dấu (@) nếu là file
liên kết , dấu (/) nếu là thư mục con , dấu chấm (.) nếu là file ẩn .

Linux Shell

 Trang 7

 - l : (long) cho phép liệt kê kích thước tập tin , người tạo ra ,
các quyền người sử dụng ...

 Để liệt kê nội dung của các thư mục con bạn có thể sử dụng cờ -R
 Để liệt kê các file ẩn bạn sử dụng cờ -a
 ví dụ : $ ls -lF
 total 75
 drwxrwxr-x 2 user 12 user 12 1024 Apr 7 09:41 baitap/
 drwxrwxr-x 2 user 12 user 12 1024 Apr 7 09:41 doc/
 -rwxrwxr-x 1 user 12 user 12 71 Mar 31 10:39 hello*
 -rw-rw-r-- 1 user 12 user 12 126 Apr 7 09:26 baitho.txt
 -rw-rw-r-- 1 user 12 user 12 70 Apr 7 08:26 hello.c
 $
5.7. Di chuyển tập tin , thư mục :
 Cú pháp : mv <danh sách tập tin hoặc thư mục > <đích>
 <đích > : là tập tin hay thư mục
 Lệnh này có thể dùng để đổi tên tập tin hoặc thư mục (tương tự lệnh

Rename của DOS).
5.8. Sao chép tập tin , thư mục :
 Cú pháp : cp <nguồn > <đích >
 Lệnh này không tự động sao chép các thư mục con trừ khi bạn sử dụng

cờ -R
5.9. Xoá các tập tin hoặc thư mục :
 Cú pháp : rm <file> |< thư mục>
 Nếu bạn dùng lệnh này kèm với cờ -i thì trước khi định xóa một file , máy

sẽ hỏi lại bạn có thực sự muốn xoá hay không .
 Chú ý , lệnh rm * sẽ xoá mọi file trong thư mục hiện tại .
5.10. Hiển thị nội dung các tập tin : Mỗi lần chỉ hiển thị đầy màn hình (24

dòng) , muốn xem trang tiếp theo thì nhấn phím spacebar .
 Cú pháp : more [-n] <danh sách các tập tin >
 [-n] : chỉ định số dòng mỗi lần hiển thị là n dòng .
 Ví dụ : $more baitho.txt //hiển thị nội dung tập tin baitho.txt
 $more mbox // xem tất cả thư lưu trong hộp thư
 $more -4 grocery.txt
 \documentstyle[12pt] {article}
 \input{psfig}
 \input{/home/a_s/pehng/Teach/Mat466/std.top}
 --More--(0%)
 Dòng thông báo --More-- có nghĩa là bạn nhấn phím spacebar để xem

phần tiếp theo, nhấn phím q nếu muốn kết thúc .
 Nếu bạn muốn bỏ qua n dòng đầu tiên thì bạn sử dụng cờ +n
 Ví dụ : $more +40 grocery.txt
5.11. Tìm kiếm một chuỗi kí tự :
 Cú pháp : grep <chuỗi cần tìm> <tên file>
 Nếu tìm thấy thì trả về các dòng có chứa chuỗi cần tìm .
 Ví dụ : grep New York // tìm từ " New" trong file " York"

 grep "New York" // tìm chuỗi "New York" trong đầu vào

chuẩn (standard input)

Linux Shell

 Trang 8

 Chuỗi kí tự hay biểu thức cần tìm có thể kết hợp với các kí tự đặc biệt sau
:

 Kí tự Tác dụng
 . Thay thế cho một kí tự .Ví dụ : b.d sẽ tương xứng với bod

and bad
 * và [] Xem mục 6.
 / Tắt tác dụng của các kí tự đặc biệt .Ví dụ : /* sẽ tìm dấu * ,

// sẽ tìm dấu /
 ^ Ví dụ : ^704 sẽ tìm có mã vùng (bắt đầu) là 704
 { } Ví dụ : g\{3,4} sẽ tìm bất cứ dòng nào có chứa ggg hoặc

gggg
 Ví dụ : lệnh grep '408.[0-9]\{3\}.[0-9]\{4\}' sẽ tìm mọi số điện thoại có mã

vùng là 408; chẳng hạn như : 408-555-1212, 408.555.1212,
408.234.7890

5.12. Tìm kiếm một tập tin :
 Cú pháp :
 - Tìm theo tên : $find đườngdẫn -name têntậptin -print
 - Tìm theo số i- node (i-num) của tập tin :
 $find đườngdẫn -inum number -print
 - Tìm theo tên người sở hữu :
 $find đườngdẫn -user username -print
 Để tránh các thông báo lỗi đưa ra màn hình , ta có thể đổi hướng đầu ra

chuẩn (standard error) tới một tập tin rỗng (/ dev/null) :
 $find / -name têntậptin -print 2>/dev/null
 Ví dụ : $pwd
 /home/user01
 $find / -name ttyc2d1 -print 2>/dev/nul
 /dev/ttyc2d1
5.13. Hiển thị hướng dẫn sử dụng lệnh:
 Cú pháp : man <command>
 <command> là tên của một lệnh hoặc của một tài nguyên cần gọi giúp đỡ

.
 Ví dụ : man ls //đưa ra giúp đỡ của lệnh ls
 Bạn có thể dùng cú pháp sau để hiển thị nội dung hướng dẫn sử dụng

lệnh :
 Tên lệnh --help
5.14. Nối các tập tin :
 Cú pháp : cat <file1> <file2> ... <fileN> [>filename]
 Ví dụ : $cat baitho.txt vanban.doc //hiển thị nội dung cả 2 tập tin
 $cat baitho.txt vanban.doc > tonghop.doc //kết nối nội dung

cả 2 tập tin vào tập tin tonghop.doc
5.15.Phản hồi lại các tham số đưa vào:
 Cú pháp : echo <arg1> <arg2> ... <argN>
 Ví dụ : $echo "hello"
 hello
5.16. Hiển thị tên máy tính đang làm việc : Linux cất thông tin về tên máy

trong tập tin /etc/hots
 Cú pháp: hostname

Linux Shell

 Trang 9

 Ví dụ : $hostname
 Linux.edu
5.17. Nén một tập tin : Tên tập tin đã nén giống như tên ban đầu và kèm

theo đuôi .gz
 Cú pháp : gzip <filename>
 Vi dụ : gzip vban.txt //tên tập tin đã nén là:vban.txt.gz
5.18. Giải nén một tập tin :
 Cú pháp: gunzip <filename>
5.19. Gọi hướng dẫn :
 Cú pháp : man < command name >
 Lệnh này hiển thị tài liệu Linux hoặc các trang giúp đỡ (man pages) về

lệnh <command name>
5.20. Bí danh của lệnh: (alias)
 Cú pháp : alias < tên lệnh mới > = < tên lệnh cũ >
 Lệnh này cho phép bạn đặt một bí danh cho một lệnh đã có , kể cả những

lệnh phức tạp .
 Ví dụ : alias help=man // bây giờ bạn có thể dùng lệnh help cp

hoặc man cp để hiển thị trang giúp đỡ về lệnh cp
 alias timedir="ls -art"
 Dấu ngoặc kép là cần thiết bởi nếu không có nó thì shell sẽ kết thúc lệnh

khi gặp dấu cách (space bar) và khi đó cờ -art sẽ mất tác dụng .
 Chú ý : việc đặt bí danh từ dòng lệnh chỉ có hiệu quả trong phiên làm việc

hiện hành . Để có bí danh được kích hoạt mỗi khi đăng nhập (log on) ,
hãy định nghĩa bí danh trong file .profile nếu bạn sử dụng Born shell ,
trong file .login nếu bạn sử dụng C shell.

