

HƯỚNG DẪN HỌC TẬP HOÀN THIỆN CHO BẬC TRUNG HỌC CƠ SỞ

EVERYTHING YOU NEED TO ACE
SCIENCE IN ONE BIG FAT
NOTEBOOK

SÓT TAY
KHOA HỌC

(Sách tham khảo)

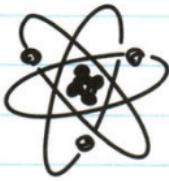
Hạnh Trinh dịch

Tái bản lần 1

Những ghi chú đền từ

ĐÚA TRẺ THÔNG MINH NHẤT LỚP HỌC

(Đã được kiểm duyệt bởi MICHAEL GEISEN)



Achaubooks

NXB Lao Động

SÓ TAY KHOA HỌC

ALL RIGHTS RESERVED

Vietnam edition copyright © A Chau International Education Development and Investment Corporation, 2021.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publishers.

First published in the United States under the title:
EVERYTHING YOU NEED TO ACE SCIENCE IN ONE BIG FAT NOTEBOOK:

The Complete Middle School Study Guide

Copyright © 2016 by Workman Publishing

Published by arrangement with Workman Publishing Co., New York.

ISBN: 978-604-325-198-2

Printed in Viet Nam

Bản quyền tiếng Việt thuộc về Công ty Cổ phần Đầu tư và Phát triển Giáo dục Quốc tế A Châu, xuất bản theo hợp đồng chuyên nhượng bản quyền với Workman Publishing, 2020.

Bản quyền tác phẩm đã được bảo hộ, mọi hình thức xuất bản, sao chép, phân phối dưới dạng in ấn, văn bản điện tử, đặc biệt là phát tán trên mạng internet mà không được sự cho phép của đơn vị nắm giữ bản quyền là hành vi vi phạm bản quyền và làm tổn hại tới lợi ích của tác giả và đơn vị đang nắm giữ bản quyền.

Không ủng hộ những hành vi vi phạm bản quyền. Chỉ mua bán bản in hợp pháp.

ĐƠN VỊ PHÁT HÀNH:

Công ty Cổ phần Đầu tư và Phát triển Giáo dục Quốc tế A Châu
Số 8, lô 2 Dự án nhà ở Phùng Khoang, Phường Trung Văn, Quận Nam Từ Liêm, Hà Nội

Điện thoại: 024 8582 5555

Hotline đặt hàng: 09166 40 166

Website: [Http://achabooks.vn](http://achabooks.vn) Hoặc <http://hocgioitoan.com.vn>

Email: info@achabooks.vn

Facebook: www.fb.com/hocgioitoan.com.vn

www.fb.com/achabooks.vn

BRAIN QUEST

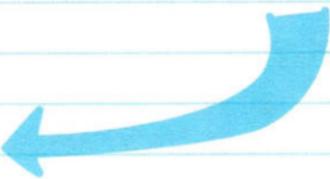
HƯỚNG DẪN HỌC TẬP HOÀN THIỆN CHO Bậc TRUNG HỌC CƠ SỞ

EVERYTHING YOU NEED TO ACE SCIENCE IN ONE BIG FAT NOTEBOOK

SÓ TAY

KHOA HỌC

(Sách tham khảo)
Hạnh Trinh dịch


Những ghi chú đền từ
ĐÚA TRẺ THÔNG MINH NHẤT LỚP HỌC
(Đã được kiểm duyệt bởi MICHAEL GEISEN)

MỌI THỦ BẠN CẦN ĐỂ LÀM CHỦ MÔN

KHOA HỌC

CHÀO!

Đây là những ghi chép ở trong lớp khoa học của tôi.

Ồ, tôi là ai vậy? Thực ra, một vài bạn đã nói rằng tôi là đứa trẻ thông minh nhất trong lớp.

Tôi đã viết ra tất cả những gì các bạn cần để làm

chủ **MÔN KHOA HỌC**. Từ **CÁC THÍ NGHIỆM** cho đến

HỆ SINH THÁI, và chỉ những kiến thức

thực sự quan trọng trong đó, bạn biết đấy,

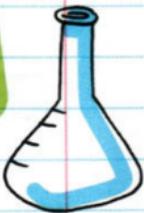
những thứ hay xuất hiện trong kỳ thi!

← →

Tờ đã cố gắng hệ thống mọi thứ nên tờ gần như luôn luôn:

- Làm nổi bật từ khóa bằng **MÀU VÀNG**.
- **Màu xanh lá** dùng cho các định nghĩa.
- Sử dụng **BÚT BI XANH DA TRỜI** đối với người, địa danh, ngày tháng và thuật ngữ quan trọng.
- Vẽ ngoáy hình ông Charles Darwin dễ thương và biểu thị các ý lớn một cách trực quan.

Nếu bạn phát ngán với sách giáo khoa và không
giỏi ghi chú bài giảng, cuốn sổ tay này sẽ giúp cậu.


Nó làm nổi bật các ý trọng tâm. (Nhưng nếu giáo
viên của bạn chỉ tập trung giảng mà không khai
quát ý, hãy lắng nghe và ghi chú ý chính)

Bởi vì tờ đã làm chủ được môn khoa học, quyền sổ
tay này là **CỦA BẠN**. Tờ đã hoàn thành nó, vì vậy
mục đích của quyền sổ tay này là giúp **BẠN** học và
ghi nhớ những gì bạn cần để đứng đầu trong lớp
khoa học.

NỘI DUNG

PHẦN 1: NGHIÊN CỨU KHOA HỌC 11

1. Tư duy như một nhà khoa học 12
2. Thí nghiệm khoa học 21
3. Báo cáo phòng thí nghiệm và đánh giá kết quả 41
4. Các đơn vị trong SI và các phép đo lường 47
5. An toàn phòng thí nghiệm và các dụng cụ khoa học 57

PHẦN 2: CHẤT PHẢN ỨNG HÓA HỌC và DUNG DỊCH 69

6. Chất, các đặc tính và pha 70
7. Bảng tuần hoàn, cấu trúc nguyên tử và các hợp chất 81
8. Dung dịch và chất lỏng 93

PHẦN 3: CHUYỂN ĐỘNG LỰC và CÔNG 101

- Chuyển động 102
- Lực và các định luật về chuyển động của Newton 109
- Lực hấp dẫn, ma sát và các lực khác trong cuộc sống thường ngày 119
- Công và động cơ 129

ĐỊNH LUẬT
CỦA TÔI!

PHẦN 4: NĂNG LƯỢNG 139

- Các dạng năng lượng 140
- Nhiệt năng 147
- Sóng ánh sáng và sóng âm 153
- Điện và từ tính 169
- Các nguồn năng lượng điện 185

PHẦN 5: KHÔNG GIAN: VŨ TRỤ và HỆ MẶT TRỜI 193

- Hệ Mặt Trời và thảm hiểm không gian 194
- Hệ Mặt Trời - Trái Đất - Mặt Trăng 207
- Các ngôi sao và các thiên hà 219
- Nguồn gốc của Vũ Trụ và Hệ Mặt Trời 229

PHẦN 6: TRÁI ĐẤT THỜI TIẾT KHÍ QUYỀN và KHÍ HẬU

237

22. Khoáng sản, đá và cấu trúc Trái Đất **238**
23. Sự chuyển động của vỏ Trái Đất **249**
24. Phong hóa và xói mòn **261**
25. Khí quyển của Trái Đất và vòng tuần hoàn nước **269**
26. Thời tiết **279**
27. Khí hậu **291**

PHẦN 7: SỰ SỐNG: PHÂN LOẠI và TẾ BÀO

28. Sinh vật và sự phân loại sinh học **302**
29. Lý thuyết tế bào và cấu trúc tế bào **313**
30. Sự vận chuyển của tế bào và sự trao đổi chất **323**
31. Sự sinh sản của tế bào và tổng hợp protein **331**

PHẦN 8: THỰC VẬT và ĐỘNG VẬT

343

32. Cấu trúc và sự sinh sản ở thực vật **344**
33. Động vật không xương sống **355**
34. Động vật có xương sống **365**
35. Cân bằng nội môi và hành vi của động vật và thực vật **375**

PHẦN 9: CƠ THỂ NGƯỜI VÀ HỆ CƠ QUAN TRÊN CƠ THỂ NGƯỜI 383

- 36. Hệ xương và hệ cơ 384
- 37. Hệ thần kinh và hệ nội tiết 395
- 38. Hệ tiêu hóa và bài tiết 407
- 39. Hệ hô hấp và hệ tuần hoàn 415
- 40. Hệ miễn dịch và hệ bạch huyết 425
- 41. Sự sinh sản và phát triển của con người 433

PHẦN 10: LỊCH SỬ SỰ SỐNG: DI TRUYỀN, TIẾN HÓA VÀ HÓA THẠCH 443

- 42. Di truyền và di truyền học 444
- 43. Sự tiến hóa 455
- 44. Hóa thạch và thời kỳ đồ đá 467
- 45. Lịch sử sự sống trên Trái Đất 475

PHẦN 11: SINH THÁI HỌC: MÔI TRƯỜNG SỐNG SỰ PHỤ THUỘC LẪN NHAU VÀ TÀI NGUYÊN 485

- 46. Sinh thái học và hệ sinh thái 486
- 47. Sự phụ thuộc lẫn nhau và sự luân chuyển
của năng lượng và vật chất 495
- 48. Diễn thể sinh thái và quần xã sinh vật 507
- 49. Tài nguyên thiên nhiên và sự bảo tồn 519

PHẦN

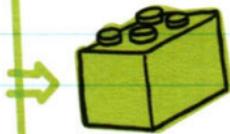
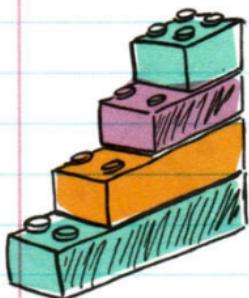
NGHIÊN CỨU KHOA HỌC

Chương 1

TƯ DUY NHƯ MỘT NHÀ KHOA HỌC

CÁC NHÁNH của KHOA HỌC và CÁCH ĐỂ
CHÚNG HÒA HỢP

KHOA HỌC ĐỜI SỐNG hay
SINH HỌC là ngành nghiên
cứu về tất cả các sinh
vật sống như thực vật,
động vật, thậm chí cả
các sinh vật đơn bào.

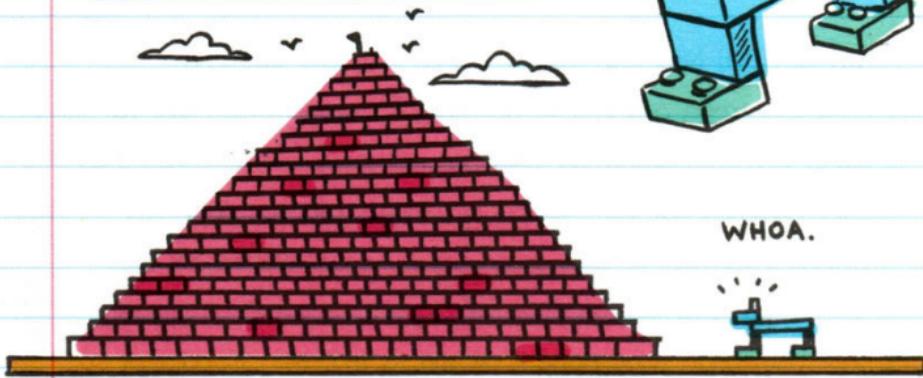
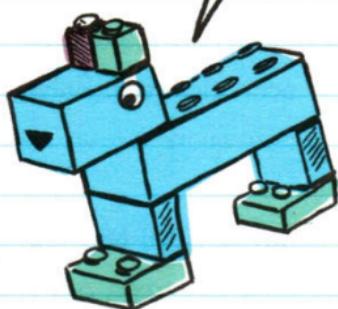


KHOA HỌC TRÁI ĐẤT
liên quan đến Trái Đất và
không gian như hành tinh,
các vì sao và đá. Khoa học
Trái Đất nghiên cứu về vật
không sống và lịch sử của chúng.

KHOA HỌC VẬT LÝ

nghiên cứu tất cả về vật chất và năng lượng, các khái
tạo dựng cơ bản nhất của vũ trụ. Nó bao gồm **VẬT LÝ**
(năng lượng tương tác với vật chất) và **HÓA HỌC** (vật
chất và cách biến đổi).

Khoa học giống khi chúng ta nghĩ về vũ trụ như một thế giới Lego vậy:

1. **VẬT LÝ** nghiên cứu về một miếng Lego và tất cả các thuộc tính của nó, như cách nó di chuyển và năng lượng của nó.

2. **HÓA HỌC** nghiên cứu cách các miếng Lego khớp vào nhau để tạo ra những khối lớn hơn.

3. KHOA HỌC ĐỜI SỐNG

nghiên cứu tất cả vật sống có thể tạo ra từ khối Lego đó.

3. KHOA HỌC ĐỜI SỐNG

4. **KHOA HỌC TRÁI ĐẤT** nghiên cứu tất cả vật không sống trong thế giới Lego.

NGHIÊN CỨU KHOA HỌC

Khoa học là cách tìm ra câu trả lời cho các câu hỏi về thế giới xung quanh chúng ta. Các nhà khoa học rất giống các thám tử, sử dụng bằng chứng để giải quyết các câu đố phức tạp. Họ tìm bằng chứng bằng cách tiến hành các thí nghiệm và quan sát chúng. Quá trình được các nhà khoa học sử dụng để nghiên cứu một câu hỏi được gọi là **NGHIÊN CỨU KHOA HỌC**. Cố gắng tìm câu trả lời cho một câu hỏi được gọi là **PHƯƠNG PHÁP KHOA HỌC**.

Một nghiên cứu khoa học bắt đầu với một câu hỏi về thế giới xung quanh và cách nó vận hành. Sau khi một câu hỏi được xác định, bước tiếp theo là thu thập tất cả các thông tin có thể liên quan đến việc nghiên cứu đó bằng các nghiên cứu nền, quan sát và tiến hành thí nghiệm.

NGHIÊN CỨU NỀN nhìn vào các phát hiện của các nhà khoa học trong quá khứ, từ đó dự đoán những gì sẽ xảy ra trong một thí nghiệm. Dự đoán này được gọi là **GIẢ THUYẾT**. Các nhà khoa học kiểm chứng giả thuyết của họ bằng cách **QUAN SÁT** và so sánh chúng với dự đoán của họ. Sự quan sát đòi hỏi phải sử dụng các giác quan của bạn - cách nhìn, nghe, cảm nhận hoặc nghe - để mô tả một hiện tượng. Một số quan sát là **ĐỊNH LƯỢNG** và được thực hiện dưới dạng các **PHÉP ĐO**. Một số **ĐỊNH TÍNH** và dựa trên tính chất của vật đó. Các phát hiện từ nghiên cứu khoa học gọi là **KẾT LUẬN**.

NGHIÊN CỨU KHOA HỌC

chiến lược dùng cho các cuộc
điều tra khoa học

GIẢ THUYẾT

một dự đoán hoặc
lời giải thích để
xuất cần được
kiểm chứng

QUAN SÁT

sử dụng tất cả các giác
quan và thiết bị khoa
học để mô tả sự vật
hoặc hiện tượng

KẾT LUẬN

Kết quả của nghiên
cứu khoa học

ĐỊNH LƯỢNG

thông tin hoặc dữ
liệu dựa trên các
đo lường có thể đếm
được về sự vật

TÍNH CHẤT

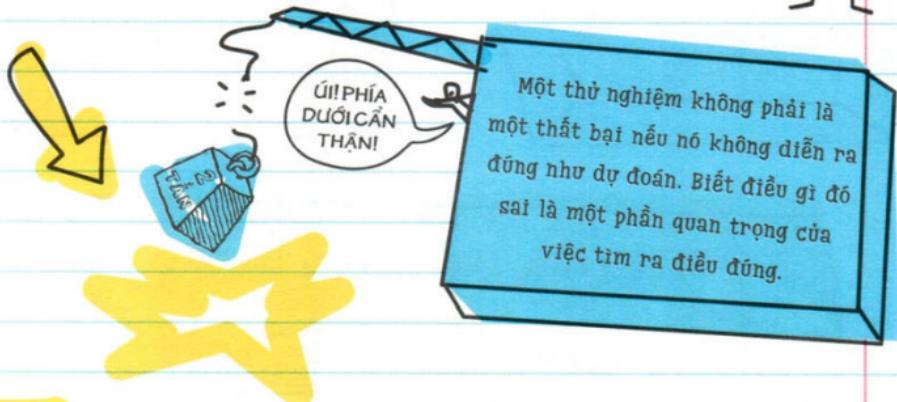
thông tin dựa
trên tính chất
của sự vật

Một PHÉP ĐO có cả SỐ và ĐƠN VỊ tính:

3 FEET, 45 PHÚT, 25 ĐỘ C.,
1 LÍT, và 15 POUND

MÔ HÌNH là sự tượng trưng cho một vật quá nhỏ, quá lớn hoặc quá tốn kém để quan sát thực tế. Vì các mô hình đơn giản hóa mọi thứ giúp việc quan sát và nghiên cứu trở nên dễ dàng hơn, chúng là các công cụ rất hữu ích cho các nhà khoa học. Sau đây là một số kiểu mô hình:

MÔ HÌNH VẬT LÝ: như quả địa cầu hoặc sa bàn



MÔ HÌNH MÁY TÍNH: như một mô phỏng về sự thay đổi của các kiểu thời tiết hoặc mô hình 3D về con người hay địa điểm

MÔ HÌNH TOÁN HỌC:

như phương trình của đường thẳng hoặc một doanh nghiệp sử dụng chi phí trong quá khứ để dự đoán chi phí trong tương lai

NGHIÊN CỨU KHOA HỌC

Khái niệm khoa học, nguyên lý và định luật

Sau khi thực hiện nhiều quan sát, các nhà khoa học sẽ phát triển các khái niệm bằng cách giải thích cách thức và lý do mọi thứ lại xảy ra. Các khái niệm khoa học bắt đầu như một SỰ ĐỘC ĐOÁN, và các bằng chứng có hoặc không hỗ trợ điều này.