5.21. clear : Xoá màn hình .
5.22. date : Hiển thị ngày tháng hiện hành của hệ thống .
5.23. time : Hiển thị thời gian hiện hành của hệ thống .
5.24. useradd : Thêm người dùng vào mạng .
5.25. passwd : Đặt lại password người sử dụng .
 (Tiện ích mc trên Linux có giao diện làm việc giống như trình NC (Norton

Commander) . Để khởi động mc , từ dấu nhắc lệnh gõ :
 $mc

6. Các kí tự đại diện dùng trong câu lệnh :
6.1. Dấu sao (*) : Đại diện cho một nhóm kí tự bất kì .
 Ví dụ : cat sales* > allsales // kết nối mọi file có tên bắt đầu là

sales vào trong file có tên là allsales
 ls *rep* // hiển thị mọi file mà tên của nó có chứa "rep"
 ls .*rep* // hiển thị mọi file ẩn mà tên của nó có chứa

"rep"
6.2. Dấu chấm hỏi (?) : Đại diện cho một kí tự bất kì .
 Ví dụ : lp ??x // in ra các file mà tên có 3 kí tự , bắt đầu bằng 2 kí

tự bất kì, còn kí tự cuối là x
6.3. Dấu ngoặc vuông ([]) : Chỉ phạm vi các kí tự được đại diện .
 Ví dụ : ls job[123] // chỉ hiển thị các file :job1, job2, job3
 ls [A-Z]* // chỉ hiển thị các file có tên bắt dầu bằng chữ in

hoa .

Linux Shell

 Trang 10

 ls [A-Z,a-z] // chỉ hiển thị các file có tên bắt dầu bằng
chữ cái.

7.Kết nối các tiến trình với các ống dẫn (pipes) :
 Việc kết nối liên tiếp các lệnh bằng việc sử dụng ống dẫn (kí hiệu là |
) làm cho đầu ra (output) của chương trình hay lệnh ở phía trái của ống dẫn là
đầu vào (input) của chương trình hay lệnh ở phía phải của ống .

Ví dụ : sort allsales | lp // để sort (lựa chọn, sắp xếp , phân loại) file
tên là

 allsales rồi in nó .
 cat sales* | sort | lp // để in ra danh sách dữ liệu đã sắp xếp
 (sort) trong các file có tên bắt đầu là sales .

8. Định hướng lại đầu vào và đầu ra : (Redirecting Input and Output)
 Sử dụng dấu nhỏ hơn (<) để định hướng lại đầu vào vào trong một
chương trình hay một lệnh từ một file thay vì một thiết bị đầu cuối
(terminal:bàn phím ...) . Giả sử bạn muốn gởi một file tên là info bằng e-mail
đến một ai đó có địa chỉ là sarah . Thay vì bạn phải gõ lại nội dung của file cho
lệnh mail , bạn có thể sử dụng file info như là đầu vào của lệnh mail bằng cách
nhập vào dòng lệnh sau :
 mail sarah < info
 Sử dụng dấu lớn hơn (>) để định hướng lại đầu ra của một chương trình
hay một lệnh đến một file thay vì đến màn hình (terminal) (đầu ra được đặt
trong một file) . Lệnh date hiển thị thời gian và ngày tháng hiện tại ra màn hình
. Nếu bạn muốn lưu trữ thời gian và ngày tháng hiện tại vào một file tên là now
thì bạn nhập dòng lệnh sau :
 date > now
 Chú ý : nếu tên file bên phía phải của dấu > đã tồn tại thì nó sẽ ghi đè.

Hãy cẩn thận đừng để mất những thông tin hữu ích bởi cách này .
 Nếu bạ muốn bổ sung hoặc kết nối thông tin vào một file đang tồn tại , hãy
dùng hai dấu lớn hơn (>>) .
 Ví dụ : date >> report // để bổ sung ngày tháng hiện tại vào file tên là
report
 sort < sales >> salesreport // dữ liệu trong file sales vừa được
đưa vào lệnh sort vừa được bổ sung vào file salesreport .

9. Biến môi trường của Shell :
 Môi trường của Shell chứa một số biến được định nghĩa trước .
Lệnh set cho phép liệt kê danh sách các biến của môi trường .
 Dưới đây là danh sách các biến môi trường thường có :
 HOME chứa tên thư mục tiếp nhận
 LOGNAME tên người sử dụng
 PATH tên đường dẫn cho các lệnh
 PS1 dấu nhắc 1
 PS2 dấu nhắc 2
 TERM kiểu của thiết bị cuối(terminal: bàn phím hoặc màn
hình)
 FCEDIT EDITOR chương trình soạn thảo nhật kí
 PRID số của tiến trình cha của Shell
 PWD thư mục hiện hành
 SHELL tên Shell đang dùng

Linux Shell

 Trang 11

 RANDOM số ngẫu nhiên
 SECONDS thời gian làm việc tính theo giây

10. Biến thay thế :
 Các biến Shell được lưu trữ như một chuỗi . Khi 2 biến được đặt
cùng nhau , các chuỗi riêng của chúng được nối lại (các biến được dùng kèm
với dấu $ ở trước).
 Ví dụ : giả sử ta có 2 biến X=hello , Y=world
 $echo XY //cho kết quả là helloworld
 $echo $X $Y // cũng cho kết quả là helloworld
 $echo $XY // cho kết quả là helloY
11. Sự thay thế kết quả của lệnh :
 Cú pháp : command1 parameter `command2`
 Lệnh 2 (command2) được thi hành trước và kết quả của nó được xem
như là một tham số của lệnh 1 (command1).
 Chú ý : dấu " ` " là dấu nháy ngược (backquote) , phím backquote nằm
trên phím Tab trên bàn phím .
 Ví dụ : $echo Today\`s date and time are `date` cho kết quả là :
 Today`s date and time are Mon May 18 14:35:09 EST 1994
12. Tìm hiểu Nhóm lệnh (Command Group) và Shell dưới (Subshell) :
 Nếu bạn muốn đặt một hay nhiều lệnh trên một dòng lệnh trước khi
nhấn Enter, bạn có thể sử dụng cú pháp dưới đây . Shell sẽ thi hành tuần tự
các lệnh .
 command1; command2; command3
 Ví dụ : $clear;ls // xoá màn hình và hiển thị thư mục
 Nhóm lệnh : Nếu bạn muốn định hướng lại đầu vào và đầu ra các lệnh
như một nhóm , bạn có thể tạo một nhóm lệnh . Một nhóm lệnh được định
nghĩa như là một số lệnh được bao bởi dấu ngoặc móc ({ }) . Lệnh sau định
hướng lại đầu ra của cả 2 lệnh đến file tên là output-file :
 {command-1;command-2} > output-file
 Đầu ra của một nhóm lệnh có thể được "đặt ống "(can be piped) .Ví dụ :
 {command-1;command-2} | command-3
 Subshell : Khi bạn chạy một chuỗi các lệnh như một nhóm lệnh , các lệnh này
chạy trong Shell hiện tại . Nếu một trong những lệnh đó thay đổi môi trường
hoặc thay đổi thư mục thì khi nhóm lệnh chạy xong , những thay đổi đó sẽ bị ảnh
hưởng . Để tránh vấn đề này , nên chạy nhóm lệnh trong subshell .
 Subshell là một bắt chước (clone) của Shell hiện tại , nhưng bởi vì các
tiến trình con không thể thay đổi môi trường của tiến trình cha , mọi lệnh chạy
trong một subshell không ảnh hưởng đến môi trường khi nhóm lệnh kết thúc .Để
chạy một nhóm lệnh trong subshell ,ta thay thế ngoặc móc bằng ngoặc đơn .Ví
dụ ở phần trên trở thành :
 (command-1;command-2) | command-3
 Chỉ command-3 chạy trong shell hiện hành , còn đầu ra của subshell
được đặt vào ống để thành đầu vào chuẩn của command-3.
13. Soạn thảo lệnh :
 Soạn thảo lệnh có nghĩa là sau khi bạn đánh vào một lệnh và trước khi
nhấn Enter
Bạn có thể soạn hoặc thay đổi các phần của lệnh mà không phải đánh lại phần
lớn lệnh . Để biên soạn lệnh , bạn nhấn phím <Esc> để chuyển sang chế độ