Sau khi một giả thuyết được xác nhận thông qua nhiều kiểm chứng và thí nghiệm, các nhà khoa học có thể phát triển thành **NGUYÊN LÝ**. Mỗi nguyên lý là một lời giải thích để xuất đã được thử nghiệm rộng rãi và dựa trên nhiều sự quan sát.

Một **ĐỊNH LUẬT** khoa học, giống như một nguyên lý, được dựa trên rất nhiều lần quan sát. Mỗi định luật là một quy tắc mô tả cách một vật vận hành trong tự nhiên, nhưng không nhất thiết phải giải thích tại sao nó lại vận hành như vậy. Ví dụ như ISSAC NEWTON đã quan sát các vật thể tự nhiên rơi xuống đất. Để giải thích cho hiện tượng này, ông đã phát hiện ra định luật万 vật hấp dẫn. Định luật này dự đoán chuyển động của các vật dưới lực hấp dẫn nhưng không giải thích được tại sao các vật lại chuyển động theo cách đó.

DUNG THỂ!

ĐỊNH LUẬT

mô tả VIỆC GÌ SẼ
xảy ra dưới các điều
kiện xác định

NGUYÊN LÝ

giải thích TẠI SAO điều
đó lại xảy ra dựa trên
nhiều năm kiểm chứng và
quan sát

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Ba nhánh chính của khoa học là gì và mỗi nghiên cứu làm nhiệm vụ gì?
- 2 Nghiên cứu khoa học gồm các bước cơ bản nào?
- 3 Nguyên lý là gì?
- 4 Nếu quan sát không hỗ trợ cho giả thuyết của bạn, bạn nên làm gì?
- 5 Bằng chứng đã được sử dụng như thế nào trong điều tra khoa học?
- 6 So sánh và đối chiếu giữa nguyên lý và định luật.
- 7 Mô hình là gì và tại sao chúng được sử dụng trong khoa học?
- 8 Đưa một ví dụ về mô hình vật lý, mô hình máy tính và mô hình toán học.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Khoa học sự sống (hay sinh học) là ngành nghiên cứu về tất cả các sinh vật sống, Khoa học Trái Đất là ngành nghiên cứu Trái Đất và không gian, và Khoa học vật lý là ngành nghiên cứu về vật chất và năng lượng.
- 2 Đặt câu hỏi, thực hiện nghiên cứu nền, tạo giả thuyết, kiểm chứng giả thuyết, phân tích kết quả, đưa ra kết luận, và chia sẻ kết quả. Hoặc, nếu giả thuyết được chứng minh là sai, tạo giả thuyết mới và bắt đầu lại quy trình.
- 3 Đó là một dự đoán cần được kiểm chứng.
- 4 Tạo giả thuyết mới dựa trên các quan sát và bắt đầu lại quy trình.
- 5 Bằng chứng - các quan sát và dữ liệu - có thể hỗ trợ hoặc chống lại giả thuyết.
- 6 Nguyên lý giải thích tại sao một việc gì đó lại xảy ra. Định luật xác định cách một vật vận hành trong tự nhiên nhưng không nhất thiết phải giải thích tại sao nó lại vận hành như vậy.
- 7 Mô hình là sự tượng trưng cho một vật. Mô hình được sử dụng trong Khoa học để giúp chúng ta nghiên cứu về các sự vật khó có thể quan sát trong đời sống thực tế.
- 8 MÔ HÌNH VẬT LÝ: bản đồ, quả địa cầu và sa bàn
MÔ HÌNH MÁY TÍNH: mô phỏng dạng 3-D của con người hay địa điểm và mô phỏng về sự thay đổi của các kiểu thời tiết
MÔ HÌNH TOÁN HỌC: các phương trình, chẳng hạn như phương trình của đường thẳng, và sự mô phỏng toán học, ví dụ: các đề nghị kinh doanh

Câu số 8 có nhiều đáp án.

Chương 2

THÍ NGHIỆM KHOA HỌC

Thiết kế một thí nghiệm khoa học

Một số điểm chính để thiết kế một thí nghiệm khoa học:

1. **QUAN SÁT** thử khiên bạn tò mò.

2. **BIÊN ĐỒI** một thử nghiệm trước đó để phát triển các kế hoạch thử nghiệm của riêng bạn.

3. **LẮP LẠI** các thử nghiệm trong quá khứ để xem bạn có nhận được kết quả tương tự không.

Một thí nghiệm yêu cầu một danh sách chi tiết các bước thực hiện, hoặc một **QUY TRÌNH**, và

một danh sách các vật liệu cần thiết để tiến hành thí nghiệm đó.

Một số nhà khoa học có thể lặp lại các thí nghiệm chỉ dựa trên các bước thực hiện của bạn một mình, bất kể là họ đang ở đâu. Điều này cho phép các nhà khoa học khác có thể đánh giá được kết quả của bạn.

Bạn có thể có một **THÍ NGHIỆM CÓ KIỂM TRA** bằng cách thực hiện thí nghiệm đó nhiều hơn một

lần: đầu tiên không thay đổi bất kỳ yếu tố nào (thí nghiệm này gọi là **KIỂM TRA**), sau đó lần thứ hai, thay đổi một yếu tố bạn muốn quan sát.

Trong thí nghiệm có kiểm tra, yếu tố được giữ nguyên gọi là **HẰNG SỐ**, và chúng không ảnh hưởng đến kết quả của thí nghiệm. **BIÊN SỐ** là yếu tố có thể thay đổi kết quả thí nghiệm của bạn - một thí nghiệm có kiểm tra cho phép bạn phân tích sự ảnh hưởng của biến số.

QUY TRÌNH

danh sách chi tiết từng bước thực hiện thí nghiệm.

KIỂM TRA

thử nghiệm trong đó tất cả các biến số được giữ nguyên. Kiểm tra được sử dụng như tiêu chuẩn so sánh cho thí nghiệm của bạn.

HẰNG SỐ

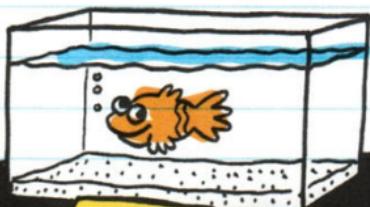
tất cả các biến số trong thí nghiệm được giữ nguyên.

Để thí nghiệm với chỉ một yếu tố, tất cả các yếu tố còn lại trong thí nghiệm được giữ nguyên - điều này đảm bảo rằng sự thay đổi mà bạn quan sát được gây ra bởi chỉ một biến số mà bạn đã thay đổi nó.

Các biến số khác nhau đóng vai trò khác nhau:

BIẾN ĐỘC LẬP là biến số mà bạn thay đổi trong một thử nghiệm có chủ đích.

BIẾN PHỤ THUỘC là biến số bị ảnh hưởng bởi biến độc lập: kết quả thí nghiệm của bạn.


VÍ DỤ: THÍ NGHIỆM CÁ VÀNG

Cứ sau hai tuần, giáo viên phải mua một con cá vàng mới sau khi một con chết. Lớp học này ra ý định làm giả thuyết rằng con cá vàng đó không lấy đủ lượng thức ăn phù hợp. Họ nghĩ ra một thí nghiệm để kiểm tra duy nhất yếu tố này, bằng cách để các yếu tố biến thiên khác (loại cá, kích thước bể cá, chất lượng nước, nhiệt độ nước, loại thức ăn, địa điểm) là hằng số.

HẰNG SỐ

1. Loại cá
2. Kích thước bể cá
3. Chất lượng nước
4. Nhiệt độ nước
5. Loại thức ăn
6. Địa điểm

Trong thí nghiệm này, biến độc lập là tần suất họ cho cá ăn (mỗi ngày một lần hoặc cách ngày) và biến phụ thuộc là sức khỏe của cá sau hai tuần.

CHO ĂN
HẰNG NGÀY

CHO ĂN
CÁCH NGÀY
(NHƯ THƯỜNG LỆ)

THỰC NGHIỆM

TIÊU CHUẨN
SÓ SÁNH

THU THẬP DỮ LIỆU

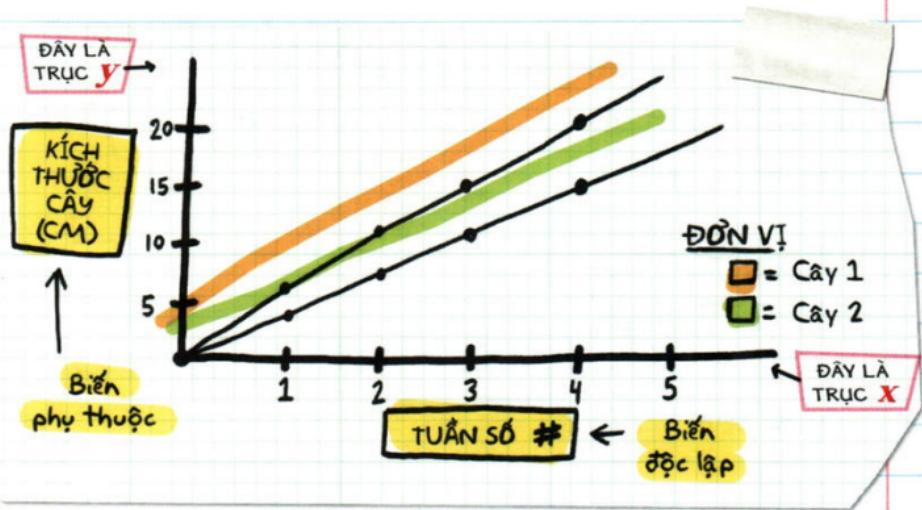
Dữ liệu tốt là dữ liệu cụ thể và chi tiết. Dữ liệu với các mô tả định lượng, hoặc các phép đo thường rất hữu ích. Dữ liệu tốt cũng phải chính xác. Quan sát và đo lường mọi thứ cẩn thận. Thật dễ dàng để quên mọi thứ, vì vậy cần phải đảm bảo độ chính xác, ghi lại số liệu và quan sát trong toàn bộ thí nghiệm thay vì sau khi kết thúc. Nếu không có dữ liệu đáng tin cậy, kết luận sẽ vô nghĩa!

PHÂN TÍCH và TRÌNH BÀY DỮ LIỆU

Dưới đây là một số cách thông thường để tổ chức và trình bày dữ liệu:

	TUẦN 1	TUẦN 2	TUẦN 3
CÂY 1	3 cm	5.5 cm	7 cm
CÂY 2	2.5 cm	5 cm	7.5 cm

SỰ TĂNG TRƯỞNG CỦA CÂY TRỒNG


BẢNG trình bày dữ liệu theo hàng và cột. Do các chữ số nằm cạnh nhau nên nếu dùng bảng ta có thể đọc chúng một cách nhanh chóng và có thể dễ dàng được so sánh các số liệu. Bảng là cách tốt nhất để ghi lại dữ liệu TRONG SUỐT thí nghiệm.

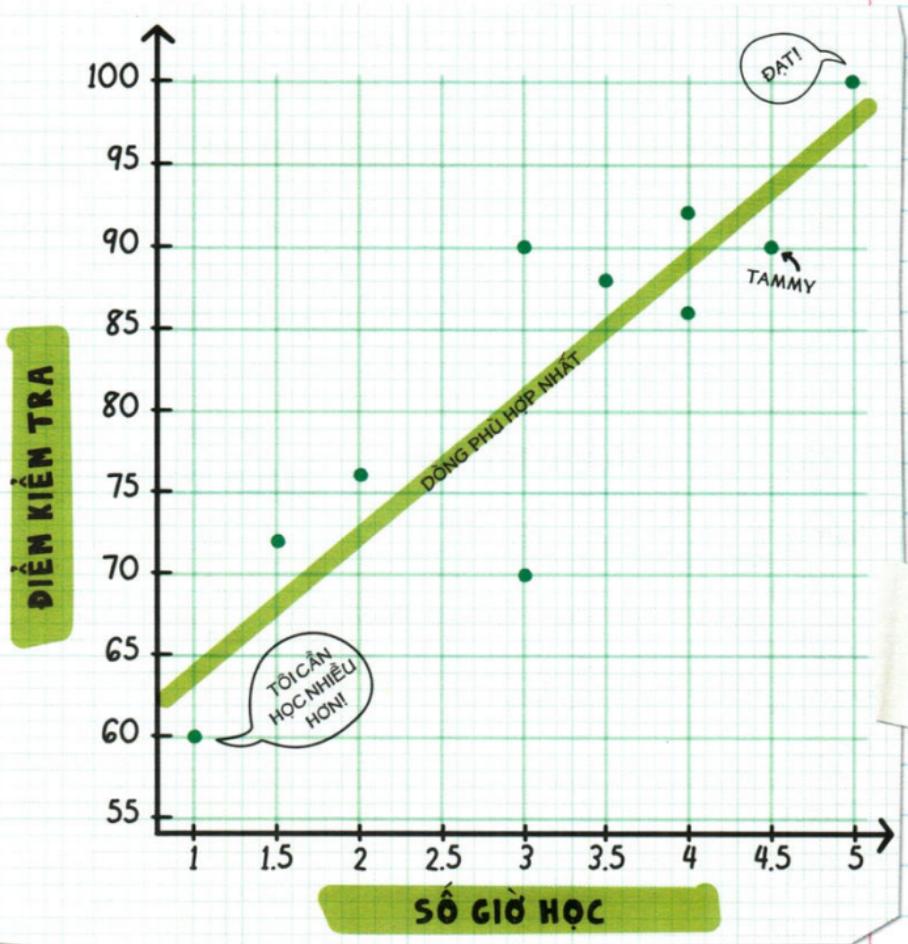
Khi bạn đã thu thập dữ liệu thành bảng, hãy biến nó thành ĐỒ THỊ để thông tin dễ nhìn hơn.

ĐỒ THỊ TỌA ĐỘ

cho thấy mối quan hệ giữa hai biến số

- một biến được vẽ trên trục **X** (đường ngang), biến còn lại được vẽ trên trục **Y** (đường dọc). TỶ LỆ trên mỗi trục biểu thị các khoảng đo lường. Tỷ lệ tăng lên theo MỨC TĂNG CHĂM, ví dụ: 2,4,6,8... hoặc 5,10,15,20... - chữ Không phải là 2,5,7,15...

Biểu đồ đường giúp biểu thị sự ảnh hưởng của biến này với biến còn lại, nói một cách khác, biểu thị sự thay đổi của biến phụ thuộc so với biến độc lập. Biến độc lập nằm trên trục **X** và biến phụ thuộc nằm trên trục **Y**. Biểu đồ đường sẽ hữu hiệu nhất ở các thí nghiệm cho thấy sự thay đổi liên tục theo thời gian, chẳng hạn như sự tăng trưởng của một cái cây hay là sự tăng tốc độ của một chiếc xe đua.

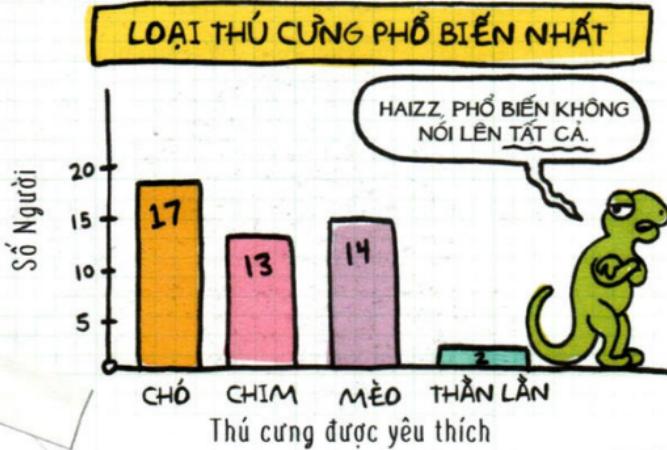

BIỂU ĐỒ PHÂN TÁN là một loại biểu đồ đường, hiển thị mối quan hệ giữa 2 bộ dữ liệu. Dữ liệu của biểu đồ phân tán gọi là **CẶP THỦ TỰ** (chúng đơn giản chỉ là các cặp số - nhưng thứ tự xuất hiện cùng nhau).