Linux Shell

 Trang 12

soạn thảo và sau đó sử dụng bất kì lệnh di chuyển dòng nào của trình soạn thảo
vi để sửa đổi lệnh . Bạn có thể sử dụng phím <backspace> , sử dụng các
lệnh khác của vi như x để xoá một kí tự , r để thay thế một kí tự
14. Xem lại lệnh và thi hành lại lệnh đã thực hiện : (Viewing
Command History)
 Đặc trưng này cho phép bạn xem lại các lệnh đã nhập vào trước đó
và gọi lại chúng . Khi bạn kết hợp đặc trưng này với việc soạn thảo lệnh , bạn
có thể dễ dàng sửa lỗi trong những lệnh phức tạp và giải quyết hiệu quả với một
số công việc lặp lại .
 Lịch sử lệnh (the history command) hiển thị danh sách các lệnh cũ mà
shell đã lưu lại . Các lệnh được đánh số . Chẳng hạn , để thi hành lệnh 10 , bạn
hãy nhập vào :! 10 . Bạn có thể dùng các phím mũi tên để gọi lại các lệnh trước
đó .
15. Làm việc với kịch bản Shell (Shell Script) :
 Shell script là một tập hợp của một hoặc nhiều lệnh shell trong một file .
Để thi hành các lệnh đó , bạn đánh vào tên của file . Shell scipt đem lại những
thận lợi sau:
 - bạn không phải đánh lại liên tiếp các lệnh .
 - bạn xác định các bước để hoàn thành mục đích một lần .
 - bạn đơn giản hoá các thao tác cho chính bạn và cho người khác .
Các bước tạo một Shell script :
 1. Sử dụng một trình soạn thảo văn bản , chẳng hạn vi hoặc emacs , hãy
đặt các lệnh shell vào trong một file văn bản hoặc file ASCII rồi dặt cho file đó
một tên .
 2. Để tạo một file thi hành , ta dùng lệnh sau : chmod +x <tên file>
 3. Thử lệnh bằng cách gõ tên lệnh và nhấn Enter .
 Bạn có thể kiểm tra một shell script và thấy mọi bước nó thực hiện bằng
cách nhập vào dòng lệnh sau :
 sh -x script-name
 Trong cú pháp trên , script-name là tên của script mà bạn đang xem xét .
Lệnh sh -x rất hữu ích khi bạn đang thử dò tìm lỗi của một script .

II- Phân quyền sử dụng - Bảo vệ tập tin, thư mục :
 1. Phân quyền sử dụng :
 Linux đưa ra 3 loại phân quyền sử dụng đối với người sử dụng :
 - Đọc (chỉ cho phép đọc); Ghi (cho phép thêm hoặc huỷ) ; Thực hiện
(thực hiện
các chương trình ứng dụng hoặc các tệp Shell script)
 Linux cho phép bạn kiểm soát 3 loại quyền cơ bản này với 3 loại người sử
dụng :
 - Chủ sở hữu : là người đầu tiên tạo ra tệp này .
 - Nhóm người dùng : những người dùng Linux có thể tham gia vào một
nhóm làm việc nào đó hoặc không . Những người dùng trong cùng một nhóm
cùng tham gia vào một dự án đó .
 -Những loại người dùng khác : là những người không thuộc 2 loại trên .

2. Mô tả người sử dụng :
 Một người sử dụng được mô tả bằng các thông tin sau ;'

Linux Shell

 Trang 13

 - Username : tên người sử dụng
 - password : mật khẩu (nếu có)
 - uid : số nhận dạng (user identify number)
 - gid : số của nhóm (group identify number)
 - comment : chú thích .
 - thư mục chủ (Home directory)
 - [Tên chương trình cho chạy lúc bắt đầu phiên làm việc]
 Các thông tin trên được chứa trong tập tin / etc / passwd
3. Mô tả nhóm người sử dụng :
 Một nhóm người sử dụng là tập hợp của một số người sử dụng có
thể dùng chung các tập tin của nhau . Một nhóm người sử dụng được mô tả
bằng các thông tin sau :
 - groupname tên của nhóm
 - password [mật khẩu]
 - gid số của nhóm
 - [danh sách những người khách]
 Các thông tin được chứa trong tập tin /etc/group
4. Bảo vệ các tập tin và thư mục :
 4.1. Các quyền thâm nhập tập tin :
 Khi tập tin được tạo lập , các thông tin sau đây đồng thời được ghi
lại :
 - gid của nhóm người tạo tập tin
 - uid của người tạo tập tin
 - các quyền thâm nhập tập tin khác ...
 Tập tin được bảo vệ bởi một tập hợp các bit định nghĩa quyền thâm nhập

:
 r (quyền đọc) , w (quyền ghi), x (quyền thực thi) , suid(set user-id) ,

sgid (set group-id)
 đối với thư mục : r : quyền đọc nội dung thư mục
 w: quyền tạo và xoá các tập tin trong thư mục
 x : quyền qua lại (crossing) thư mục
4.2. Lệnh ls -l hoặc ls -lF

Lệnh này liệt kê danh sách các tập tin và các thuộc tính của chúng trong
một thư
mục , qua đó ta có thể phát hiện loại tập tin , cách bảo vệ , người sở hữu và
kích thước của chúng .

 Ví dụ : $ls -l /bin
 - rwxrwwxr -x 1 bin bin 16336 Mar 8 1998

cat
 - rwxrwwxr -x 3 root bin 16124 Mar 8 1998

cp
 trong đó : cột 1: loại tập tin và quyền thâm nhập . Dấu trừ '-' ở đầu có

nghĩa là tập tin thường . Dấu trừ '-' trong dãy bít có nghĩa không có quyền
truy cập tươn ứng bit đó . Để tiết kiệm chỗ người ta đặt bit n vào cùng
một nơi với bit x và kí hiệu :

 - s nếu x tồn tại (bit s: set uid hoặc set gid khi chạy
tập tin)

Linux Shell

 Trang 14

 - S nếu x không tồn tại
 cột 2 : số liên kết (link number)
 cột 3 : tên người sở hữu (owner)
 cột 4 : tên nhóm sở hữu
 cột 5 : kích thước tập tin
 cột 6,7,8 : ngày sửa đổi gần nhất
 cột 9 : tên tập tin
 4.3. Thay đổi quyền thâm nhập , lệnh chmod:
 Lệnh chmod cho phép thay đổi quyền thâm nhập các tập tin và các danh

mục . Có thể chạy lệnh theo 2 cách :
 - Cho thông số tuyệt đối :
 Cú pháp : chmod mode filename
 Trong đó : thông số mode là một cơ số 8 (octal)
 rwx r - x r - -
 111 1 0 1 1 0 0
 7 5 4
 chmod 754 tên tập tin
 - Dùng các kí hiệu tượng trưng :
 chmod {a,u,g,o}{+,-,=}{r,w,x} <filename>
 Câu lệnh chmod được dùng để thiết lập mức đặc quyền của tập tin . Chỉ

những người sở hữu tập tin này mới có thể thay đổi được mức đặc quyền
đối với tập tin này . Trong đó :

 u có nghĩa user
 g có nghĩa group
 o other
 a all
 Các toán tử : + thêm quyền
 - bớt quyền
 = gán giá trị khác
 Quyền : r Cho phép đọc ghi
 w Cho phép ghi
 x Quyền thực thi tập tin
 s Thiết lập suid hoặc guid
 Ví dụ : $chmod g -w , o +r baitho.doc
 Nghĩa là :+ Bớt quyền ghi tập tin (w) baitho.doc cho nhóm (g)
 + Thêm quyền đọc tập tin (r) baitho.doc cho các người sử dụng

khác $chmod a+r baocao.txt // tất cả người sử dụng có
thể đọc được

 $chmod +r baocao.txt // lệnh này tương đương lệnh trên
 $chmod og-x baocao.txt // không cho thực thi

 $chmod u+rwx baocao.txt// cho phép người sở hữu đọc, viết và
thực thi

 $chmod o-rwr baocao.txt // không cho truy nhập tập tin
 $chmod 777 * // đặt tất cả các quyền cho tất cả các đối

tượng sử dụng đối với toàn bộ tập tin trong thư mục hiện hành
4.4. Thay đổi người hoặc nhóm sở hữu tập tin :
 - Lệnh chown cho phép thay đổi người sở hữu .
 - Lệnh chgrp cho phép thay đổi nhóm sở hữu .

Linux Shell

 Trang 15

 Ví dụ : $echo Hello > file1
 $chmod 700 file1
 $ls -l file1
 - rwx - - - - - - 1 user1 stagiar 6 Apr 5 14:06

file1
 $cat file1
 $chgrp animator file1
 $ls -l file1
 $cat file1

Chương III :

LẬP TRÌNH VỚI SHELL

 Để lập trình với Shell , bạn phải biết về các biến và các cấu trúc điều
khiển . Biến là một đối tượng mà tại bất cứ thời điểm nào bạn cũng có thể gán
lại một giá trị khác cho chúng . Cấu trúc điều khiển cho phép bạn điều khiển sơ
đồ thực thi của một script . Có 2 kiểu cấu trúc điều khiển : cấu trúc rẽ nhánh (
như cấu trúc if ... then ...else fi và cấu trúc case) và cấu trúc lặp (như vòng lặp
for hoặc while) .
Sử dụng echo : Bạn có thể sử dụng lệnh echo để hiển thị những gì xảy ra
trong một scipt
. Lệnh echo hiển thị các đối số của nó ra màn hình . Bạn cũng có thể định hướng
lại kết quả của echo đến một file .
 Ví dụ : echo "Please stand by ..." sẽ hiển thị ra màn hình dòng chữ
sau :
 Please stand by ...
 Dòng lệnh sau sẽ đặt Please stand by ... vào trong file có tên là
messg :
 Echo " Please stand by ..." >messg
Sử dụng chú thích : Dấu "#" là bắt đầu một chú thích của Shell .Shell sẽ bỏ
qua mọi kí tự nằm sau dấu "#"cho đến cuối dòng .
Tình trạng thoát : (Exit Status) Khi một lệnh Shell thi hành , nó có thể
thành công hoặc không . Shell luôn trả về tình trạng kết thúc của một lệnh ,
chương trình hoặc Shell script . Giá trị trả về được gọi là tình trạng thoát (exit

Linux Shell

 Trang 16

status) của lệnh và được đại diện bởi biến $? . Nếu $? có giá trị là 0 , lệnh
thành công, còn ngược lại là không thành công . Bạn sẽ thấy giá trị của $? nếu
nhập vào lệnh sau :
 grep "American Terms" custemers
 echo $?

I. Sử dụng biến trong chương trình Shell :
 Để sử dụng các biến , bạn phải biết cách đặt một giá trị vào một
biến và cách truy cập giá trị cất trong biến đó . Có 4 cách đặt một giá trị vào
một biến :

 Dùng phép gán trực tiếp
 Sử dụng lệnh read
 Sử dụng các tham số của dòng lệnh
 Thay thế đầu ra của một lệnh

1. Sử dụng phép gán trực tiếp :
 myemail=edsga@crty.com
 Biểu thức trên đặy vào biến myemail giá trị là edsga@crty.com . Lưu ý
rằng hai phía của dấu bằng "=" không có khoảng trống . Nếu giá trị của biến
có khoảng trống thì phải đặt nó trong dấu ngoặc kép . Ví dụ :
 myoffice="Room 21 , Suit C"
 Shell sẽ tìm lại được giá trị của biến bất cứ khi nào nó thấy dấu "$" ở
trước tên biến . Ví dụ : echo "My e-mail ađress is $mymail"
 Giả sử bạn cần copy file tên là current vào thư mục
/corporate/ìno/public/sales , bạn nhập vào lệnh sau :
 cp current /corporate/ìno/public/sales
 Bạn có thể gán tên thư mục dài đó vào một biến như lệnh sau :
 corpsales=/corporate/ìno/public/sales
 rồi copy file current vào thư mục đó bằng lệnh sau :
 cp current $corpsales
2. Sử dụng lệnh read :
 Lệnh read tạm ngừng script và đợi người sử dụng nhập vào từ
bàn phím rồi gán cho tên biến . Khi phím Enter được ấn thí script được tiếp
tục . Nếu nhấn " ^d" trong khi lệnh read đang đợi nhập thì script được kết thúc
. Ví dụ sau nhắc người sử dụng nhập vào tên file được copy :
 corpsales=/corporate/ìno/public/sales
 echo "Enter name of file to copy "
 read filename
 cp $filename $corpsales
3. Sử dụng các tham số dòng lệnh :
 Các tham số dòng lệnh được phân cách bởi ít nhất một kí tự trống
(Nếu trong đối số có khoảng trống thì phải đặt nó trong cặp ngoặc kép) . Tên
lệnh và các đối số được gán cho các biến là $0, $1 ,....,$9 . Tên lệnh là $0 ,
đối số thứ nhất của lệnh là $1 , đối số thứ 2 của lệnh là $2 ,, cứ thế cho đến
$9 .
 Ngoài ra : $# để chỉ số các tham số , $" để chỉ tất cả các tham số , $$ để
lấy PID của Shell scrpit .
 Ta xem xét Shell script ví dụ sau có tên là shovars (show variables) :

mailto:edsga@crty.com
mailto:edsga@crty.com

Linux Shell

 Trang 17

 # Name : shovars
 echo $0
 echo $2 $4
 echo $3
 Giả sử ta nhập vào dòng lệnh sau :
 shovars -s hello "look at me " bart
 kết quả là :
 shovars
 hello bart
 look at me
 Shell script sau sẽ xóa một file nhưng trước đó file đã được copy vào
thư mục /tmp : # Name : safrm
 cp $1 /tmp
 rm $1
 Bạn có thể đại diện mọi tham số trên dòng lệnh bằng $*
4. Thay thế đầìu ra của một lệnh :
 Bạn có thể gán cho một biến kết quả một lệnh được thi hành .
 Ví dụ : cwd='pwd' // lưu tên thư mục hiện hành vào biến cwd
 Chú ý là pwd đặt trong cặp dấu nháy ngược " ` " (dấu này nằm ngay phía
trên phím Tab) chứ không phải dấu nháy đơn .
 Ta xem một script đổi tên file sau :
 # Tên : stamp
 # Mục đích :đổi tên file bằng cách bổ sung vào tên file ngày hiện
tại
 t d=`+%m%d%y`
 mv $1 $1.$td
 Nếu hôm nay là ngày Sep 02 , 2001 và thực hiện lệnh stamp myfile
thì myfile bị đổi thành myfile.090201.

II . Các cấu trúc điều khiển :

1. Cấu trúc case :
 Cú pháp :
 case word in
 pattern) statement(s);;
 pattern) statement(s);;

 esac
 Nếu đối số word tương ứng với đối số pattern thì các lệnh statement phía
sau nó sẽ được thi hành . Lưu ý là lệnh được kết thúc bằng 2 dấu " ; " và kết
thúc cấu trúc case bằng từ khóa esac (viết ngược lại của từ case) .
 Ví dụ : # Name : Menu
 # Mục đích: cho phép người sử dụng in một file , xóa một file ,
hoặc
 thoát chương trình
 echo "Please choose either P, D or Q to : "
 echo "[P]rint a file "
 echo "[D]elete a file "

Linux Shell

 Trang 18

 echo "[Q]uit"
 read response
 case $response in
 P|p) echo "Name of file to print :"
 read filename
 lp $filename;;
 D|d) echo "Name of file to delete :"
 read filename
 rm $filename;;
 *) echo "leaving now"
 esac
 "P|p" có nghĩa là "P" hoặc "p" . " * " đại diện cho tất cả các kí tự không
phải là D, d , P hoặc p .
 Ta có thể lấy số các đối số của dòng lệnh bằng cách dùng "$#" .
2. Cấu trúc if :
 Cú pháp :
 if command1
 then command2
 else command3
 fi
 Ví dụ : # Tên : checkname
 # Mục đích: xác nhận nếu người đó đang đăng nhập hệ thống
 # Cách dùng : checkname login_name
 if
 who | grep $1 > /dev/null
 then
 echo "$1 đang đăng nhập hệ thống ."
 else
 echo "$1 không có ở đây ."
 fi
3. Cấu trúc lặp for :
 Với vòng lặp for , bạn đặc tả một tập hợp các file hoặc các giá trị để sử
dụng với một số lệnh . Để copy mọi file có tên tận cùng là .txt đến thư mục
textdir ,bạn sử dụng
vòng lặp for như sau :
 for i in *.txt
 do
 cp $i textdir/$i
 done
 Khi thông dịch Shell cho phép biến i nhận tên của bất cứ file nào trong thư
mục hiện hành mà có tên kết thúc bằng .txt . Bạn có thể sử dụng biến $i với
bất cứ câu lệnh nào nằm giữa từ khóa do và done .
 Script sau đây sẽ in một hoặc nhiều file , file nào in được thì bổ sung tên
file đó vào file có tên là printed , còn file nào không in được thì bổ sung tên file
đó vào file notprinted . Kí tự $* đại diện cho mọi tham số của dòng lệnh .
 for i in $*
 do
 if lp -t $i -dlasers $i > /dev/null