VÍ DỤ:

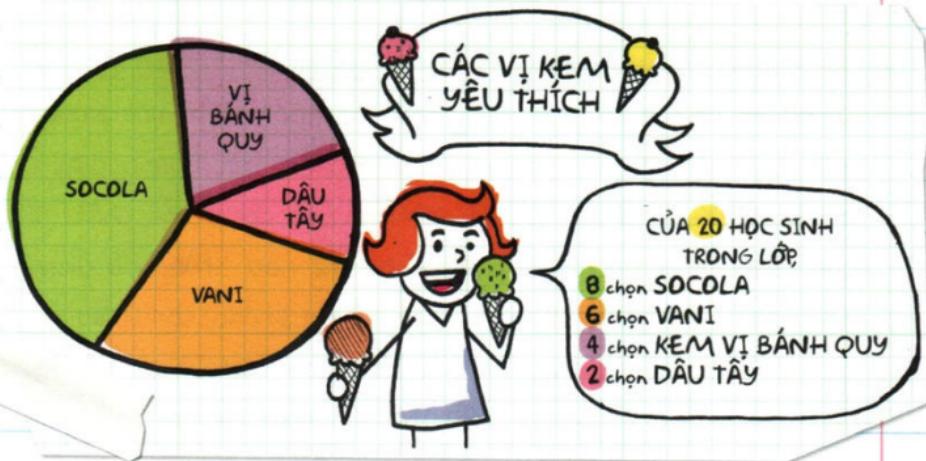
Sau bài kiểm tra toán, cô Phinney hỏi học sinh rằng họ đã học trong bao nhiêu giờ. Cô đã ghi lại kết quả trả lời của họ cùng với điểm của bài kiểm tra.

TÊN	SỐ GIỜ ĐÃ HỌC	ĐIỂM KIỂM TRA
Tammy	4.5	90
Latril	1	60
Sophia	4	92
Michael	3.5	88
Monica	2	76
Dave	5	100
Eva	3	90
Lance	1.5	72
Becca	3	70
Sarina	4	86

Để biểu diễn dữ liệu của Tammy, chúng ta đánh dấu điểm có giá trị tại trục x là 4.5 và tại trục y là 90.



Dựa theo dữ liệu trên đồ thị của biểu đồ phân tán, cô Phinney và học sinh có thể nhìn thấy được mối quan hệ giữa số giờ học và điểm số. Điểm số nhìn chung sẽ tăng khi số giờ học tăng. Biểu đồ sẽ biểu thị mối quan hệ giữa điểm kiểm tra và việc học.


Eva đã học trong 3 giờ và đạt 90 điểm. Becca cũng học trong 3 giờ nhưng lại chỉ đạt 70 điểm. Biểu đồ phân tán cho thấy mối quan hệ tổng thể giữa các dữ liệu trong khi với các cặp cá thể riêng lẻ (như Eva và Becca) lại không thể hiện xu hướng chung. Eva và Becca có thể được coi là **ĐIỂM ĐỘI BIỆT** trong trường hợp này bởi vì họ không theo kiểu điển hình.

Chúng ta có thể vẽ một dòng trên biểu đồ mô tả ước lượng mối quan hệ giữa số giờ học và điểm kiểm tra. Đường này gọi là **DÒNG PHÙ HỢP NHẤT** vì nó mô tả chính xác nhất các điểm có liên quan đến nhau như thế nào. Không có điểm nào nằm trên dòng phù hợp nhất, nhưng không sao! Điều này là do dòng phù hợp nhất là dòng này mô tả chính xác nhất mối quan hệ của tất cả các điểm trên biểu đồ.

BIỂU ĐỒ CỘT trình bày dữ liệu dưới dạng hình chữ nhật có độ cao khác nhau. Mỗi hình chữ nhật đại diện cho một phần khác nhau của dữ liệu, hoặc biến số, chẳng hạn như loại vật nuôi hay hương vị kem yêu thích. Hình chữ nhật càng cao, số biểu thị sẽ càng lớn.

Bạn có thể nghĩ về **BIỂU ĐỒ TRÒN** như một chiếc bánh được cắt thành nhiều miếng (Biểu đồ tròn hay còn được gọi là **BIỂU ĐỒ BÁNH**). ←MMM.

Một biểu đồ nên có tiêu đề, có kí hiệu tỷ lệ và đơn vị để người đọc dễ hiểu.

RÚT RA KẾT LUẬN

Kết quả có hỗ trợ cho giả thuyết của bạn không? Nếu không, bạn sẽ thay đổi giả thuyết như thế nào để phù hợp với kết quả? Đôi khi kết luận có thể không ngay lập tức xuất hiện đâu, bạn sẽ phải SUY LUẬN, hoặc sử dụng sự quan sát và thực tế để có thể đưa ra kết luận về một điều gì đó mà bạn có thể không trực tiếp chứng kiến.

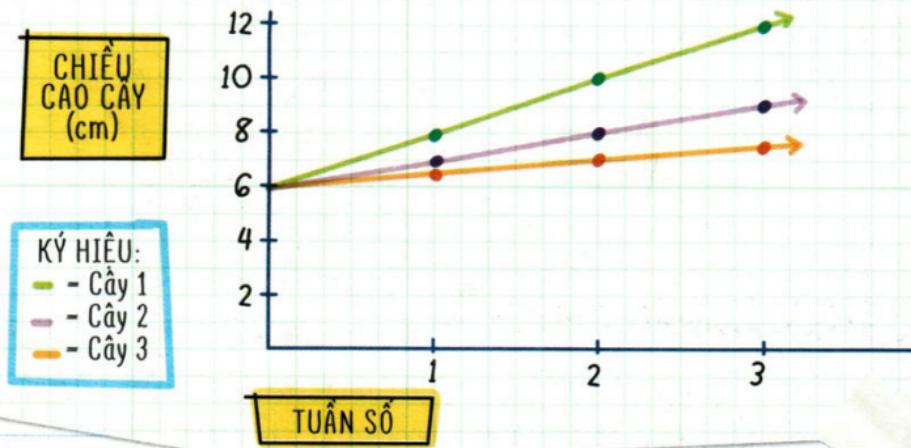
Ví dụ, nếu bạn muốn tìm hiểu thức ăn của khủng long bạo chúa, bạn có thể quan sát các

mẫu hóa thạch được tìm thấy gần chỗ hóa thạch của khủng long bạo chúa. Nếu bạn nhìn thấy những chiếc xương vụn nát, bạn có thể suy luận rằng khủng long bạo chúa đã ăn các loài động vật nhỏ hơn hoặc những con khủng long khác. Khi bạn cần suy luận, điều này có thể giúp bạn xem xét thông tin nền và làm các nghiên cứu tiếp theo.

Kết luận cũng đóng một vai trò quan trọng trong thí nghiệm và các khám phá: Đã có sai sót nào đó trong các phép đo hay không? Quy trình thực hiện có chính xác không? Làm thế nào để biết thiết bị của bạn là chính xác? Ngay cả khi bạn thực hiện sai thí nghiệm, kết quả không phải lúc nào cũng giống nhau. Rất khó để khiến hằng số không thay đổi. Các biến không mong muốn có thể sẽ ảnh hưởng đến kết quả. Để đảm bảo các phát hiện này là chính xác, hãy tiến hành một số thử nghiệm cho thí nghiệm.

VÍ DỤ: THÍ NGHIỆM PHÂN BÓN THỰC VẬT

Bob muốn nghiên cứu tác động của phân bón thực vật. Bob mua ba cây giống hệt nhau và bón phân cho chậu cây số 1 vào mỗi buổi sáng, chậu cây số 2 được bón phân một lần một tuần và giữ nguyên cây số 3 như một tiêu chuẩn so sánh (không bón phân).



Bob tưới nước cho ba cây mỗi sáng và để cả ba cây ở bậu cửa sổ để chúng cùng nhận lượng ánh sáng mặt trời (ánh sáng và nước là hằng số).

Bob đo chiều cao từng cây hàng tuần và ghi dữ liệu bảng. Để phân tích dữ liệu, Bob vẽ biểu đồ kết quả. Bob đánh dấu chiều cao tương ứng mỗi thời gian cho từng cây.

CHIỀU CAO CÂY

CÂY	Tuần 0 (bắt đầu)	Tuần 1	Tuần 2	Tuần 3
1	6 cm	8 cm	10 cm	12 cm
2	6 cm	7 cm	8 cm	9 cm
3	6 cm	6.5 cm	7 cm	7.5 cm

Với sự trợ giúp của bảng dữ liệu và biểu đồ, Bob kết luận rằng cây được bón phân mỗi ngày tăng trưởng nhanh gấp bốn lần so với cây không được bón phân. Sử dụng căn cứ rằng cây số 1 lớn nhanh hơn cây số 2, Bob cũng kết luận được rằng cung cấp phân bón cho cây mỗi ngày thay vì mỗi tuần sẽ giúp cây phát triển nhanh hơn.

QUY TRÌNH THIẾT KẾ KỸ THUẬT

KỸ THUẬT là một nhánh của khoa học nghiên cứu về thiết kế, xây dựng và sử dụng máy móc, các kết cấu để phát minh ra các sản phẩm mới giải quyết các vấn đề. Giống như các nhà khoa học sử dụng các nghiên cứu khoa học để giải thích các câu hỏi CÁC KỸ SƯ SỬ DỤNG QUY TRÌNH

THIẾT KẾ KỸ THUẬT để giải quyết các vấn đề thông qua phát minh, thiết kế và đổi mới. Ví dụ, các kỹ sư hiện đang phát triển mặt đường có thể thu thập năng lượng mặt trời và sử dụng nó để chiếu sáng lòng đường: sự đổi mới này có khả năng giải quyết một số vấn đề - giúp làm sáng đường để lái xe vào ban đêm an toàn hơn, nó sử dụng nguồn năng lượng tái tạo, cắt giảm chi phí chiếu sáng đường bộ. Tuy nhiên, để có được một giải pháp như vậy, các kỹ sư thường đi theo một lộ trình nhất định.

KỸ THUẬT

là một nhánh của khoa học nghiên cứu về thiết kế, xây dựng, sử dụng máy móc và các kết cấu để giải quyết các vấn đề thực đang xảy ra trên thế giới.

Các ngành kỹ thuật chính bao gồm:

CƠ KHÍ: liên quan đến năng lượng cơ học và thiết kế các hệ thống cơ khí, máy móc và công cụ, nghiên cứu các lực và chuyển động

HÓA HỌC: làm việc với nguyên liệu thô và hóa chất, khám phá các vật liệu và quy trình mới

DÂN DỤNG: bao gồm thiết kế và xây dựng các tòa nhà, đường, cầu, đập, ...v.v

ĐIỆN TỬ: nghiên cứu điện lực và thiết kế hệ thống điện như vi mạch máy vi tính

Ngoài ra còn có rất nhiều các ngành kỹ thuật khác như: máy vi tính, hàng không vũ trụ, y sinh, ô tô, sản xuất, địa chất,...

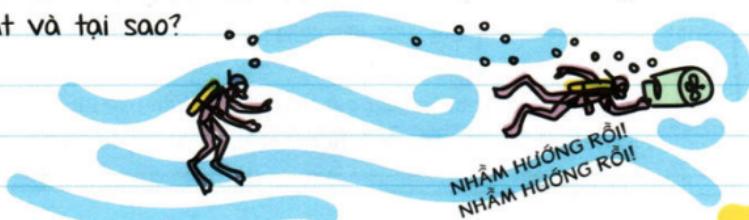
Giống như nghiên cứu khoa học có các bước cụ thể để trả lời câu hỏi một cách cẩn thận, quy trình thiết kế kỹ thuật có một hệ thống giúp hướng dẫn một dự án kỹ thuật. Quy trình thiết kế kỹ thuật bắt đầu với một vấn đề hoặc nhu cầu có thể được giải quyết bằng thiết kế. Ví dụ, các nhà hải dương học có thể muốn khám phá và tìm hiểu về đáy biển sâu, nhưng họ cần sẽ tốn nhiều thời gian khi di chuyển trong dòng nước sâu, chèo thuyền. Một kỹ sư sẽ thực hiện **Nghiên cứu nền** về vấn đề này, xác định tất cả các **THÔNG SỐ THIẾT KẾ** (yêu cầu) cần thiết để bắt đầu thiết kế và xác định các **RÀNG BUỘC** (hạn chế) có thể ảnh hưởng đến thiết kế của họ. Ví dụ, một kỹ sư có thể nghiên cứu các thông

THÔNG SỐ THIẾT KẾ

các yêu cầu mà một kỹ sư phải hoàn thành trong thiết kế của mình

tin mà các nhà hải dương học
cần tìm hiểu về đáy biển sâu.

Một vài thông số kỹ thuật thiết
kế có thể bao gồm độ sâu thợ
lặn phải xuống và tốc độ dòng

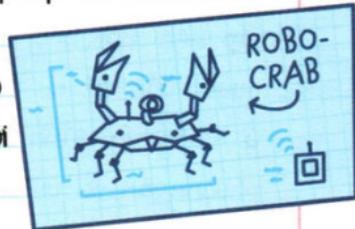

chảy. Kỹ sư cũng tìm ra các ràng buộc như họ phải cần
bao nhiêu tiền để giải quyết vấn đề này hay loại vật liệu
nào sẽ giúp làm việc lâu hơn dưới nước...

Sau khi vấn đề được
xác định và tất cả các
thông tin cần thiết được
thu thập, bước tiếp theo

là để xuất các giải pháp khả thi. Trong nghiên cứu khoa
học, bạn xây dựng giả thuyết, nhưng trong kỹ thuật bạn
lập nên một **BÁO CÁO THIẾT KẾ** - nó xác định việc giải
quyết vấn đề cụ thể. Các kỹ sư thường xuyên này ra các
ý tưởng và đánh giá mỗi giải pháp để từ đó lựa chọn
phương án tối ưu nhất. Ví dụ, người kỹ sư muốn giải quyết
vấn đề của việc khám phá đáy biển sâu có thể này ra
ý tưởng của một động cơ mà thợ lặn có thể mặc hoặc
một con rô-bốt chống lại dòng chảy siết và truyền thông
tin. Họ thắc mắc cách tiếp cận nào sẽ hoạt động tốt
nhất và tại sao?

RÀNG BUỘC

hạn chế hay giới hạn
(có thể là thể chất, xã hội,
hay tài chính)



Làm sao để chọn lựa giải pháp tốt nhất? Nhà thiết kế thường nghĩ về các tiêu chí thiết kế chung này khi quyết định lựa chọn nào là tốt nhất:

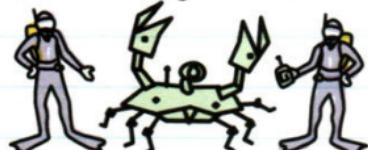
ĐỘ VỮNG CHẮC (độ bền) • **CHI PHÍ**
THẨM MỸ (diện mạo) • **NGUỒN LỰC** • **THỜI GIAN**
KỸ NĂNG CẦN THIẾT • **ĐỘ AN TOÀN** • **TÍNH THANH LỊCH**

Sau đó, các kỹ sư sẽ thiết kế và xây dựng một **NGUYÊN MẪU** của giải pháp, như là bản nháp đầu tiên - đó là một ý tưởng thô của giải pháp cuối cùng có thể đưa ra.

Các kỹ sư tạo các bản vẽ kỹ thuật và nghiên ngẫm các thông số để phác thảo một nguyên mẫu đơn giản có thể dễ dàng điều chỉnh tùy vào cách thực hiện. Người kỹ sư có thể quyết định rằng một rô-bốt dưới nước có hình dáng và hoạt động giống một con cua có thể là giải pháp tốt nhất cho các vấn đề của thợ lặn - nó có thể tự thăng bằng với sáu chân và mang theo thiết bị chụp hình và thiết bị định vị dưới nước để gửi thông tin trở lại mặt nước.

Khi thiết kế hoàn tất, các kỹ sư dụng một nguyên mẫu đơn giản bằng cách sử dụng các bản vẽ như một bản thiết kế.

Bạn có thể thiết kế theo nhiều cách khác nhau - bằng bản vẽ, mô hình máy vi tính, kịch bản, ...v.v. Bạn cũng có thể tạo ra các nguyên mẫu bằng nhiều loại vật liệu khác nhau - từ gỗ phế liệu, các khối đồ chơi, tấm áp phích hoặc nhiều loại vật liệu cao cấp hơn như kim loại, nhựa hoặc thậm chí bằng cách in các phần bằng máy in 3D!


Tiếp theo, đã đến lúc chúng ta kiểm nghiệm cách nguyên mẫu trụ vững trong thế giới thực! Các kỹ sư kiểm

nghiệm sản phẩm nhiều lần để xem nó hoạt động như thế nào trong các điều kiện khác nhau. Họ thu thập dữ liệu về việc sản phẩm giải quyết vấn đề tốt như thế nào. Nếu nó không hoạt động tốt, họ sẽ quay trở lại suy nghĩ về các giải pháp mới hoặc thiết kế lại nguyên mẫu. Thông thường, họ khắc phục sự cố thiết kế không đáp ứng yêu cầu hoặc kỳ vọng. Bởi kiểm nghiệm nguyên mẫu trong thế giới thực, họ tìm ra các cách để cải tiến thiết kế, sau đó điều chỉnh nguyên mẫu hoặc tạo ra một nguyên mẫu mới.