Linux Shell

 Trang 19

 then
 Echo $i >>printed
 else
 Echo $i >>notprinted
 fi
 done
4. Cấu trúc while :
 Ta xem xét script sau :
 #Tên : checkmail
 #Mục đích : thông báo cho người dùng nếu hộp thư của họ có
thay đổi
 #MAIL là biến đặc biệt cho biết hộp thư của người sử dụng
 # lấy kích thước của hộp thư để so sánh
 cp $MAIL omail
 while diff omail $MAIL > /dev/null # lệnh diff để so sánh 2 file
 do
 cp $MAIL omail
 sleep 30 # ngừng 30 giây
 done
 echo "New mail ! " | write $LOGNAME
 Script trên sẽ dừng vòng lặp khi hộp thư có sự thay đổi (tức là $MAIL
khác omail) và khi đó sẽ thông báo "New mail !" .

 Để thoát kỏi các vòng lặp for và while ta dùng lệnh break . Lệnh

break(n) cho phép ra khỏi n mức của vòng lặp .
 Lệnh continue cho phép bỏ qua các lệnh còn lại và bắt đầu chu trình

mới .

III . Lệnh test :

1. Các lựa chọn để kiểm tra tệp :
 Lựa chọn Ýï nghĩa
 -f Thành công nếu file tồn tại và là file hợp lệ
 -d Thành công nếu file là một thư mục
 -r Thành công nếu file tồn tại và có thể đọc
 -s Thành công nếu file tồn tại và không rỗng
 -w Thành công nếu filetồn tại và có thể ghi
 -x Thành công nếu file tồn tại và có thể thực thi
 Ví dụ : test -r abc # Thành công nếu file tồn tại và chỉ đọc
2. Các lựa chọn để kiểm tra số :
 Lựa chọn Ý nghĩa
 -eq Bằng nhau (equal)
 -ne Không bằng nhau (Not equal)
 -ge Lớn hơn hoặc bằng (Greater than or equal)
 -gt Lớn hơn (Greater than)
 -le Nhỏ hơn hoặc bằng (Less than or equal)
 -lt Nhỏ hơn (Less than)
 Ví dụ : # Tên script: chao

Linux Shell

 Trang 20

 hour=`date +%H` # lấy giờ
 if test $hour -lt 12 # nếu trước 12 giờ ...
 then
 echo "Good Morning, $LOGNAME"
 else
 if test $hour -lt 17 # nếu trước 17 giờ ...
 then
 echo "Good Afternoon, $LOGNAME"
 else
 echo "Good Everning, $LOGNAME"
 fi
 fi

3. Kiểm tra xâu kí tự :
 Cú pháp :
 ["str1"="str2"] : đúng nếu str1=str2
 test "str1" != "str2" : đúng nếu str1<str2
 test -z "$a" : đúng nếu xâu trong biến a rỗng
 test -n "$a" : đúng nếu xâu trong biến a không rỗng
4. Kết hợp các điều kiện :
 Các toán tử so sánh có thể tổ hợp với :
 -a : và
 -o : hoặc
 ! : đảo (phủ định)
 \(... ...)\ : gộp
 Ví dụ : $test \(-r file1 -o, -r file2 \) -a -w file3
 Lệnh trên đúng nếu ((file1 tồn tại, chỉ đọc hoặc file2 tồn tại ,chỉ
đọc) và file3 tồn tại , có thể ghi) .

IV . Các phép tính số học:
 Let được dùng để thực hiện các phép tính số học
 Các toán tử số học : +, -, *, /, %
 Các toán tử so sánh : >=, >, <, <=, = = , !=
 Các toán tử logic : ! , && , | |
 Ví dụ : $integer I=10 j=2 k # khai báo các biến I , j , k
 $let "k=I+j"
 $echo $k # kết quả là :
 12
 $((I<j))
 $echo $? # kết quả là:
 1
V . Xuất một biến đến một Shell mới :
 Cú pháp : export Tên biến
 Khi bạn tạo các biến Shell hoặc cho giá trị các biến đang tồn tại ,
chúng tồn tại trong quá trình Shell đang chạy . Một biến được đặt trong Shell
lúc đăng nhập hệ thống là có giá trị đối với mọi đối số của dòng lệnh . Một biến

Linux Shell

 Trang 21

đặt trong một Shell chỉ có giá trị trong Shell đó . Giá trị đó không xuất hiện hoặc
được đặt lại khi bạn thoát Shell đó .
 Giả sử bạn viết một Shell script tên là whatday như sau :
 echo " Today is $today ."
 today=Friday
 echo " Today is $today "
 Bây giờ nhập vào 4 lệnh sau từ dòng lệnh :
 chmod +x whatday # lệnh này dịch script trên thành file
whatday
 today=Thursday
 whatday
 echo $today
 Các dòng sau sẽ xuất hiện trên màn hình :
 Today is .
 Today is Friday .
 Thursday
 Giá trị Thursday của biến today trong login Shell không có tác dụng trong
script whatday . Khi script thi hành thì biến today vẫn chưa được định nghĩa (nên
hiển thị Today is .) cho đến khi nó nhận giá trị là Friday. Khi script kết thúc , bạn
trở về login Shell và biến today vẫn giữ giá trị là Thursday .
 Nếu ta thêm lệnh xuất biến " export today " vào :
 today=Thursday
 export today
 whatday
 echo $today
 Thì các dòng sau sẽ xuất hiện trên màn hình :
 Today is Thursday .
 Today is Friday .
 Thursday
 Nếu bạn muốn thay đổi các biến môi trường thì phải đặt lại biến môi
trường trong file .profile và theo sau nó là lệnh xuất biến export . Ví dụ , dùng
một trình soạn thảo văn bản đặt các dòng sau vào file .profile :
 PS1="Xin chao $" # đặt lại dấu nhắc $ thành Xin chào $
 export PS1
 TERM=vt100 # đặt lại kiểu thiết bị cuối là vt100
 export TERM
 Chú ý : Những thay đổi do bạn tạo ra trong file .profile hoặc .login không
nhận được hiệu ứng cho đến khi bạn thoát khỏi hệ thống và đăng nhập trở lại .

Linux Shell

 Trang 22

Chương IV :

Các loại Shell khác nhau
I. Bourne Shell :

Bourne Shell được biết với tên sh là một trong những loại Shell đầu tiên
và thông dụng nhất hiện nay . Để bắt đầu sử dụng Shell bạn hãy gõ lệnh :

 $sh
Khi đó con trỏ lệnh sẽ chuyển sang dạng mới là một dấu đô la ($)
Khuôn dạng chung cho các lệnh trong Bourne Shell là :

 $ command arg1 arg2 argn
Trong đó : arg1 arg2 argn là các tham số của lệnh .
Để liệt kê các biến hiện có của Bourne Shell bạn hãy sử dụng lệnh :

 $ set
BẢNG LIỆT KÊ CÁC BIẾN

Tên biến Giá trị
HOME / home / a-Function /gmeghab
LANG C
PS1 $
PS2 >
PWD / bin
TZ US / Eastern
ISF =
PATH (liệt kê tất cả các thư mục mà người dùng hiện

thời có quyền truy nhập)
SHELL / bin / csh
TERM Wyse50

Linux Shell

 Trang 23

OLWMMENU / home / a-s / gmeghab / .openwin
OPENWINHOM
E

/ usr / openwin

USER Gmeghab
Bất kì biến nào trong danh sách trên đều có thể thay đổi được giá trị bằng

cú pháp:
 $ variable = value
Để xem giá trị của từng biến riêng biệt bạn sử dụng lệnh :
 $ echo $ <tên biến>
Cũng giống những Shell khác ,trong Bourne Shell thì một Script là một tệp

chứa chuỗi các lệnh thực hiện theo đúng thứ tự sắp xếp trong tệp . Bạn có thể
sử dụng bất kì trình sọan thảo nào để soạn một tệp Script .
 Ví dụ : Soạn thảo một tệp Script có tên là Morning :
 $cat Morning
 date
 users
 who
 Tạo tập tin có tên File1
 $cat File1
 aa
 bb
 OK

Với Script , chúng ta cũng có thể thực hiện một chuỗi liên tiếp các Script
bằng cách gõ chúng trên cùng một dòng lệnh và mã Script ngăn cách với nhau
bằng một dấu chấm phẩy (;) .