Sau khi quay trở lại các bước vài lần và mỗi lần đều cải tiến, họ hy vọng tìm ra một giải pháp thực sự hiệu quả.

Giống như một thử nghiệm không phải một thất bại nếu nó không diễn ra đúng như dự đoán, một nguyên mẫu không hoạt động trong thế giới thực có thể dẫn tới các phát minh và ý tưởng mới. Biết một điều gì đó KHÔNG hoạt động là một phần quan trọng của việc tìm ra những gì SẼ hoạt động.

Cuối cùng, các kỹ sư dụng một sản phẩm cuối. Giống như bản vẽ phác thảo cuối, các kỹ sư chỉnh sửa thiết kế của họ đến khi nó thực sự hoàn hảo. Sau đó, họ sẽ sử dụng các vật liệu thiết kế cuối cùng để tạo ra sản phẩm cuối và giới thiệu nó tới công chúng (và có thể bán sáng chế đó!).

QUY TRÌNH

THIẾT KẾ KỸ THUẬT

1. XÁC ĐỊNH VẤN ĐỀ.

2. LÀM NGHIÊN CỨU NỀN.

3. XÁC ĐỊNH THÔNG SỐ KỸ THUẬT
THIẾT KẾ VÀ CÁC RÀNG BUỘC.

4. TẠO MỘT BÁO CÁO THIẾT KẾ: NGHĨ RA CÁC Ý TƯỞNG,
ĐÁNH GIÁ CÁC GIẢI PHÁP KHẢ THI VÀ CHỌN MỘT
PHƯƠNG ÁN TỐI ƯU NHẤT.

5. THIẾT KẾ NGUYÊN MẪU.

6. DỰNG NGUYÊN MẪU.

7. THỬ NGHIỆM NGUYÊN MẪU.

8. ĐÁNH GIÁ: NÓ CÓ
GIẢI QUYẾT TỐT VẤN ĐỀ?

9B. KHÔNG?

9A. NẾU CÓ? TẠO SẢN PHẨM CUỐI CÙNG
VÀ GIỚI THIỆU RA CÔNG CHỨNG.

KIỂM TRA KIẾN THỨC CỦA BẠN

Kết hợp thuật ngữ với định nghĩa đúng:

1. Quy trình

A. Yếu tố này phụ thuộc vào biến độc lập. Nó thường là kết quả quan sát được của một thí nghiệm.

2. Biến độc lập

B. Thử nghiệm trong đó tất cả các biến không đổi.

3. Biến phụ thuộc

C. Biến số được thay đổi có mục đích trong một thí nghiệm của nhà khoa học.

4. Hằng số

D. Các yếu tố trong một thí nghiệm luôn không đổi.

5. Kiểm soát

E. Danh sách từng bước để thực hiện thí nghiệm.

6. Suy luận

F. Sử dụng bằng chứng để đưa ra các kết luận về những thứ bạn không thể quan sát trực tiếp.

Công viên có 25 con chim bồ câu, 15 con sóc, 5 con thỏ và 5 con mèo đi lạc, bạn hãy:

7. Lập bảng cho dữ liệu.

8. Vẽ biểu đồ cột để biểu diễn dữ liệu.

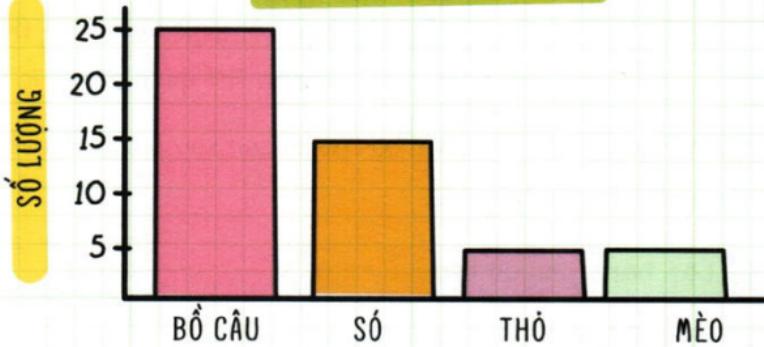
9. Tại sao không thể vẽ biểu đồ đường nếu chỉ dùng những dữ liệu này?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

1. E
2. C
3. A
4. D
5. B
6. F
7. C

DỘNG VẬT TRONG CÔNG VIÊN


DỘNG VẬT

SỐ LƯỢNG

BỒ CÂU	25
SÓC	15
THỎ	5
MÈO	5

DỘNG VẬT TRONG CÔNG VIÊN

8. C

9. Bạn không thể vẽ biểu đồ đường bởi vì sẽ không có dữ liệu nào để so sánh số lượng của các con vật, chẳng hạn như thời gian trong ngày.

Chương 3

BÁO CÁO PHÒNG THÍ NGHIỆM

VÀ

ĐÁNH GIÁ KẾT QUẢ

Điều quan trọng là chia sẻ kết quả của bạn với các nhà khoa học khác, từ đó họ có thể học hỏi từ công trình của bạn, phản biện và dựa vào nó. Đó chính là cách các kiến thức khoa học phát triển không ngừng. Có rất nhiều cách để chia sẻ thí nghiệm và các khám phá của bạn cho người khác. Cách phổ biến nhất là viết một BÁO CÁO PHÒNG THÍ NGHIỆM.

VIẾT một BÁO CÁO PHÒNG THÍ NGHIỆM

Một báo cáo phòng thí nghiệm thường bao gồm:

TIÊU ĐỀ: để người đọc biết được chủ đề nghiên cứu.

MỤC ĐÍCH: mô tả ngắn gọn để trả lời cho câu hỏi: "Mục đích của việc làm thí nghiệm này?" hay: "Câu hỏi mà tôi đang cố gắng trả lời là gì?".

THÔNG TIN TỔNG QUÁT: xác định từ khóa và giải thích các khái niệm chính.

GIẢ THUYẾT: các dự đoán bạn đang kiểm chứng

VẬT LIỆU VÀ THIẾT BỊ: danh sách các vật liệu và thiết bị cần thiết để thực hiện thí nghiệm. Bạn có thể thêm bản phác thảo hoặc bản mô tả các bước.

THỦ TỤC: mô tả từng bước cách thực hiện thí nghiệm.

Đảm bảo ghi tiêu đề cho đồ thị, biểu đồ, bảng biểu và kí hiệu tắt cả các trục trên bất kì biểu đồ nào.

DỮ LIỆU: Tất cả các phép đo và quan sát bạn thực hiện trong suốt thí nghiệm. Hãy chắc chắn trình bày dữ liệu một cách có tổ chức, ví dụ: trong bảng biểu, biểu đồ hoặc bản vẽ. Phép đo tốt nhất chính là sự **DÙNG** và **CHÍNH XÁC**.

DÙNG

phép đo của bạn thống nhất và chính xác như thế nào.

CHÍNH XÁC

làm sao để phép đo của bạn gần với giá trị thực.

KẾT LUẬN: tóm tắt những gì bạn đã học được sau thí nghiệm, cho dù kết quả có hỗ trợ cho giả thuyết ban đầu hay không, bắt kỳ lỗi sai và các câu hỏi cho nhiều thí nghiệm hơn.

Đôi khi, các phép đo chính xác sẽ không khả thi hoặc không thực tiễn - nếu bạn không có công cụ phù hợp để đo lường hoặc số thập phân vô hạn. Trong trường hợp này, các nhà khoa học sẽ sử dụng **ƯỚC LƯỢNG** hoặc **LÀM TRÒN SỐ**.

ƯỚC LƯỢNG

một dự đoán thô của phép đo bằng cách sử dụng nguyên nhân và quan sát.

LÀM TRÒN SỐ

đưa số liệu về giá trị gần nhất. Ví dụ: nếu bạn làm tròn đến số thập phân hàng đơn vị và chữ số hàng trăm là 5 hoặc nhiều hơn, hãy làm tròn lên. Nếu chữ số hàng trăm là 4 hoặc nhỏ hơn, hãy làm tròn xuống.

ĐÁNH GIÁ KẾT QUẢ KHOA HỌC

Khi đọc phát hiện của các nhà khoa học khác, hãy suy nghĩ phản biện về thí nghiệm đó. Tự hỏi rằng: các quan sát được ghi lại trong hay sau thí nghiệm? Các kết luận có hợp lý không? Dữ liệu có chứng minh cho giả thuyết một cách thuyết phục, hay có cách nào khác để giải thích dữ liệu không? Kết quả có thể được lặp lại? Nguồn thông tin có đáng tin cậy?

Bạn nên hỏi các nhà khoa học hoặc một nhóm tiến hành thí nghiệm có KHÔNG THIỀN VỊ thí nghiệm hay không. Không thiên vị có nghĩa là bạn không có lợi ích đặc biệt về kết quả của thí nghiệm. Ví dụ, nếu một công ty thuốc trả tiền cho thí nghiệm để kiểm tra xem sản phẩm mới của họ hoạt động tốt như thế nào, sẽ có một lợi ích đặc biệt liên quan: Lợi nhuận công ty thuốc sẽ tăng lên nếu thí nghiệm cho thấy sản phẩm của họ có hiệu quả. Khi đó, các thí nghiệm không khách quan: Chúng có thể đảm bảo kết luận là tích cực và có lợi cho công ty thuốc. Vì vậy khi đánh giá kết quả, hãy nghĩ về bất kỳ sự thiên vị nào có thể xuất hiện!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Mô tả sự khác biệt giữa tinh đúng và tinh chính xác.
- 2 Một giả thuyết cho bạn biết những gì về báo cáo phòng thí nghiệm?
- 3 Quy trình cho bạn biết những gì về báo cáo phòng thí nghiệm?
- 4 Bạn nên đề cập điều gì trong phần kết luận?
- 5 Mô tả một số lý do tại sao bạn phản biện các phát hiện khoa học.
- 6 Mô tả một số tinh huống mà bạn sẽ cần sử dụng ước lượng hoặc làm tròn số.
- 7 Định nghĩa "sự thiên vị".

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Tính đúng đắn là mức độ phù hợp và chính xác của phép đo trong khi tính chính xác là gần với giá trị thực hoặc giá trị đúng của phép đo.
- 2 Giả thuyết mô tả các dự đoán bạn đang kiểm tra.
- 3 Quy trình là danh sách các bước cần thiết để thực hiện thử nghiệm.
- 4 Tóm tắt kết quả, một thảo luận cho dù dữ liệu có hỗ trợ cho giả thuyết hay không, lỗi sai và các câu hỏi cho các nghiên cứu thêm nữa.
- 5 Người hoặc nhóm tiến hành thí nghiệm bị thiên vị, dữ liệu dường như vô lý và/hoặc kết quả không thống nhất.
- 6 Bất kỳ tinh huống nào khiến một phép đo chính xác không khả thi hoặc nếu bạn đang tính toán với số thập phân vô hạn tuần hoàn.
- 7 Sự thiên vị là một lợi ích đặc biệt ngăn cản bạn khách quan hoặc tiến hành kiểm tra một cách công bằng với giả thuyết.

Chương 4

CÁC ĐƠN VỊ TRONG SI

VÀ

CÁC PHÉP ĐO LƯỜNG

HỆ THỐNG SI là một đơn vị đo cơ sở hay còn gọi là đơn vị chuẩn, áp dụng cho tất cả các hình thức đo lường.

SI là tên viết tắt của cụm từ tiếng Pháp *SYSTÈME INTERNATIONALE*, có nghĩa là "Hệ thống Quốc Tế".
Thật dễ hiểu!

ĐƠN VỊ ĐO CƠ SỞ SI:

SỐ ĐO

Chiều dài (hoặc khoảng cách)

Khối lượng

Trọng lượng (hoặc trọng lực)

Thể tích (hoặc dung tích)

Nhiệt độ

Thời gian

Dòng điện

Lượng chất

Cường độ chiếu sáng

ĐƠN VỊ SI (ký hiệu)

meter (m)

gram (g)

newton (N)

liter (L)

Kelvin (K)

second (s)

ampere (A)

mole (mol)

candela (cd)

Nếu ta muốn sử dụng đơn vị SI để mô tả cả số đo bắp tay của một ai đó và một vòng Trái Đất, ta cần quy đổi kích thước đơn vị đo phù hợp. Các nhà khoa học đã nghĩ ra một hệ thống các tiền tố để nhân đơn vị cơ sở với hệ số 10. Bằng các chuyển đổi tiền tố, một đơn vị SI có thể được sử dụng để đo các đơn vị lớn và nhỏ.

TIỀN TỐ SI (Ký hiệu)

CẤP SỐ NHÂN

Giga- (G) 1,000,000,000

Mega- (M) 1,000,000

Kilo- (k) 1,000

Hector- (h) 100

Deca- (da) 10

[Đơn vị cơ bản] 1

Deci- (d) 0.1

Centi- (c) 0.01

Milli- (m) 0.001

Micro- (μ) 0.000001

Nano- (n) 0.000000001

95% dân số thế giới sử dụng
đơn vị SI là hệ đo lường
hằng ngày của họ.

CÁCH GHI NHỚ TIỀN TỐ SI:

Great Mighty King Henry
Died By Drinking Chunky
Milk Monday Night.

(Đức Vua Henry Vĩ Đại Chết
Vì Uống Sữa Béo Vào Đêm
Thứ Hai)

CHUYỂN ĐỔI ĐƠN VỊ SI

Vi hệ thống tiền tố SI dựa trên lũy thừa của 10 nên sẽ rất dễ dàng qui đổi giữa các đơn vị. Nếu bạn muốn qui đổi sang một đơn vị nhỏ hơn, chỉ cần di chuyển dấu thập phân sang bên phải. Nếu bạn muốn chuyển sang một đơn vị lớn hơn, chỉ cần di chuyển dấu thập phân sang bên trái.

VÍDÜ

$$\begin{array}{l}
 0.001 \text{ km} \\
 \text{---} \\
 \text{---} \\
 = \\
 1 \text{ m} \\
 \text{---} \\
 \text{---} \\
 = \\
 100 \text{ cm}
 \end{array}$$

$$\begin{array}{l}
 0.0033 \text{ km} \\
 \text{---} \\
 = \\
 3.3 \text{ m} \\
 \text{---} \\
 = \\
 330 \text{ cm}
 \end{array}$$

BÍ KÍP THÔNG THƯỜNG

Hãy nhớ sử dụng đơn vị phù hợp nhất. Nếu bạn đo thể tích của đại dương với cùng đơn vị đo thể tích một cốc sữa, số liệu thu được sẽ rất khó dùng. (Thể tích của đại dương nên được đo bằng một đơn vị tính lớn hơn.)

CÁC HÌNH THỨC ĐO LƯỜNG

CHIỀU DÀI: Khoảng cách giữa hai điểm.

THỂ TÍCH: Lượng không gian một cái gì đó chiếm giữ.

KHỐI LƯỢNG: Lượng vật chất trong chất lỏng, chất rắn, khí ga.

Khi bạn đo trọng lượng của một ai đó, đo lực tác dụng của họ lên Trái Đất.

TRỌNG LƯỢNG: Lực gây ra bởi khối lượng.

KHỐI LƯỢNG VÀ TRỌNG LƯỢNG KHÔNG GIỐNG NHAU!

Khối lượng là lượng vật chất trong một vật thể và trọng lượng là lực tác dụng bởi một khối lượng. Trọng lượng phụ thuộc vào trọng lực (một lực), nhưng khối lượng thì không. Ví dụ, Mặt Trăng có trọng lực ít hơn Trái Đất, vì vậy các vật trên Mặt Trăng có trọng lượng ít hơn trọng lượng các vật trên Trái Đất.

Khối lượng luôn luôn giữ nguyên. Trọng lượng thì thay đổi.

MẬT ĐỘ: Lượng vật chất trong một lượng thể tích.

NHIỆT ĐỘ: Xác định một vật nóng hay lạnh như thế nào.

Trong khi đơn vị SI để đo nhiệt độ là Kelvin, hầu hết các nhà khoa học sử dụng đơn vị có nguồn gốc SI gọi là độ C ($^{\circ}\text{C}$), để đo nhiệt độ.

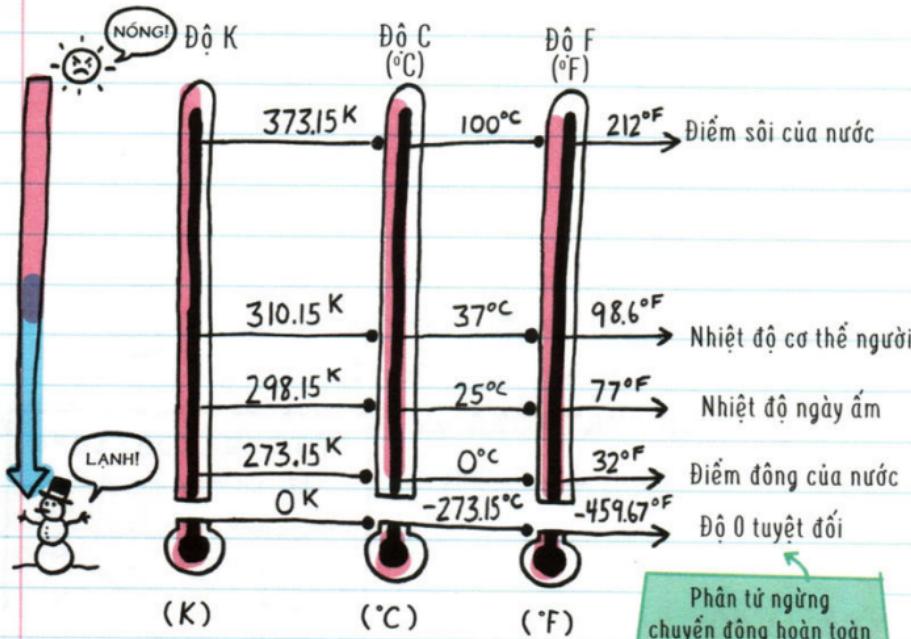
Kelvin không sử dụng ký hiệu nhiệt độ.

CHÌM HAY NỒI?

Một thứ đậm đặc sẽ chìm hơn thứ ít đậm đặc hơn. Khi dầu được đổ vào nước lỏng, nó sẽ nổi lên trên mặt nước bởi vì dầu có độ đậm đặc ít hơn nước. Một hòn đá chìm trong nước, vì vậy nó đậm đặc hơn nước. Nước có khối lượng riêng xấp xỉ 1.0, do vậy dầu sẽ có khối lượng riêng nhỏ hơn 1 (hoặc <1) và khối lượng riêng của đá phải nặng hơn của nước (hoặc >1).

Dưới đây là công thức chuyển đổi độ C (°C) và độ Kelvin:

Nhiệt độ C


Nhiệt độ Kelvin

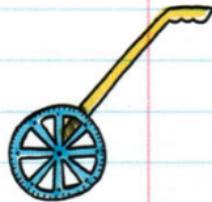
$$T_{(K)} = T_{(°C)} + 273.5 \quad \text{HOẶC} \quad T_{(°C)} = T_{(K)} - 273.5$$

Tại Mỹ, người ta thường sử dụng độ F (°F) để đo nhiệt độ.

Dưới đây là công thức chuyển đổi giữa độ F (°F) và độ C (°C):

$$T_{(°F)} = (T_{(°C)} \times \frac{5}{9}) + 32 \quad \text{HOẶC} \quad T_{(°C)} = (T_{(°F)} - 32) \times \frac{5}{9}$$

THỜI GIAN: Khoảng thời gian giữa các sự kiện, hoặc độ dài thời gian của sự kiện. Đơn vị SI cho thời gian là giây. Các đơn vị thời gian khác bao gồm giờ, ngày, tháng và năm.


CÔNG CỤ ĐO LƯỜNG

Khoảng cách

THƯỚC ĐỘ: Là thước kẻ, trừ thước dài 1m (100cm). Nó dài hơn một chút so với thước đo thông thường.

BÁNH XE ĐẦY: Để đo các khoảng cách dài, chỉ cần lăn bánh xe trên mặt đất và mỗi lần bạn di chuyển 1m, bánh xe sẽ tạo ra tiếng lách cách. Rất đơn giản - chỉ cần đếm số tiếng lách cách.

THƯỚC DÂY: Để đo khoảng cách mà ở đó rất khó có thể sử dụng thước đo hay bánh xe đầy, như là số đo của một vật thể tròn.

Thể tích

ỐNG KHẮC ĐỘ: Một hình trụ được đánh dấu ở bên ngoài để cho biết nó chứa bao nhiêu lượng chất lỏng. Lấy số thể tích bằng cách đọc từ đáy của **MẶT KHUM CHẤT LỎNG** và chắc chắn bạn đang đọc ngang tâm mắt.

KHỐI LƯỢNG RẮN: Để tính được thể tích của vật rắn hình chữ nhật, một cách đơn giản bạn chỉ cần đo chiều cao, chiều dài và chiều rộng

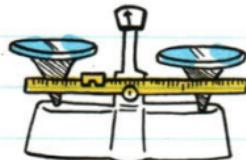
bằng cách sử dụng bất kỳ công cụ đo lường nào để đo khoảng cách, sau đó nhân ba số liệu đó:

$$\text{Thể tích} = \text{Chiều dài} \times \text{Chiều rộng} \times \text{Chiều cao}$$

THỂ TÍCH CỦA CHẤT RẮN KHÔNG THEO HÌNH DẠNG TIÊU CHUẨN:

Cách tốt nhất để đo thể tích của chất rắn không theo hình dạng tiêu chuẩn là đặt chúng trong nước và đo thể tích nước nó thay đổi. Chênh lệch giữa thể tích mới và cũ chính là thể tích của vật rắn đó (Lần sau, khi vào bồn tắm, hãy nhìn xem lượng nước mà bạn đã chiếm - đó chính là thể tích của cơ thể bạn đó!).

Đối với các hình dạng hình học khác, hãy xem trong sách giáo khoa toán của bạn.



Khối lượng

CÂN ĐIỆN TỬ: Chỉ đặt vật thể lên bàn cân và đọc số liệu.

CÂN THĂNG BẰNG: Dùng để so sánh trọng lượng của mỗi vật trong từng bàn cân. Để tìm ra khối lượng, đặt vào một bàn cân một vật có khối lượng đã biết, bàn cân còn lại đặt vật chưa biết khối lượng. Khi hai bàn cân thăng bằng ta sẽ xác định được khối lượng của vật

Nếu bạn muốn đo khối lượng một vật cần đựng trong một vật chứa, trước hết hãy đo khối lượng của vật chứa đó khi rỗng trước, sau đó khấu trừ vào khối lượng của vật chứa sau khi đựng.

CÂN CHÙM BA: Hoạt động như một cân hai đĩa nhưng thay vì đặt mỗi bên một đĩa cân, loại cân này lại chỉ có một đĩa cân ở một phía, phía kia có ba chìa chum tạo thành một đòn cân trượt gọi là các CON MÃ.

Khối lượng riêng

Vì Khối lượng riêng hiểu theo cách đơn giản là lượng vật chất trong một thể tích nhất định, bạn có thể tính Khối lượng riêng bằng cách đo khối lượng và thể tích của vật đó, sau đó chia theo công thức sau:

$$\text{Khối lượng riêng} = \frac{\text{Trọng lượng}}{\text{Thể tích}}$$

Thời gian

Để đo thời gian, bạn có thể sử dụng đồng hồ hoặc đồng hồ bấm giờ. Nếu bạn sử dụng đồng hồ thông thường, hãy trừ thời gian kết thúc cho thời gian bắt đầu để tính thời gian trôi qua.

Nhiệt độ

NHIỆT KẾ: Sử dụng để đo nhiệt độ. Nhiệt kế có thể là một thiết bị số hoặc nhiệt kế lỏng, trong đó chứa chất lỏng thay đổi thể tích theo nhiệt độ. Khi đo nhiệt độ, hãy đảm bảo bầu ở cuối nhiệt kế nằm ở giữa chất lỏng bạn muốn đo nhiệt độ và không chạm vào cạnh hay đáy của vật đựng chất lỏng.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Đơn vị SI nào dùng để đo khối lượng, độ dài và nhiệt độ?
- 2 Bạn sử dụng công cụ nào để đo chiều cao chú chó nhà bạn?
- 3 Bạn có thể đọc được khối lượng chất lỏng trong ống chia độ ở đâu?
- 4 Công cụ dễ dàng nhất được sử dụng để đo khối lượng là gì?
- 5 Làm thế nào để xác định khối lượng của một vật rắn hình chữ nhật?
- 6 Mô tả sự khác biệt của khối lượng và trọng lượng.
- 7 Đổi 50 cm sang km.
- 8 Xác định "thể tích" và liệt kê một số thể tích đo phổ biến.
- 9 Nếu nhiệt độ sôi của nước ở độ C là 100° , vậy nhiệt độ sôi ở Kelvin là bao nhiêu?
- 10 Bạn đặt kẹp giấy vào cốc sô-đa và nó chìm xuống? Cái nào đặc hơn - kẹp giấy hay sô-đa? Cái kẹp giấy có thể có khối lượng riêng là 2.8, 1.0 hay là 0.3 g/mL ?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 G, m, Kelvin.
- 2 Thước đo.
- 3 Đầu mặt khum chất lỏng.
- 4 Cân điện tử.
- 5 Bạn đo chiều dài, chiều rộng và chiều cao của vật thể. Sau đó bạn nhân ba số liệu này với nhau để tìm ra thể tích của vật đó (Thể tích = Chiều dài x chiều rộng x chiều cao).
- 6 Khối lượng là lượng vật chất trong một vật thể và trọng lượng là lực tác dụng bởi một khối lượng.
- 7 0.0005 km.
- 8 Thể tích là lượng không gian một cái gì đó chiếm chỗ, như là thể tích chất lỏng trong chai nước ngọt có ga, thể tích của túi ngũ cốc hay thể tích của chiếc ba-lô.
- 9 373.15 độ Kelvin.
- 10 Khối lượng riêng của kẹp giấy: 2.8 g/mL.

Câu số 8 có nhiều đáp án.

Chương 5

AN TOÀN PHÒNG THÍ NGHIỆM VÀ CÁC DỤNG CỤ KHOA HỌC

AN TOÀN PHÒNG THÍ NGHIỆM

Là điều quan trọng nhất bạn phải nghĩ tới trước khi thực hiện thí nghiệm. Thận trọng và cẩn thận khi làm thí nghiệm sẽ giúp bạn phòng ngừa nhiều tai nạn có thể xảy đến.

MỘT SỐ QUY ĐỊNH CHUNG VỀ AN TOÀN PHÒNG THÍ NGHIỆM

Đảm bảo có giáo viên hoặc người lớn ở bên, làm theo hướng dẫn một cách cẩn thận.

KHÔNG ÁO,
KHÔNG GIÀY,
KHÔNG KHOA HỌC!

Mặc đồ bảo hộ - như tạp dề và/hoặc áo khoác phòng thí nghiệm, kính bảo hộ và găng tay - để bảo vệ mắt, da của bạn khỏi các sự cố như bong tràn hóa chất và những vật thể có thể bị bắn hoặc bay trong thí nghiệm. Ngoài ra, đảm bảo rằng bạn không mặc quần áo quá rộng có thể dễ vướng vào thức khác hoặc dễ bắt lửa.

Mang giày kín để bảo vệ bàn chân trong trường hợp có thứ nào đó rơi hoặc đổ.

Buộc tóc gọn gàng - tóc có thể bị vướng vào thứ gì đó và bị giật mạnh, hoặc nếu bạn làm thí nghiệm có sử dụng nhiệt, tóc rất dễ bén lửa.

Rửa sạch tay sau khi cầm hóa chất và vật sống hoặc các vật sống một lần.

Không ăn uống trong phòng thí nghiệm - bạn sẽ không muốn trộn các loại hóa chất độc hại với đồ bạn ăn đâu.

Giữ phòng thí nghiệm luôn sạch sẽ và gọn gàng. Bỏ đi những vật dụng không còn sử dụng, ví dụ ba-lô hoặc áo khoác.

Không chạy hoặc ném đồ - có thể làm người khác bị thương nghiêm trọng đó.

THIẾT BỊ AN TOÀN

Biết cách sử dụng và vị trí của các thiết bị an toàn!

THUỐC RỬA MẮT: Sử dụng nếu có hóa chất rót hoặc bắn vào mắt. Rửa mắt ngay lập tức trong 15 phút. Đôi khi trong phòng thí nghiệm có lắp một vòi nước để rửa mắt.

GĂNG TAY GIỮ NHIỆT: Sử dụng khi cầm các cốc bê-sê nóng hoặc thiết bị nóng.

BÌNH CỨU HỎA: Sử dụng để dập lửa điện, lửa hóa chất hoặc lửa khí ga.

ÁO PHỦ CHỮA CHÁY: Sử dụng để dập các phần bị cháy nhỏ trên người hoặc bê-mặt. Nếu một người bị cháy, hãy chùm chiếc áo này lên người họ và để họ lăn trên sàn nhà.

VÒI NƯỚC: Sử dụng nếu có hóa chất bị đổ và dính trực tiếp lên da hoặc qua lớp quần áo. Hãy cởi bỏ tất cả quần áo bị nhiễm hóa chất và tắm dưới vòi nước trong 15 phút.

KHI TAI NẠN XÂY RA

THẬT ĐÁNG TIẾC! Mặc dù chúng ta đã thực hiện tất cả các biện pháp phòng ngừa, sự cố vẫn xảy ra. Hãy thông báo với giáo viên hoặc giám sát viên phòng thí nghiệm khi có bất kỳ tai nạn nào.

BÓNG NHẸ: Đặt chỗ bóng dưới vòi nước lạnh ít nhất 5 phút.

CHÁY PHÒNG THÍ NGHIỆM: Hãy ngay lập tức gọi người lớn đến giúp đỡ. Một đám cháy lớn không giống một ngọn nến trên bánh sinh nhật đâu: Khi bạn thổi chúng sẽ KHÔNG những không tắt mà còn làm cho đám cháy lan rộng hơn nữa. Thêm vào đó, nước không thể dập được lửa điện.

NGƯỜI BỊ CHÁY: Lăn trên mặt đất, tốt nhất là có áo phủ chữa cháy. Một lần nữa, hãy gọi người lớn trợ giúp nhé!

ĐỒ NƯỚC: Lau sạch để không ai bị trượt chân.

ĐỒ HÓA CHẤT VÀ KÍNH VỠ: Đảm bảo không ai bước vào khu vực xảy ra sự cố. Gọi người lớn tới giúp.

XỬ LÝ CHẤT THẢI

Hầu hết các phòng thí nghiệm đều có các thùng rác có nhãn để phân biệt các loại rác thải. Hãy hỏi giám sát viên phòng thí nghiệm nếu bạn không biết nên để chất thải ở đâu.

CHẤT THẢI NGUY HIỂM

Có sáu loại chất thải nguy hiểm chính bạn có thể gặp trong phòng thí nghiệm, và mỗi loại có một biểu tượng riêng.

1. CHẤT THẢI SINH HỌC: máu, nấm mốc, xác động vật, chất thải động vật hoặc bất kỳ vật thể nào nhiễm bẩn từ các loại chất thải này.

2. CHẤT THẢI ĐỘC HẠI: các loại chất độc như hóa học, dung dịch hay các chất tẩy rửa.

3. CHẤT THẢI PHÓNG XA: bắt cứ thứ gì nhiễm phóng xạ (sự phát ra năng lượng qua sóng hoặc hạt), có thể từ phòng thí nghiệm hoặc các thiết bị tia X. Bạn có thể không nhìn thấy nhiều chất thải kiểu này trong phòng thí nghiệm ở trường của bạn.

Trừ khi bạn cố gắng tạo ra một ninja rùa bằng cách cho lấp mai rùa ra hấp thụ phóng xạ

4. CHẤT THẢI DỄ CHÁY: là những thứ có thể dễ dàng bắt lửa như xăng, dung môi hoặc cồn.

5. CHẤT THẢI HÓA CHẤT ĂN MÒN: các hóa chất có tính ăn mòn (phá hủy) cao như axit, bazơ và pin cũ.

6. CÁC VẬT SẮC NHỌN VÀ MẢNH KÍNH: kính võ hoặc các vật sắc nhọn như kim, đũa khuấy.

KHI LÀM VIỆC VỚI...

NHIỆT

Không để nguồn nhiệt không được giám sát.

Không làm nóng thứ gì đó trong hộp kín - nó có thể phát nổ.

Sử dụng găng tay hoặc kẹp để xử lý các thùng chứa nóng

HÓA CHẤT

Tuyệt đối không ném hoặc ngửi mùi hóa chất. Một cách an toàn để ngửi hóa chất là làm nó thoáng qua trong không khí.

Đeo găng tay hoặc tạp dề/áo khoác phòng thí nghiệm khi xử lý hóa chất, tránh để hóa chất chạm vào da (Bạn có thể bị bỏng hóa chất. ÔI!).

Luôn luôn dán nhãn cho các lọ chứa hóa chất và không sử dụng hóa chất từ các lọ không dán nhãn.

NGUYÊN LIỆU SINH HỌC

Luôn đeo găng tay và đồ bảo hộ. Nếu không cần thận, **NGUYÊN LIỆU SINH HỌC** có thể truyền **VI KUẨN** và bệnh tật cho bạn.

Rửa tay, kê cà trước
đó có đeo găng tay.

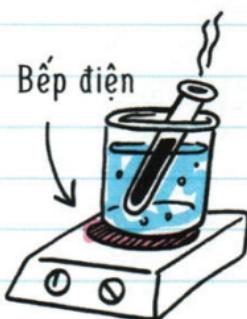
NGUYÊN LIỆU SINH HỌC
nguyên liệu sống hoặc
sống một lần.