 Ví dụ : $morning ; afternoon ; evening
 Để liệt kê tất cả các lệnh của Bourne Shell bạn hãy đọc các tài liệu
có sẵn bằng cách gõ lệnh sau :
 $ man sh

II. Korn Shell :
 Korn Shell cũng tương tự như Bourne Shell ,ngòai nó có thêm bốn chức
vụ rất quan trọng mà Bourne Shell không có :
 + Theo dõi họat động của người dùng (history file) .
 + Quản lí các hoạt động của người dùng (jod control) .
 + Chức năng thao tác với các bí danh .
 + Trình soạn thảo lệnh (command editor) .
 Để chạy Korn Shell bạn hãy chạy chương trình có tên : ksh .
 Korn Shell cũng định nghĩa các biến cục bộ của riêng nó và một phần của
các biến này có tên và chức năng giống như trong Bourne Shell , ngoài ra còn
thêm một số biến sau :

Tên biến Giá trị
PS3 Thông báo cho lệnh SELECT
PS4 Thông báo cho lệnh TRACE
SECOND Thời gian tính bằng giây để nạp

Shell
TMOUT Thời gian sử dụng Shell
PRID ID của tiến trình Shell

Linux Shell

 Trang 24

Các lệnh trong Korn Shell :
 - Thay đổi các giá trị ngầm định của các biến cục bộ :
 $ variable = value
 - Xem chi tiết một lệnh nào đó :
 $ type command_name
 - Xem chi tiết về thời gian thực ,thời gian do người dùng định nghĩa và
thời gian của hệ thống :
 $ time

III. Sử dụng C Shell :
C Shell được thiết kế để thay thế Bourne Shell , tên của chương trình là

csh nó được xây dựng dựa trên ngôn ngữ lập trình C .
a. Bí danh :

Để sử dụng các lệnh của C Shell một cách nhanh nhất ,bạn gán cho mỗi
lệnh này một bí danh nào đó . Để thực hiện như vậy bạn đánh lệnh :

 % alias newcommandname oldcommandname options
 Ví dụ : Để gán bí danh cho lệnh ls bạn làm như sau :
 % alias li ls-als
 Từ đây bạn có thể sử dụng lệnh ls-als bằng lệnh li .
Ngoài việc gán bí danh cho lệnh , bạn cũng có thể tiến hành gán bí danh

cho các ứng dụng sẵn có .
Ví để gán bí danh cho trình ứng dụng matlab bạn làm như sau :
 % alias matlab/usr/bin/matlab

b. Xem các thông tin về các tiến trình :
Lệnh whodo được sử dụng để liệt kê thông tin về các tiến trình trong hệ

thống , đồng thời các tiến trình này do người nào sử dụng .
Lệnh %ps[ts] được sử dụng để xem thông tin về trạng thái của các tiến

trình .
 Với [ts] : tham số đi kèm .
Một số tham số tùy chọn của lệnh ps

Tùy chọn Ý nghĩa
-a Hiển thị tất cả các tiến trình

-u process -
id

Hiển thị tất cả các thông tin liên quan đến tiến trình
hiện đang hoạt động với id đã cho ,các thông tin này
bao gồm :id của người dùng ,id của tiến trình ,thời gian
bắt đầu hoạt động , thời gian kết thúc , thời gian sử
dụng CPU , tên lệnh đã gọi tiến trình .

-x terminal Chỉ định thiết bị cuối được sử dụng để hiển thị thông
tin .

-e Hiển thị các thông tin liên quan đến các tiến trình bao
gồm : id của tiến trình ,thiết bị cuối ,thời gian ,tên lệnh .

-f Hiển thị tất cả các thông tin liên quan đến các tiến trình
bao gồm : id của người dùng ,id của tiến trình ,thiết bị
cuối .

Nếu không có tham số đi kèm , lệnh ps sẽ xuất ra thông tin về tất cả các
chương trình đang chạy .

Tiêu đề Ý nghĩa
PID ID của tiến trình

Linux Shell

 Trang 25

TT Thiết bị cuối điều khiển tiến trình
S Tình trạng của tiến trình
TIME Thời gian sử dụng CPU của tiến

trình
COMMAND Tên lệnh đã gọi tiến trình này

c. Các biến :
Giống như tất cả các Shell khác , C Shell cũng có những biến riêng của

bản thân nó ,với những biến này bạn có thể tiến hành khai hoặc gán giá trị . Để
khai báo một biến trong C Shell bạn có thể sử dụng một trong ba lệnh sau : set
,@ setenv .

Khai báo biến bằng lệnh set :
Để khai báo hoặc gán giá trị cho một biến cục bộ bằng lệnh set bạn sử

dụng cú pháp :
 $set username
 $echo $username
Để xóa biến vừa được thêm vào danh sách (username) bạn làm như sau

:
 $unset username
 $ set
Để liệt kê tất cả các tên trong tệp thư mục hiện thời bạn làm như sau :
 $ echo*
Bạn cũng có thể gán giá trị cho biến từ bàn phím bằng cách :
 $ set newname = $<
Bạn cũng có thể kiểm tra kích thước (số phần tử của mảng) bằng lệnh :
 $ echo $# variable
Khai báo biến bằng lệnh @ :
Lệnh @ khai báo các biến cục bộ , tuy nhiên lệnh này yêu cầu người dùng

chỉ được khai báo và gán các biến có giá trị số .
 % @ name
 @: syntax error
 % @ name = 5
 % echo $name
 5
Lệnh @ cũng cho phép bạn tính tóan các biểu thức số . Cú pháp để tính

tóan biểu thức số với lệnh @ hòan toàn tương tự như cú pháp sử dụng trong
ngôn ngữ C .

Các biến của Shell và các biến môi trường :
Các biến trong C Shell được phân biệt làm hai loại : biến của Shell và

biến môi trường . Biến môi trường được hiển thị bằng các chữ cái hoa , biến
của Shell được hiển thị bằng chữ cái thường . Các biến môi trường có thể sử
dụng bởi các tiến trình con của C Shell trong khi các biến cục bộ thì không .

Các biến của C Shell được lưu trong hai tệp : .login và .cshrc . Để hiển thị
giá trị của các biến lưu giữ trong hai tệp này bạn sử dụng lệnh cat :

 $cat.cshrc
 ...
 $ cat.login
 ...

Linux Shell

 Trang 26

Lệnh sentenv hiển thị tất cả các biến môi trường , những biến này được
hệ thống hiển thị bằng các chữ hoa .

 $sentenv
 Các biến của Shell thường được sử dụng nhất :

Tên biến Mô tả
$argv Biến này được thừa kế từ môi trường lập trình C , trong đó

argv [0] chứa tên chương trình , argv [1] chứa tham số đầu tiên
của dòng lệnh .

$cdpath Biến này được chứa trong tệp .cshrc và chứa tên các thư mục ,
biến này tác động đến sự hoạt động của lệnh cd .

$cwd Thư mục làm việc .
$history Biến này quản lý kích thước của danh sách lưu trữ quá trình sử

dụng (history list) .
$home Chứa thư mục gốc ứng với từng người dùng (thư mục gốc này

thường được tham chiếu bởi kí hiệu ~) .
$ignoreoff Khi giá trị của biến này được đặt ta phải sử dụng ta phải sử

dụng lệnh exit để chấm dứt việc sử dụng Shell thay vì sử dụng
tổ hợp phím Ctrl+d .

$mail Tệp lưu giữ hộp thư của người dùng .
$noclobbe
r

Biến này được đặt để ta không thể ghi đè một cách vô tình lên
một tệp có sẵn khi bạn định hướng lại đầu ra (output) .