Xử lý các mẫu vật sống một cách cẩn thận
và đảm bảo cung cấp cho chúng thức ăn
và môi trường sống thích hợp. Việc giữ mẫu
vật ở trạng thái tốt nhất rất quan trọng.

VI KHUẨN:
sinh vật đơn
bào có thành tế
bào nhưng không
có cơ quan tế
bào hoặc nhân
cơ quan.

NINJA RỬA ĐỘT
BIỂN CÓ LẼ LÀ MỘT
Ý TƯỞNG TỐI.

ĐIỆN

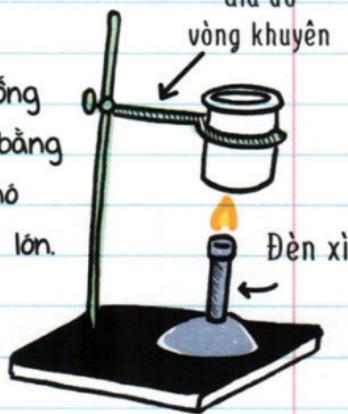

Đảm bảo dây điện không bị hỏng (dây điện bị đứt có
thể gây ra cháy).

Đảm bảo ổ điện không chạm đất (thường nghĩa là ổ
cắm có một nút nhỏ màu đỏ ở giữa) hoặc cách nguồn
nước ít nhất 6 feet, chẳng hạn như ở bồn rửa.

Giữ các thiết bị điện khô ráo; nước rò rỉ vào ổ cắm điện,
phích cắm, thiết bị có thể gây chập điện.

Không để dây điện ở lối đi để bạn không vấp hoặc
vướng vào dây.

DỤNG CỤ VÀ THIẾT BỊ PHÒNG THÍ NGHIỆM


Bếp điện

BẾP ĐIỆN: giống như một chiếc bếp nhỏ, nó có bảng số để điều chỉnh nhiệt độ.

Thông thường, ống nghiệm chứa chất lỏng được đun nóng sử dụng bếp điều nhiệt.

Do đó, chỉ sử dụng dưới sự giám sát của người lớn.

ĐÈN XI: sử dụng để làm nóng. Không giống như bếp điện, đèn xi là ngọn lửa mỏ dat bằng khí ga. Nhưng giống như bếp điện ở chỗ, nó cần được bật lửa bởi giáo viên hoặc người lớn.

CHÂN ĐẾ: được sử dụng để giữ cốc bê-sê, bình thótt cổ và ống nghiệm. Nó thường được sử dụng khi đun nóng, trộn hoặc đo lường hóa chất.

Trong phòng thí nghiệm, chúng ta sử dụng nhiều loại đồ thủy tinh. Các loại thủy tinh này thường chịu nhiệt và bền nhưng nếu nó nóng hoặc lạnh đột ngột, nó sẽ nứt hoặc vỡ.

CỐC BÊ-SÊ: trông giống một cốc thủy tinh với một đầu rót để rót hóa chất dễ dàng hơn. Đo lường thô có thể tiến hành sử dụng các đường kẻ bên thành cốc bê-sê (không phải là số liệu chính xác nhất).

BÌNH THỐT CỖ: cũng như cốc bê-sê nhưng nó có miệng hẹp hơn nhiều, do vậy ta có thể đóng nắp với nút chặn. Loại bình này cũng có bảng đo đếm ở bên thành bình giúp bạn ước lượng tương đối.

ỐNG NGHIỆM: là một ống thủy tinh dài tròn đáy - giống như ngón tay.

NẮP ỐNG NGHIỆM: là một nắp cao su ở trên đỉnh vừa với cổ ống nghiệm và bình thốt cỗ. Đôi khi nắp có các lỗ trên đỉnh để dán và ống thủy tinh có thể được sử dụng để kết nối ống nghiệm hoặc bình thít cổ với các thứ khác.

DỤNG CỤ RỬA ỐNG NGHIỆM:

giúp bạn làm sạch mọi cặn bám vào ống nghiệm.

QUE KHUẤY THỦY TINH: là que thủy tinh sử dụng để khuấy chất lỏng.

PHỄU: được sử dụng để đổ chất lỏng dễ dàng từ dụng cụ chứa này sang dụng cụ khác. Phễu rộng ở đỉnh và hẹp ở đáy, do đó chất lỏng có thể bị thu lại và đầy ra ngoài thành một dòng.

KÍNH HIỂN VI: là dụng cụ cho phép bạn nhìn cận những thứ siêu nhỏ. Kính hiển vi thực chất là một kính phóng đại cực kỳ mạnh mẽ.

Khi sử dụng kính hiển vi, ta thường cho vật thí nghiệm lên **BẢN KÍNH MANG VẬT**, nó là một miếng kính phẳng với một chỗ lõm để giữ vật mẫu.

Trong phòng thí nghiệm, chúng ta thường sử dụng kính **HIỂN VI GHÉP**, loại kính có hai ống kính giúp nhìn được ở độ phóng đại tốt hơn nhiều lần. Bạn cũng có thể thay đổi độ phóng đại bằng cách xoay một ống kính gần bản kính mang vật hơn. Hãy cẩn thận không làm nát bản kính mang vật khi bạn quá tập trung!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Cái gì được sử dụng để làm nóng mọi thứ với một ngọn lửa mờ?
- 2 Cách an toàn hơn để ngửi một hóa chất?
- 3 Bạn có thể dùng gì để bảo vệ mắt trong phòng thí nghiệm?
- 4 Không được _____ hoặc uống trong phòng thí nghiệm!
- 5 Dụng cụ nào giống cốc bê-sê với miệng hẹp hơn?
- 6 Loại chất thải nào bao gồm vật sống và các vật sống một lần?
- 7 Một _____ được sử dụng kết hợp với đèn xi.
- 8 Cái nào được sử dụng để phủ các vết cháy nhỏ hoặc để trùm lên một người trong đám cháy?
- 9 Không rời một nguồn nhiệt _____.
- 10 Cái nào giúp giữ mẫu vật khi bạn dùng kính hiển vi?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Đèn xi
- 2 Bằng cách làm nó thoáng trong không khí
- 3 Kính bảo hộ
- 4 Ăn
- 5 Một bình thóp cổ
- 6 Rác thải sinh học
- 7 Giá đỡ vòng khuyên
- 8 Áo choàng cứu hỏa
- 9 Không được giám sát
- 10 Một bản kính mẫu vật

PHẦN

2

Chất,

các phản ứng hóa học
và Dung dịch

Chương 6

CHẤT, CÁC ĐẶC TÍNH vÀ PHA

VẬT CHẤT vÀ CÁC NGUYÊN TỬ

VẬT CHẤT mô tả mọi thứ mà chúng ta có thể nhìn, chạm, ngửi hoặc cảm nhận. Nói cách khác, vật chất là bất cứ thứ gì có khối lượng và chiếm không gian (bao gồm không khí và hầu hết mọi thứ khác).

VẬT CHẤT:

Bất cứ thứ gì có khối lượng và chiếm không gian

NGUYÊN TỬ:

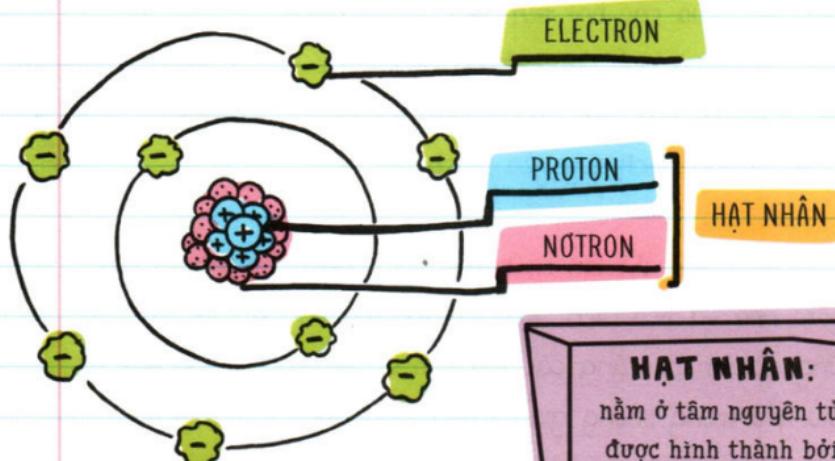
Đơn vị nhỏ nhất
của vật chất

Đơn vị nhỏ nhất của vật chất được gọi là

NGUYÊN TỬ. Nếu bạn cắt một miếng kim loại thành nhiều mảnh nhỏ thì mảnh nhỏ nhất bạn còn lại với điều kiện mảnh đó vẫn có các tính chất của kim loại được gọi là một nguyên tử.

Nguyên tử - atom - là
từ bắt nguồn từ tiếng
Hy Lạp, có nghĩa là
"không thể chia được".

Người Hy Lạp thậm chí không có máy
gia tốc hạt!


CÁC MÔ HÌNH NGUYÊN TỬ

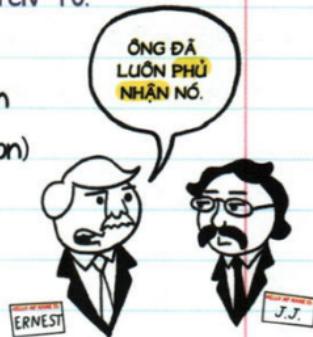
Các nguyên tử được tạo thành từ các hạt nhỏ hơn:

PROTON (hạt tích điện dương)

NÔTRON (hạt trung hòa về điện, có nghĩa là nó không tích điện)

ELECTRON (các hạt tích điện âm và gần như không có khối lượng)

Proton và neutron kết hợp với nhau tạo thành tâm của một nguyên tử, gọi là **HẠT NHÂN**, cuối cùng có điện tích dương. Các electron có quỹ đạo, hoặc quay xung quanh hạt nhân quá nhanh để xác định vị trí chính xác của chúng.


Hãy nhớ rằng mô hình là một cách để biểu trưng cho một cái gì đó mà chúng ta không thể dễ dàng nhìn thấy.

MÔ HÌNH NGUYÊN TỬ HIỆN ĐẠI cho thấy một ĐÁM MÂY ELECTRON hơn là các electron riêng lẻ như mô hình trên. Điều đó thể hiện nơi bạn có thể tìm thấy nhiều nhất một electron quay quanh. Nơi dày đặc hơn các khu vực khác của đám mây có nghĩa là xác suất của electron tại đó cao hơn.

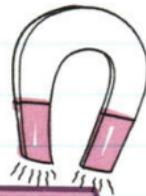
Sơ lược về lịch sử của các mô hình nguyên tử

JOHN DALTON là nhà khoa học đầu tiên đề xuất rằng phân tử bao gồm các nguyên tử không thể phân chia. Ông cho rằng có những hạt nhỏ đến mức chúng ta không thể nhìn thấy chúng. Ông ấy gọi là những nguyên tử hạt và lý thuyết của ông về vật chất được gọi là **THUYẾT NGUYÊN TỬ**.

SIR JOSEPH JOHN (J. J.) THOMSON đã phát hiện ra sự hiện diện của các hạt tích điện âm (electron) trong nguyên tử và hình dung chúng được nhúng với các hạt tích điện dương, loại giống như nho khô trong bánh quy yến mạch nho khô.

ERNEST RUTHERFORD đã tìm ra rằng mỗi nguyên tử có một hạt trung tâm nhỏ và tích điện dương mạnh mà ông gọi là hạt nhân. Ông đã tìm ra rằng các electron đang quay quanh hạt nhân chủ yếu trong không gian trống. Ông gọi các hạt tích điện dương trong hạt nhân là proton. SIR JAMES CHADWICK - học trò của Rutherford - đề xuất có sự tồn tại của các hạt không tích điện trong hạt nhân, ông gọi chúng là neutron.

VẬT LÝ và HÓA HỌC ĐẶC TÍNH và BIẾN ĐỔI


Cách mọi thứ được nhìn, cảm nhận, ngửi và nếm gọi là **TÍNH CHẤT VẬT LÝ**. Thật dễ dàng để phân loại vật chất bằng các đặc tính của chúng. Một số tính chất vật lý phổ biến được sử dụng để phân biệt vật chất đó là:

MÀU SẮC

KÍCH THƯỚC

MẬT ĐỘ

DỘ DẺO (có thể dễ dàng được làm phẳng, định hình hoặc ép)

TÙ TÍNH (có thể có hoặc không có từ tính)

ĐIỀM SÔI hoặc **ĐIỀM TAN CHÁY** nhiệt độ tại đó vật sôi hoặc tan chảy)

DỘ HÒA TAN (Có thể dễ dàng hòa tan trong một chất khác)

MỘT THAY ĐỔI VẬT LÝ là bất kỳ thay đổi nào về thuộc tính vật lý của vật chất như kích thước, hình dạng hoặc trạng thái (rắn, lỏng, hoặc khí/hơi). Sản phẩm cuối cùng của bất kỳ thay đổi vật lý vẫn bao gồm cùng loại vật chất. Ví dụ, bạn có thể hoàn nguyên băng, tuyêt hoặc hơi trở lại dạng nước lỏng bằng cách làm nóng hoặc làm mát nó. Băng, hơi nước và nước lỏng đều là cùng một dạng vật chất - chỉ ở các trạng thái khác nhau.

TÍNH CHẤT HÓA HỌC mô tả khả năng của một thứ trải qua các biến đổi hóa học khác nhau.

Một số ví dụ về tính chất hóa học:

TÍNH BẮT LỬA (có thể dễ dàng bị bốc cháy)

KHẢ NĂNG PHẢN ỨNG (độ phản ứng với oxy, nước, ánh sáng, v.v...)

Khi bất kỳ tinh chất hóa học nào thay đổi, vật chất đã trải qua một **PHẢN ỨNG HÓA HỌC**. Gi sắt trên một công sắt hoặc đốt gỗ cháy thành tro đều là ví dụ về biến đổi hóa học. Một số dấu hiệu của biến đổi hóa học có thể bao gồm:

PHẢN ỨNG HÓA HỌC

Khi vật chất biến đổi thành vật chất mới với các tính chất mới

BIẾN ĐỔI MÀU SẮC - Điều này giống như khi bạn đẻ một lát táo đã cắt ra ngoài không khí và nó chuyển sang màu nâu.

BIẾN ĐỔI NĂNG LƯỢNG - Phản ứng hóa học giải phóng năng lượng dưới dạng ánh sáng và nhiệt.

Hãy nghĩ về pháo hoa

BIẾN ĐỔI MÙI

Hãy nghĩ về thực phẩm sê thối rữa

HÌNH THÀNH KHÍ HOẶC HÓA RẮN: Khi bạn cho hai chất vào nhau, chẳng hạn như giấm và baking soda (natri hidrocacbonat), bạn thường nhìn thấy bong bóng. Bong bóng, hoặc sự hình thành khí là một dấu hiệu cho thấy các chất đã trải qua một biến đổi hóa học.

Biến đổi hóa học thường khó đảo ngược hơn biến đổi vật lý - chỉ cần tưởng tượng rằng chúng ta cố gắng biến tro trở lại thành một khúc gỗ.

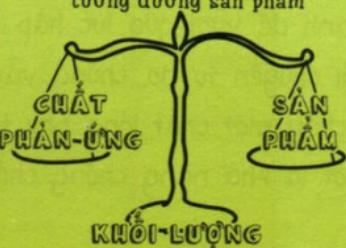
VẬT LIỆU TỔNG HỢP là các vật liệu không có trong tự nhiên, nhưng được làm thay thế từ tài nguyên thiên nhiên qua một biến đổi hóa học. Ví dụ, polyester là một loại sợi tổng hợp được sản xuất từ không khí, nước, than đá và dầu mỏ. Axit và rượu được dùng để tạo ra một phản ứng hóa học, dẫn đến sợi polyester.

Bảo toàn khối lượng

Trong khi mọi thứ có thể thay đổi hình dạng hoặc thành phần trong các biến đổi vật lý và hóa học, một điều vẫn nhất quán đó là: số lượng vật chất. Khái niệm này được gọi là **BẢO TOÀN KHỐI LƯỢNG**. Vì thế khối lượng không mất đi - nó vẫn tồn tại, nhưng nó có thể ở trong một dạng khác, giống như dạng khí xung quanh. Các nguyên tử sắp xếp lại để tạo thành các chất khác.

BẢO TOÀN KHỐI LƯỢNG:

Tổng khối lượng các chất tham gia phản ứng bằng tổng khối lượng các sản phẩm tạo thành.

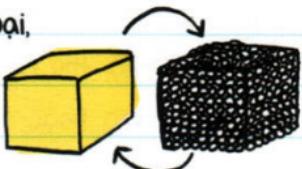

CHẤT PHẢN ỨNG

Chất bị thay đổi trong một phản ứng vật lý hoặc hóa học

SẢN PHẨM TẠO THÀNH

Kết quả của một phản ứng vật lý hoặc hóa học

Chất phản ứng có khối lượng tương đương sản phẩm

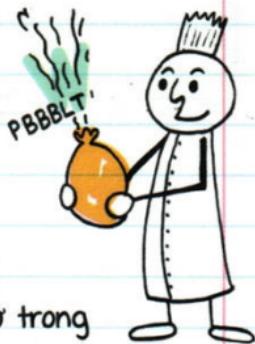


CÁC TRẠNG THÁI của VẬT CHẤT

Vật chất thường được tìm thấy trong ba **DẠNG** (hoặc **TRẠNG THÁI**): rắn, lỏng và hơi (hoặc khí). Sự bố trí và trạng thái của các hạt sẽ xác định trạng thái của vật chất. Lực hút giữa các hạt giữ các hạt gần nhau và năng lượng của chuyển động cho phép các hạt vượt qua các lực hấp dẫn này.

CHẤT RẮN: như băng, gỗ hoặc kim loại,

là vật chất có hình dạng và thể tích xác định. Các hạt trong vật chất có liên kết chặt chẽ với nhau, chúng



không di chuyển xung quanh một cách tự do, đó là lý do tại sao chất rắn có hình dạng và thể tích xác định. Các hạt trong chất rắn dao động qua lại, nhưng không đủ để vượt qua lực hấp dẫn giữa chúng.

CHẤT LỎNG: chảy tự do và mang hình dạng của vật chứa chúng. Tuy nhiên chất lỏng có thể tích xác định. Các hạt trong chất lỏng di chuyển xung quanh đủ nhanh để vượt qua lực hấp dẫn. Trong khi các hạt chất lỏng di chuyển tự do, chúng vẫn dính vào nhau. Tốc độ dòng chảy một chất lỏng phụ thuộc vào **ĐỘ NHỚT** của nó. Độ nhớt là khả năng chống chảy.

HƠI (hoặc **KHÍ**) không có hình dạng và thể tích xác định. Hình dạng và thể tích của một loại khí phụ thuộc vào bình chứa nó, không giống như chất lỏng, chúng sẽ lắp đầy bất kỳ vật chứa nào bạn cho chúng vào. Các phân tử trong khí lan truyền thực sự cách xa nhau và di chuyển với tốc độ cao. Phân tử khí di chuyển nhanh đến mức chúng có thể vượt qua lực hấp dẫn giữa các hạt, cho phép các phân tử tự tách ra. Nếu bạn rút khí từ một quả bóng bay vào không khí, nó sẽ phân tán đều vào không trung.

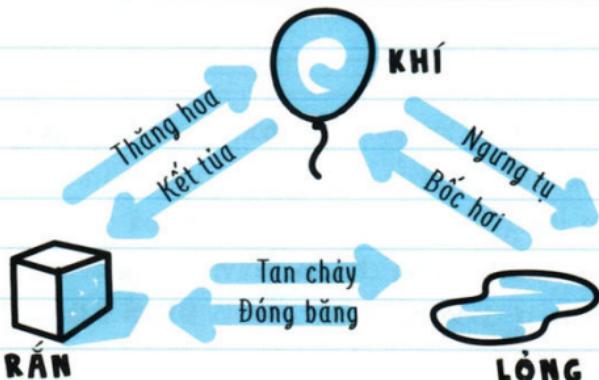
TRẠNG THÁI	ĐẶC ĐIỂM	CHUYỂN ĐỘNG CỦA CÁC HẠT
RẮN	Hình dạng và thể tích xác định	Chuyển động, nhưng có vị trí cố định
LỎNG	Hình dạng có thể thay đổi, thể tích xác định, có thể chảy	Chuyển động tự do, không có vị trí cố định
KHÍ	Hình dạng và thể tích không xác định mà phụ thuộc vào vật chứa, có thể chảy	Các hạt di chuyển nhanh và cách xa nhau

BIẾN ĐỔI PHA

Trạng thái của vật chất không cố định. Thay đổi áp suất và nhiệt độ làm biến đổi vật chất - điều này được gọi BIẾN ĐỔI PHA.

TAN CHÁY là khi vật chất thay đổi từ thể rắn thành thể lỏng. Điểm nóng chảy là nhiệt độ tại đó một chất rắn tan chảy. Nhiệt khiên chất rắn tan chảy bằng cách tăng sự chuyển động của các hạt. Khi các hạt có ngày càng nhiều năng lượng từ nhiệt, chúng di chuyển ngày càng nhiều hơn cho đến khi chúng không còn bị cố định tại chỗ.

Trên 100°C , nước bốc hơi
 $0^{\circ}\text{C} - 100^{\circ}\text{C}$, nước dạng lỏng
 Dưới 0°C , nước dạng chất rắn



ĐÓNG BĂNG là khi vật chất thay đổi từ lỏng sang rắn. Khi chất lỏng hạ nhiệt, các hạt di chuyển ngày càng ít di. Ở một vài điểm, chuyển động của các hạt có thể vượt qua các lực hấp dẫn giữa các hạt và chất lỏng chuyển thành rắn. Nhiệt độ tại điểm một chất lỏng bị đóng băng được gọi là **ĐIỂM ĐÓNG BĂNG**.

BỐC HƠI là khi chất lỏng chuyển thành hơi. Khi mồ hôi biến mất và khô lại, nó đã bốc hơi hoặc bay hơi. Sự bay hơi xảy ra chậm và chỉ ở bề mặt (tung phân tử va vào không khí). Khi nước sôi, nó đạt đến nhiệt độ mà tại đó nước chuyển từ dạng lỏng sang hơi nước. Nhiệt làm cho các hạt chất lỏng di chuyển xung quanh nhanh chóng. Khi nào các hạt đang di chuyển đủ nhanh để vượt qua tất cả lực hấp dẫn giữa các hạt, chất lỏng chuyển thành hơi.

NGUNG TỰ là khi hơi biến thành chất lỏng. Khi bạn có một cốc đồ uống rất lạnh, không khí xung quanh cốc thủy tinh ngưng tụ và tạo thành những giọt nước nhỏ trên bề mặt kính. Khi nào hơi nước trong không khí nguội đi và mất năng lượng, các hạt bắt đầu di chuyển chậm lại. Khi các hạt di chuyển đủ chậm, lực hấp dẫn giữa các hạt tạo ra các phân tử trong hơi để dính vào nhau, tạo thành một chất lỏng.

Đôi khi, trong điều kiện khắc nghiệt, chất rắn có thể biến đổi trực tiếp thành dạng hơi, được gọi là **THĂNG HÓA**. Ví dụ như đá khô, thăng hoa khi đá CO_2 biến trực tiếp thành hơi CO_2 . Hai đôi khi biến đổi trực tiếp thành chất rắn, được gọi là **KẾT TÙA**, giống như khi sương giá xuất hiện trên cỏ qua đêm.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Hạt tích điện dương trong nguyên tử gọi là gì?
- 2 Mô tả mô hình của Thomson về một nguyên tử.
- 3 Nếu bạn biến trứng, bột và sữa thành bánh kếp, các thành phần đã trải qua những biến đổi gì? Nếu bạn làm sinh tố chuối, dâu tây và sữa chua, các thành phần đã trải qua những biến đổi gì?
- 4 Nếu bạn đốt một mảnh giấy thì khối lượng nhiều hay ít hơn so với lúc đầu?
- 5 Ké tên một số thứ không phải là vật chất.
- 6 Về hạt và thể tích, giữa chất lỏng và hơi có sự khác biệt gì?
- 7 Điều gì xảy ra tại điểm hóa hơi (điểm sôi) của một chất?
- 8 So sánh các chuyển động phân tử trong chất rắn, hơi và chất lỏng.
- 9 Độ nhớt là gì? Cái nào có độ nhớt cao hơn: bơ đậu phộng hay xốt cà chua?
- 10 Định nghĩa sự bốc hơi và ngưng tụ. Hãy cho ví dụ tương ứng.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Proton
- 2 Thomson nghĩ rằng các electron và proton được nhúng cùng nhau, giống như nho khô trong bánh quy yến mạch nho khô.
- 3 Các thành phần trong bánh kếp trải qua một biến đổi hóa học, các thành phần đã biến thành một thứ khác với tính chất hóa học mới. Đổi với sinh tố, các thành phần có trải qua một phản ứng vật lý (các thành phần giữ nguyên, chúng chỉ được cắt thành những mảnh nhỏ và trộn với nhau).
- 4 Giống nhau. Khối lượng được bảo toàn.
- 5 Suy nghĩ, ánh sáng, chân không
- 6 Cả hai đều có thể cháy tự do, các hạt trong chất lỏng dính vào nhau và không tách biệt hoàn toàn. Vì vậy thể tích của một chất lỏng là cố định trong khi thể tích của hơi không cố định.
- 7 Tại điểm sôi, một chất thay đổi từ thể lỏng sang thể khí.
- 8 Các phân tử dao động trong chất rắn, nhưng có vị trí cố định. Phân tử trong chất lỏng cháy tự do, nhưng chúng không hoàn toàn tách biệt vì chúng không có đủ năng lượng để vượt qua hoàn toàn lực hấp dẫn giữa các phân tử. Các phân tử trong chất khí di chuyển tự do và rất nhanh như vậy chúng có thể vượt qua tất cả các lực hấp dẫn giữa các phân tử.
- 9 Độ nhớt là khả năng chống cháy. Bơ đậu phộng chống cháy nhiều hơn.
- 10 Bay hơi là khi chất lỏng chuyển thành hơi, giống như khi mồ hôi khô lại. Ngưng tụ thì ngược lại - khi hơi biến thành chất lỏng, như khi các giọt nước hình thành trên bề mặt kính của cốc nước lạnh.

Câu số 5 có nhiều hơn một đáp án.

Chương 7

BẢNG TUẦN HOÀN, CẤU TRÚC NGUYÊN TỬ VÀ CÁC HỢP CHẤT

BẢNG TUẦN HOÀN

Các nguyên tử khác nhau có số lượng proton và electron khác nhau tạo nên sự khác biệt về tính chất vật lý của chất. Mỗi kiểu nguyên tử khác nhau sẽ tạo ra một **NGUYÊN TỐ**, có khoảng 118 nguyên tố đã được tìm thấy.

Mỗi nguyên tố được tạo nên từ các nguyên tử đặc nhất.

NGUYÊN TỐ
một kiểu nguyên tử

BẢNG TUẦN HOÀN

một bảng bao gồm tất cả các nguyên tố

Tất cả các nguyên tố này được trình bày trong một bảng được gọi là **BẢNG TUẦN HOÀN**, bảng đó liệt kê và sắp xếp từng nguyên tố theo các ô. Mỗi nguyên tố được gán một **KÝ HIỆU HÓA HỌC**, là một hoặc hai chữ cái, đại diện cho một nguyên tố

KÝ HIỆU HÓA HỌC

một hoặc hai chữ cái, đại diện cho một nguyên tố

1	H	1.0078
2	Li	Liti 6.941
3	Na	Natri 22.990
4	Mg	Magi 24.305
5	K	Kali 39.098
6	Ca	Canxi 40.078
7	Rb	Rubidi 85.468
8	Sr	Stronti 87.62
9	Cs	Xézi 132.91
10	Ba	Bari 137.33
11	Fr	Franci (223)
12	Ra	Radi (226)

← CHU KỲ →

BẢNG

TUẦN HOÀN

CÁC NGUYÊN TỐ HÓA HỌC

3	4	5	6	7	8	9
Sc	Ti	V	Cr	Mn	Fe	Co
Scandi 44.956	Titan 47.867	Vanadi 50.942	Crom 51.996	Mangan 54.938	Sắt 55.845	Coban 58.933
Y	Zr	Nb	Mo	Tc	Ru	Rh
Yttrii 88.906	Zirconi 91.224	Niobi 92.906	Molybden 95.96	Tecneti 98.9062	Rutheni 101.07	Rhodi 102.91
Hf	Ta	W	Re	Os	Ir	
Hafni 178.49	Tantali 180.95	Wolfraum 183.84	Rheni 186.21	Osmi 190.23	Iridi 1.0078	
Rf	Db	Sg	Bh	Hs	Mt	
Rutherfordi (261)	Dubni (262)	Seaborgi (266)	Bohri (264)	Hassi (269)	Meitneri (226)	

57	58	59	60	61	62
La	Ce	Pr	Nd	Pm	Sm
Lantan 138.91	Xeri 140.12	Praseodymi 140.91	Neodymi 144.24	Promethi (145)	Samari 150.36
89	90	91	92	93	94
Ac	Th	Pa	U	Np	Pu
Actini (226)	Thorii 1.0078	Protactini 231.04	Urani 238.03	Neptuni (237)	Plutoni (244)

↑ HÓA ↓

- KIM LOẠI KIỀM
- KIM LOẠI KIỀM THỎ
- LANTHANIDES
- ACTINIDES
- KIM LOẠI CHUYỂN TIẾP
- CÁC TÍNH CHẤT CHƯA BIẾT
- KIM LOẠI HẬU CHUYỂN TIẾP
- Á KIM
- CÁC PHI KIM KHÁC

- HALOGEN
- KHÍ TRƠ
- NGUYÊN TỐ MỚI VÀ CHƯA TÌM RA

18	2
He	Heli 4.0026

13	14	15	16	17	
5 B Bo 10.806	6 C Cacbon 12.009	7 N Nitơ 14.006	8 O Oxy 15.999	9 F Flo 18.998	10 Ne Neon 20.180
10 11 12	13 Al Nhôm 26.982	14 Si Silic 28.084	15 P Phốtpho 30.974	16 S Lưu huỳnh 32.059	17 Cl Clo 35.446
28 Ni Niken 58.693	29 Cu Đồng 63.546	30 Zn Kẽm 65.38	31 Ga Gali 69.723	32 Ge Gecmani 72.63	33 As Asen 74.922
46 Pd Paladi 106.42	47 Ag Bạc 107.87	48 Cd Cadmium 112.41	49 In Indi 114.82	50 Sn Thiếc 118.71	51 Sb Antimon 121.76
78 Pt Platin 195.08	79 Au Vàng 196.97	80 Hg Thủy ngân 200.59	81 Tl Tali 204.38	82 Pb Chì 207.2	83 Bi Bitmut 208.98
110 Ds Darmstadtii (268)	111 Rg Roentgeni (268)	112 Cn Copernixi (268)	113 Uut Ununtri (268)	114 Fl Flerovi (268)	115 Uup Ununpenti (268)
116 Lv Livermorii (268)	117 Uus Ununsepti (268)	118 Uuo Ununocti (268)			

63 Eu Europi 151.96	64 Gd Gadolini 157.25	65 Tb Terbi 158.93	66 Dy Dysprosi 162.50	67 Ho Holmi 164.93	68 Er Erbi 167.26	69 Tm Thuli 168.93	70 Yb Ytterbi 173.04	71 Lu Lutieri 174.97
95 Am Americi (243)	96 Cm Curi (247)	97 Bk Berkeli (247)	98 Cf Californi (251)	99 Es EinSteini (252)	100 Fm Fermi (257)	101 Md Mendelevi (258)	102 No Nobelii (259)	103 Lr Lawrenci (262)

Mỗi ô vuông chứa thông tin về mỗi nguyên tố. Số trên cùng là **SỐ HIỆU NGUYÊN TỬ** của nguyên tố, số dưới cùng là **SỐ KHÔI** của nguyên tố đó.

3	Số hiệu nguyên tử
Li	Ký hiệu hóa học
Liti	Tên nguyên tố
6.941	Số khối

↙ Cũng là số lượng electron

SỐ HIỆU NGUYÊN TỬ

Số lượng proton mà một nguyên tử chứa. Các nguyên tố được phân biệt bởi số hiệu nguyên tử vì mỗi nguyên tố có số lượng proton khác nhau.

Bảng tuần hoàn được sắp xếp theo hàng và cột. Các hàng ngang được gọi là **CHU KỲ**, trong khi các cột dọc được gọi là **NHÓM** hoặc **HỘ**.

Các nguyên tố được sắp xếp theo thứ tự số hiệu nguyên tử của chúng, do đó khi đi theo hàng ngang bạn sẽ thấy mỗi nguyên tố lại có nhiều hơn một electron và proton. Hydro có 1, heli có 2, cứ tiếp tục như vậy.

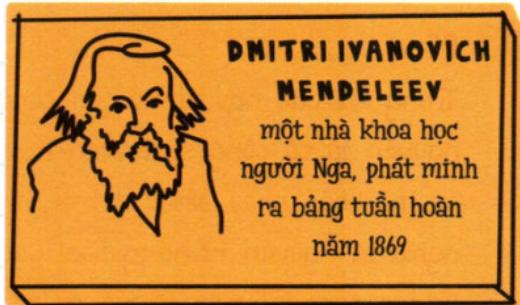
Các nguyên tố trong cùng một nhóm (cột) sẽ có tính chất vật lý và hóa học tương tự nhau.

NGUYÊN TỬ KHÔI

Khối lượng trung bình của một nguyên tử điển hình của nguyên tố đó.