$path Biến này được lưu trong tệp .cshrc , nó chứa những thư mục
mà ta hay sử dụng nhất , và khi ta gõ một lệnh nào đó ta không
nhất thiết phải gõ đầy đủ tên và đường dẫn của thư mục .

$prompt Biến này được lưu trong tệp .cshrc , chứa dấu nhắc mà người
dùng sẽ nhìn thấy trên dòng lệnh .

$savehist Số lượng các lệnh bạn đã sử dụng khi bạn chấm dứt việc sử
dụng .

$status Biến này chứa trạng thái kết thúc của lệnh được sử dụng gần
đây nhất
Nếu lệnh này được thực hiện thành công thì giá trị này sẽ là 0
và ngược lại giá trị này là -1 .

$shell Chứa thư mục của Shell . Với C Shell thì giá trị của biến này là
/bin/csh .

IV. Lập trình với C Shell :

Người dùng có thể sử dụng ngôn ngữ lập trình của Shell không chỉ được
sử dụng để thực hiện một chuỗi các lệnh . Giả sử bạn cần tạo một thư mục
mới và sao chép tất cả các tệp ở một thư mục sẵn có vào thư mục mới này .
Để thực hiện công việc đặt ra bạn cần phải sử dụng cơ chế lặp , khái niệm và
cách sử dụng cơ chế này trong lập trình với C Shell được trình bày trong phần
sau đây :

a. Câu lệnh if :
 Cú pháp : if (express) command
 Ví dụ :
 #!/ bin/ csh
 set bad = 0

Linux Shell

 Trang 27

 If ($bad = = 0) echo "I am bad"
 Chương trình trên khai báo biến có tên bad như một biến cục bộ và

giá trị đầu là 0 . Câu lệnh if kiểm tra giá trị của biến bad và đưa ra thông báo "I
am bad" trên màn hình .

b. Câu lệnh if-else :
 Cú pháp : If (express)
 Commands
 Else
 Commands
 Endif
 Ví dụ :
 #!/ bin / csh
 set mychoice = openwin
 If ($mychoice = = openwin)
 #
 unset mychoice
 echo-n "Starting Open Windows ..."
 clear # get rid of annoying cursor rectangle
 echo-n "Automatically logging out ..."
 #
 else
 #
 unset mychoice
 echo-n "Starting Sun View ..."
 #default Sun View ...
 echo-n "Automatically logging out ..."
 #
 endif
(Trong chương trình , mychoice là một biến cục bộ và đặt giá trị ban đầu

của biến là openwin . Câu lệnh If-else kiểm tra giá trị của biến mychoice :
 + Nếu mychoice = openwin thì xóa biến mychoice và đưa ra thông

báo :
 "Starting Open Windows ..."
 "Automaticlly logging out ..."
c. Câu lệnh Switch :
 Cú pháp :
 Switch (express)
 Case comparasion 1 :
 Commands
 Breaksw
 Case comparasion 2 :
 Commands
 Breaksw
 Default :
 Endsw
 Ví dụ :
 #!/ bin / csh
 set mychoice = openwin

Linux Shell

 Trang 28

 Switch($mychoice)
 Case openwin :
 unset mychoice
 echo-n "Starting Open Windows ..."
 clear # get rid of annoying cursor rectangle
 echo-n "Automatically logging out ..."
 breaksw
 #
 case sunview :
 unset mychoice
 echo-n "Starting Sun View ..."
 #default Sun View ...
 echo-n "Automatically logging out ..."
 #
 endsw
(Trong chương trình , mychoice là một biến cục bộ và đặt giá trị ban đầu

của biến là openwin . Câu lệnh switch kiểm tra giá trị của biến Mychoice và cho
kết quả tương tự như ở chương trình ví dụ của câu lệnh If-else :

 + Nếu mychoice = = openwin thì xóa biến mychoice và đưa ra
thông báo:

 "Starting Open Windows ..."
 "Automaticlly logging out ..."
 + Ngược lại cũng xóa biến mychoice nhưng đưa ra thông báo :
 "Starting Sun View ..."
 "Automaticlly logging out ..."
d. Vòng lặp foreach :
 -Vòng lặp này giống như vòng lặp for trong các ngôn ngữ lập trình

khác .
 Cú pháp :
 Foreach variable (wordlist)
 Commands
 End
Ýï nghĩa : Vòng lặp này duyệt tất cả các thành phần của một danh sách

được chỉ định trong wortlist . Trong cú pháp trên thì wordlist luôn phải được đăt
giữa hai dấu ngoặt đơn () .

 Ví dụ : Sử dụng vòng lặp foreach để đổi tên của nhiều tệp khác
nhau sang tên mới :

 #! /bin / csh
 set tencu; set tenmoi
 foreach tencu (*)
 echo $tencu
 echo "nhap ten moi :"
 set tenmoi = $<
 echo $tenmoi
 mv $tencu $tenmoi
 end
 ls-als

Linux Shell

 Trang 29

 + Trong ví dụ trên , hai biến tencu và tenmoi là hai biến cục bộ
nhưng không có giá trị khởi đầu .

 + Vòng lặp foreach gán lần lượt tất cả các giá trị trong wordlist cho
biến tencu .Trong Shell cũng như trong ngôn ngữ C ,ký tự (*) biểu hiện cho tất
cả các tệp trong thư mục cho trước ở đây là thư mục làm việc ,các tên tệp này
được gán cho biến tencu theo thứ tự chữ cái trong mã ASCII .Tên mới của mỗi
tệp đều được nhập vào từ bàn phím thông qua biến tenmoi .

 + Dòng lệnh : mv $tencu $tenmoi đổi tên tệp được chỉ ra trong biến
tencu thành tên mới được chỉ định trong tenmoi .

e.Vòng lặp while :
 - Vòng lặp while tương đương với vòng lặp foreach .
 Cú pháp :
 While (expr)
 Commands

 End
Ý nghĩa : Trong cấu trúc trên thì expr đặc trưng cho biểu thức sẽ

được tính tóan trước khi bắt đầu mỗi lần lặp . Nếu giá trị này là true thì
những lệnh tiếp theo sẽ được thực hiện cho đến khi gặp câu lệnh end , nếu giá
trị này là false thì vòng lặp sẽ kết thúc .

f. Vòng lặp repeat :
 Cú pháp :
 Repeat count command
Ý nghĩa : Phạm vi sử dụng vòng lặp này tương đối hạn hẹp và thông

thường thì nó được sử dụng để thực hiện những thao tác đơn giản lặp đi lặp
lại .

Trong đó :
 Count : là biến với giá trị đã được xác định trước .
 Command : là một lệnh do người lập trình chỉ định .

Linux Shell

 Trang 30

Chương V :
Trình soạn thảo vi

Nội dung : Giới thiệu trình soạn thảo vi , cung cấp một số kiến thức cơ sở để có
thể soạn thảo được văn bản hay chương trình .
I. Khởi động vi :
 1. Giới thiệu : Vi (video interactif) là chương trình sọan thảo văn bản theo
trang màn hình :
 - Màn hình được xem như một cửa sổ mở trên tập tin .
 - Có khả năng di chuyển con trỏ đến bất kì vị trí nào trên màn hình .
 - Cửa sổ có thể di chuyển tự do trên tập tin .
 Phần lớn các phím dùng độc lập hoặc kết hợp với phím Shift và Ctrl để
tạo ra các lệnh của vi . Khi một lệnh bị gõ sai , vi báo hiệu bằng cách nháy màn
hình , kêu còi hay thông báo lỗi .
 Chương trình vi được xây dựng từ chương trình soạn thảo dòng ex .Các
lệnh của ex có thể được gọi khi có dấu ":" ở dòng cuối màn hình .

2. Khởi động vi :
 Ta có thể gọi vi với tên tập tin văn bản :
 $vi tên_tập tin
 Cửa sổ soạn thảo sẽ được mở tại đầu tập tin . Nếu tập tin chưa tồn tại ,
nó sẽ được tạo bởi lệnh ghi . Dòng cuối cùng trên màn hình được dùng cho
những công việc sau :
 - Vào các lệnh .
 - Thống kê .
 - Báo lỗi .
 Khi ta chỉ muốn xem nội dung một tập tin đã có trên đĩa , dùng lệnh :
 $view tên_tập tin
 Để thóat trình xem , nhấn phím ESCgõ :q! nhấn phím Enter
 3.Thóat khỏi vi :

Linux Shell

 Trang 31

Muốn ra khỏi vi và ghi lại nội dung tập tin , bạn nhấn phím ESC và dùng
một trong các lệnh như sau :

 :ZZ hoặc :wq hoặc :x
Thoát khỏi vi và không ghi lại các thay đổi trước đó
 :q!
Khi ở trong chế độ soạn thảo của vi , muốn làm việc với các lệnh SHELL ,
ta có thể làm như sau :
- Chạy một lệnh SHELL
 :! Lệnh
- Hoặc gọi SHELL , sau đó chạy các lệnh của người dùng , khi kết thúc
bấm Ctrl-D để trở lại vi :
 :! sh
 $ lệnh
 $ Ctrl-D

 II. Soạn thảo văn bản :
 1. Chèn văn bản :

- Chèn ký tự trên một dòng :
 a <text> <ESC>
- Chèn ký tự vào sau vị trí con trỏ . Lệnh không được hiển thị trên màn
hình .
Nhấn phím ESC để kết thúc chế độ chèn văn bản .
 i <ESC> Xen ký tự vào sau con trỏ .
 A <ESC> Xen ký tự vào cuối dòng .
 i <ESC> Xen ký tự vào cuối dòng .
- Chèn dòng :
 o <ESC> Xen một dòng vào trước dòng chứa con trỏ .
 o <ESC> Xen một dòng vào sau dòng chứa con trỏ .

 2. Di chuyển con trỏ trong tập tin :
- Theo ký tự :
Sang trái : dùng phím trượt trái hoặc h hoặc backspace
Xuống dòng : dùng phím trượt xuống hoặc j hoặc linefeed
Sang trái : dùng phím trượt phải hoặc i hoặc espace
Lên dòng : dùng phím trượt lên hoặc k hoặc
- Theo dòng :
 ^ về đầu dòng
 $ cuối dòng
 Enter đầu dòng kế tiếp
- Đầu dòng trên
 0(null) về đầu dòng vật lý (dòng bắt dầu bằng dấu cách hoặc Tab)
- Theo màn hình
 H về đầu màn hình (Home)
 M về giữa màn hình (Miđle)
 L về cuối màn hình (Last)
- Theo từ (word) :
 w W về đầu từ tiếp
 b B đầu từ hiện tại
 e E cuối từ hiện tại

Linux Shell

 Trang 32

- Theo câu :
 (về đầu câu
) về cuối câu
Lưu ý kết thúc một câu là dấu .! hoặc ?
- Theo cửa sổ (window):
 z dòng hiện tại ở giữa cửa sổ .
 z<Enter> dòng hiện tại ở đầu cửa sổ
 ^D dòng hiện tại ở cuối cửa sổ
 ^U xuống nữa cửa sổ
 ^F xuống một cửa sổ (-2 dòng)
 ^B lên một cửa sổ (-2 dòng)
Lưu ý :^là ký hiệu phím CTRL .
-Theo số thứ tự dòng :
 Để hiển thị số thứ tự các dòng soạn thảo :
 : set nu
 Xóa bỏ hiển thị trên :
 : set nonu
 :n<Enter> hoặc nG Chuyển con trỏ đến dòng thứ n
 :s hoặc G Đến cuối dòng văn bản
 :se list hiển thị các kí tự ẩn
- Tìm theo dãy kí tự :
 / kí hiệu chiều tìn xuôi
 ? kí hiêụ chiều tìm ngược
 /string chuyển con trỏ đến dòng chứa dãy kí tự theo chiều

xuôi
 ?string chuyển con trỏ đến dòng chứa dãy kí tự theo chiêu

ngược
 // lặp lại tìm xuôi
 ?? lặp lại tìm ngược

3. Xóa văn bản :
- Xóa kí tự :
 x xóa kí tự taịo vị trí con trỏ
 3x xóa 3 kí tự
 x xóa kí tự trước vị trí con trỏ
- Xóa dòng văn bản :
 dd hoặc :d<CR> xóa dòng chứa con trỏ
 3dd xóa 3 dòng bắt đầu từ vị trí văn bản
 d$ hoặc D xóa đến cuối dòng
 dw xóa từ chứa con trỏ
 3dw xóa 3 từ
 d/string xóa đến khi hết dãy kí tự

4. Thay thế văn bản :
-Thay thế kí tự :
 rc thay thế kí tự đại diện bằng kí tự c
 R <ESC> thay thế số kí tự bằng dãy 'text"
- Thay thế dòng :
 S <ESC> xóa dòng hiện tại và thay thế nó bằng "text"
- Thay thế từ :

Linux Shell

 Trang 33

 cw <ESC> thay thế một từ bằng "text" .
 Từ được thay thế tính từ vị trí con trỏ đến kí tự $
 c2w<ESC> thay 2 từ
 c hoặc c$ thay thế đến cuối dòng
 c/string thay thế đến hết chuỗi

5. Xóa hoặc lặp lại tập lệnh :
- Xóa lệnh
 u xóa tác dụng của lệnh cuối cùng
 U xóa tất cả các thay đổi đã làm trên dòng hiện tại
- Lặp lại lệnh
 . lặp lại lệnh thay dổi văn bản

6. Xem trạng thái văn bản đang soạn thảo :
^G Hiển thị tên , trạng thái ,số dòng , vị trí cursor và phần văn bản tính

từ vị trí con trỏ đến cuối dòng văn bản .
7. Sao chép , di chuyển văn bản :

+ Di chuyển văn bản
 Mỗi lần thực hiện một lệnh xóa (x hoặc d) , vi đều ghi lại phần văn bản

bị xóa vào vùng đệm riêngcho đến lần xóa sau . Lệnh p hoặc P cho phép lấy
lại phần văn bản từ vùng đệm đó . Trước khi thực hiện lệnh này , dấu nháy
phải được đặt vào vị trí cùng kiểu với phần văn bản có trong vùng đệm :

 - kí tự
 - từ
 - dòng
 - cuối dòng
p sao phần văn bản xóa lần cuối vào sau đối tượng cùng kiểu
P sao phần văn bản xóa lần cuối vào trước đối tượng cùng kiểu
* cách khác để chuyển dòng :
 :5, 10m 20 chuyển các dòng từ 5 đến 10 tới sau dòng 20
+ Sao chép văn bản
 Lệnh y (yank) cho phép sao chép phần văn bản ta muốn vào vùng

đệm . Muốn sao phần văn bản từ vùng đệm ra, ta phải chuyển cursor đến nơi
cần sao , sau đó dùng P hoặc p

 Y3w sao 3 từ vào vùng đệm
 Y hoặc yy sao dòng hiện tại vào vùng đệm
 5yy sao 5 dòng vào vùng đệm
Cách khác dùng để sao chép dòng :
 :5, 8 t 25 sao chép các dòng từ 5 tới 8 tới sau dòng 25

III . Dùng vi với danh sách các lệnh đã chạy của Shell :
Lệnh fc (fix command) cho phép ta soạn thảo bằng vi và chạy lại các

lệnh đã chạy của Shell . Cách dùng như sau :
- Soạn thảo và cho chạy lệnh cuối cùng :
 $fc
- Soạn thảo một nhóm lệnh và cho chạy :
 $ fc m n
-Xem danh sách 16 lệnh cuối cùng :
 $ fc -l hoặc history
 $fc -lr (danh sách theo thứ tự ngược lại)

Linux Shell

 Trang 34

- Tạo một tập tin chứa một số lệnh đã chạy (của history):
 $fc -nl n1 n2 > cmd
cmd là một tập tin chứa các lệnh của history từ lệnh ngày đến lệnh

n2 .

TÀI LIỆU THAM KHẢO

1. Special using editor Linux (Chương 18 - Phần IV)
2. Nguyễn Tấn Khôi - " Hệ thống mạng Linux " , Đà Nẵng ,

2000.
3. Đỗ Duy Việt & Nguyễn Hoàng Thanh Ly - "Linux Kernel "

----------- ***** -----------