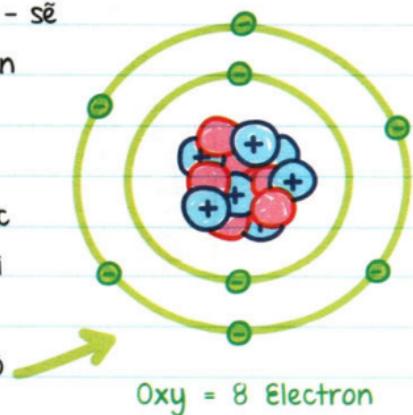
CHU KỲ

Một hàng ngang các nguyên tố trên bảng tuần hoàn


NHÓM hoặc HỘ

Một cột các nguyên tố trong bảng tuần hoàn. Nhóm các nguyên tố có tính chất vật lý và hóa học tương tự nhau.

Để ghi nhớ một chu kỳ đi theo chiều ngang, trong khi một nhóm sẽ đi theo chiều dọc, hãy liên tưởng tới: Một chu kỳ là khi kết thúc 1 câu và 1 câu thì sẽ được viết **NGANG** trang giấy.


Cấu tạo nguyên tử và các mức năng lượng

Hạt nhân của nguyên tử
chứa đựng proton mang
diện tích dương, neutron
trung hòa về điện và

một đám mây electron mang điện tích âm, chứa electron và bao quanh hạt nhân. Các electron quay quanh hạt nhân ở tốc độ rất cao. Bởi vì các electron liên tục di chuyển nên khó có thể nói chính xác vị trí của một electron ở bất kỳ thời điểm nào, nhưng các nhà khoa học có thể dự đoán xác suất tìm thấy một electron ở một số vùng nhất định. Hầu hết các khu vực này có hình dạng như chiếc nhẫn bao quanh hạt nhân, vì các electron quay quanh hạt nhân.

Mỗi chiếc nhẫn này được gọi là một MỨC NĂNG LƯỢNG. Mức năng lượng thấp nhất là các vòng gần hạt nhân nhất và mức năng lượng cao hơn sẽ ở xa hạt nhân. Vì các electron bị hút vào hạt nhân (hãy nhớ rằng điện tích + và - sẽ hút nhau), các electron gần hạt nhân nhất sẽ khó di chuyển nhất. Mức năng lượng gần nhất với hạt nhân có thể chứa đến 2 electron. Mọi mức năng lượng cao hơn có thể chứa tối 8 electron. Ví dụ: mức năng lượng đầu tiên của một nguyên tử oxy có 2 electron và thứ hai có 6 electron.

Đồng vị

Trong khi các nguyên tử của cùng một nguyên tố có cùng số proton thì số neutron có thể khác nhau. Nhiều neutron hơn có nghĩa là nguyên tử nặng hơn! Các nguyên tử của cùng nguyên tố mà có số lượng neutron khác nhau được gọi là **ĐỒNG VỊ**. Khối lượng nguyên tử thực chất là khối lượng trung bình của các đồng vị của một nguyên tố.

ĐỒNG VỊ

Các nguyên tử của cùng một nguyên tố có số lượng neutron khác nhau

Các nguyên tố trung tính và Ion

Số lượng proton trong một NGUYÊN TỐ TRUNG TÍNH bằng số lượng electron - Điện tích dương và điện tích âm cân bằng tạo ra nguyên tố trung tính.

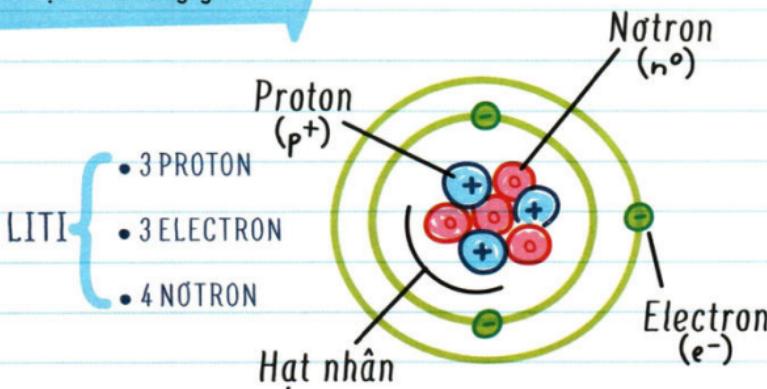
Tất cả các nguyên tử lúc đầu có điện tích trung tính. Do đó, nếu bạn biết số hiệu nguyên tử của một nguyên tố thì bạn sẽ biết số lượng proton cũng như electron của nguyên tố đó. Bạn cũng có thể tìm ra số lượng neutron trong nguyên tử bằng cách lấy số khối trừ đi số hiệu nguyên tử đó.

Số hiệu nguyên tử: Số lượng proton, cũng như số lượng electron

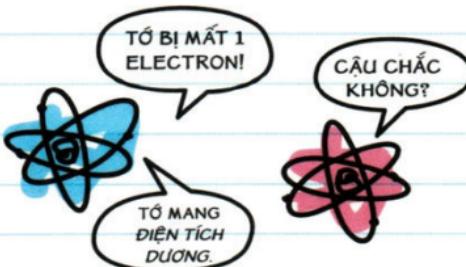
Số khối

$6.941 \approx 7$ (Khối lượng nguyên tử được làm tròn gần nhất)

$7 - 3 = 4$ (Số khối trừ đi số hiệu nguyên tử)



Liti có 4 neutron

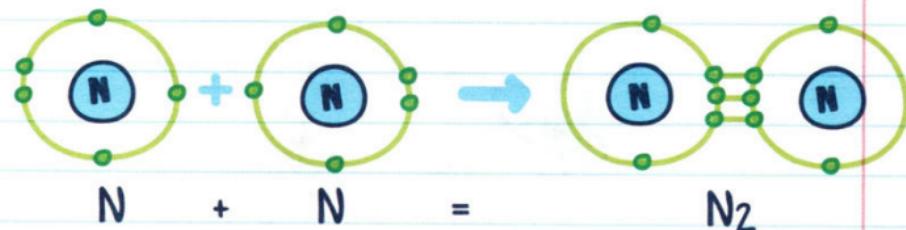
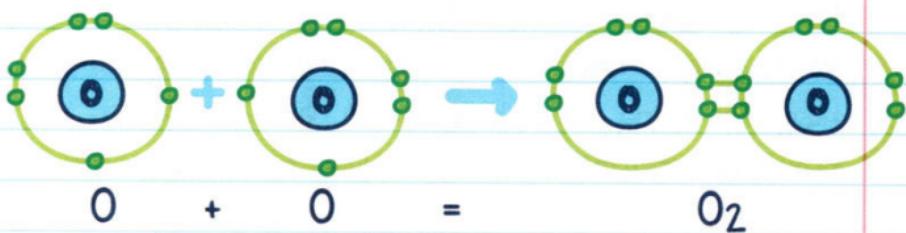

Khối lượng nguyên tử - số hiệu nguyên tử • số notron

Nếu chúng ta làm tròn khối lượng trung bình lên 7, chúng ta biết phải có tổng cộng 7 notron và proton kết hợp lại. Bởi vì khi đọc số hiệu nguyên tử chúng ta biết có 3 proton thì chúng ta cũng phải biết sẽ có 4 notron.

Từ tất cả các thông tin này, chúng ta có thể vẽ được mô hình nguyên tử:

Nếu một nguyên tử có điện tích thì nó được gọi là ION và nó cũng có nhiều hoặc ít electron hơn proton. Nếu một nguyên tử mang điện tích âm, nó có nhiều electron hơn (ít proton hơn). Nếu nó có điện tích dương, nó có nhiều proton hơn (ít electron hơn).

PHÂN TỬ và HỢP CHẤT



Khi hai hoặc nhiều nguyên tử kết hợp với nhau, chúng tạo thành **PHÂN TỬ**.

Các phân tử thường kết hợp với các phân tử khác để hình thành các **HỢP CHẤT PHÂN TỬ**.

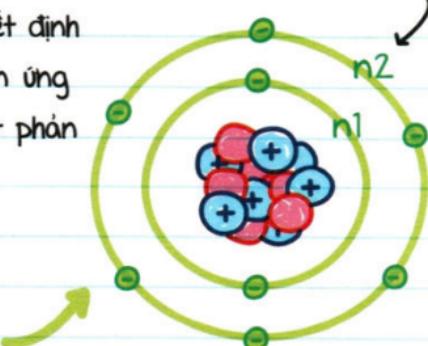
Hợp chất phân tử đơn giản nhất có hai nguyên tử và được gọi là **HỢP CHẤT HAI NGUYÊN TỬ**.

Nitơ và oxy thường được tìm thấy như hợp chất hai nguyên tử - N_2 và O_2

Chúng ta có thể sử dụng các mô hình đơn giản như thế này để thể hiện cấu tạo nguyên tử của các phân tử khác nhau, hoặc chúng ta có thể khiến nó trở nên lạ mắt với các mô hình 3D làm trên máy vi tính.

Các hợp chất có các tính chất khác nhau, do các phần tử tạo thành có tính chất riêng của chúng - nước đường như không thể trở thành nước nếu nó chỉ là một nhóm các nguyên tử hydro và oxy tách biệt nhau.

TAI SAO CÁC NGUYÊN TỬ HÌNH THÀNH HỢP CHẤT


Các nguyên tử luôn muốn ở trạng thái ổn định. Nhiều nguyên tử tìm cách ổn định bằng cách kết hợp với các nguyên tử khác. Điều đó đồng nghĩa là sẽ phải cho đi, lấy thêm hoặc thậm chí chia sẻ electron với các nguyên tử khác.

Electron di chuyển theo mọi hướng, nhưng chúng bị hạn chế bởi các LỐP ELECTRON khác nhau xung quanh hạt nhân. Khi nào các electron từ các nguyên tử khác nhau kết hợp, chúng tạo thành một LIÊN KẾT HÓA HỌC. Liên kết hóa học này là lực giữ cho các nguyên tử liên kết với nhau. Chỉ các electron ở vòng ngoài - LỐP HÓA TRỊ - định hình các liên kết. ELECTRON HÓA TRỊ là những electron đầu tiên tương tác và quyết định một nguyên tử sẽ phản ứng như thế nào trong một phản ứng hóa học.

Oxy - 8 electron

6 electron hóa trị

Mỗi lớp (n) được đánh số thứ tự

Cách viết công thức hóa học

Mỗi hợp chất chứa một tỷ lệ cụ thể của các nguyên tố.

Một CÔNG THỨC HÓA HỌC gần giống như công thức hợp chất - nó mô tả các thành phần và số lượng của chúng.

Trong một công thức hóa học, mỗi nguyên tố được viết bằng ký hiệu hóa học của nó, đó là một ký hiệu có một hoặc hai chữ cái, với một chỉ mục bên dưới biểu hiện số lượng nguyên tử.

VÍ DỤ:

Đường chứa 12 nguyên tử carbon, 22 nguyên tử hydro và 11 nguyên tử oxy. Do đó công thức hóa học là $C_{12}H_{22}O_{11}$

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Có bao nhiêu nguyên tố được tìm thấy?
- 2 Các nguyên tố được phân biệt bởi _____ của chúng bởi vì mỗi nguyên tố có số lượng proton khác nhau.
- 3 Tên của một cột các nguyên tố trong bảng tuần hoàn là gì?
Những nguyên tố này có điểm gì chung?
- 4 Hai hoặc nhiều nguyên tử kết hợp để tạo thành gì?
- 5 Số khồi của một nguyên tử là gì?
- 6 Nếu số hiệu nguyên tử của một nguyên tố là 6 và số khồi là 15 hỏi có bao nhiêu neutron?
- 7 Đơn vị là gì?
- 8 Liên kết hóa học là gì?
- 9 Tại sao các nguyên tử liên kết với nhau?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 118

2 Số hiệu nguyên tử

3 Một nhóm nguyên tố là một cột của các nguyên tố trong bảng tuần hoàn. Các nhóm nguyên tố có tính chất vật lý và hóa học tương tự nhau.

4 Một hợp chất phân tử

5 Số khồi là khồi lượng trung bình của một nguyên tử điện hình của nguyên tố đó. Nó cũng là tổng số lượng proton và neutron.

6 9 neutron có mặt ($15 - 6 = 9$).

7 Các nguyên tử của cùng một nguyên tố có số lượng neutron khác nhau là đồng vị.

8 Liên kết hóa học là khi các nguyên tử chia sẻ electron.

9 Các nguyên tử tạo liên kết hóa học để các electron của chúng có thể kết hợp và trở nên ổn định hơn.

Chương 8

DUNG DỊCH VÀ CHẤT LỎNG

CHẤT, HỖN HỢP và DUNG DỊCH

CHẤT là một cái gì đó không thể bị phá vỡ ra thành những phần đơn giản hơn và các thay đổi vật lý sẽ không thay đổi thành phần của chất. Một chất được tạo thành từ một hợp chất đơn.

Ví dụ, nước (H_2O) là một chất. Bất kể bạn cho nước trải qua các quá trình vật lý (như đóng băng hoặc sôi), nước sẽ vẫn là H_2O .

HỖN HỢP do các chất khác nhau trộn lẫn lại tạo thành mà không có liên kết hóa học. Salad là một hỗn hợp của những thứ khác nhau, như dầu ăn, gia vị và nước chanh.

SALAD CŨNG LÀ
MỘT VÍ DỤ CỦA
HỖN HỢP

Có hai loại hỗn hợp:

1. HỖN HỢP KHÔNG ĐỒNG NHẤT: một hỗn hợp trong đó các chất không bị trộn đều. Salad là một ví dụ về hỗn hợp không đồng nhất; mỗi miếng salad là khác nhau cho dù bạn có trộn salad bao nhiêu lần đi nữa.

↑
KHÔNG ĐỒNG NHẤT (HETERO) tiếng Hy Lạp có nghĩa là khác nhau, vì vậy hỗn hợp có các thành phần khác nhau, nó không giống nhau.

2. HỖN HỢP ĐỒNG NHẤT: hỗn hợp trong đó các phân tử của mỗi chất được trộn đều như nhau, bạn không thể thấy từng thành phần của hỗn hợp. Đường được hòa tan trong nước tạo ra một hỗn hợp đồng nhất - bạn không thể thấy đường và nước, chỉ có một dung dịch chứa các phân tử của cả hai.

↑
ĐỒNG NHẤT (HOMO) tiếng Hy Lạp có nghĩa là giống nhau, vì vậy hỗn hợp giống nhau từ đầu tới cuối.

Đôi khi hỗn hợp đồng nhất được gọi là **DUNG DỊCH**. Một dung dịch được tạo ra từ một **CHẤT HÒA TAN** và một **DUNG MÔI**. Chất hòa tan là chất bị hòa tan, dung môi là chất hòa tan chất tan. Ví dụ, một số đồ uống thể thao là một dung dịch được làm bằng nước (dung môi) và hỗn hợp nước uống thể thao dạng bột (chất hòa tan).

DUNG DỊCH

một hỗn hợp đồng nhất

CHẤT TAN

chất mà bị hòa tan vào chất khác

DUNG MÔI

các chất mà chất tan bị hòa tan vào

ĐỘ HÒA TAN

ĐỘ HÒA TAN là khả năng của một chất hòa tan trong một chất khác. Rất nhiều yếu tố ảnh hưởng đến độ hòa tan:

Nhiệt

độ là một yếu tố:

Thông thường các chất tan rắn hòa tan được nhiều hơn trong nước tại nhiệt độ cao hơn, điều đó lý giải vì sao ta dễ hòa tan đường trong nước nóng.

KHÍ CÙNG
CÓ THỂ BỊ HÒA
TAN Ở TRONG
CHẤT LỎNG.

Chất

tan khí, như

cacbonat, trái ngược với chất tan rắn. Khí dễ hòa tan hơn trong chất lỏng ở nhiệt độ lạnh hơn. Đồ uống có ga vẫn còn ga lâu hơn khi nó được giữ lạnh bởi vì khí hòa tan hơn trong chất lỏng lạnh.

ÁP

SUẤT VÀ

NỒNG ĐỘ

của các dung môi khác trong một dung dịch cũng ảnh hưởng đến độ hòa tan.

SỰ CÔ ĐẶC

SỰ CÔ ĐẶC của một dung dịch là lượng chất tan chứa trong một dung dịch. MỘT DUNG DỊCH CÔ ĐẶC có rất nhiều chất tan, trong khi DUNG DỊCH LOÃNG có rất ít chất tan. Đối với loại đồ uống thể thao vị chanh, ở dạng dung dịch cô đặc nó sẽ chua gắt và ngọt, một dung dịch pha loãng sẽ cho vị nhạt hơn.

Nhãn của hộp nước hoa quả thường sẽ cho bạn biết nồng độ nước ép hoa quả. Nếu nồng độ của hoa quả trong một hộp nước hoa quả là 7%, có nghĩa là 7% thức uống được làm từ nước hoa quả, và phần còn lại là những thứ như nước và đường.

ÁP SUẤT

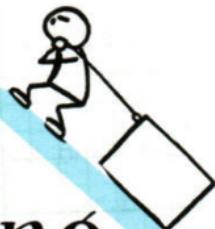
CHẤT LỎNG là bất cứ thứ gì có thể chảy, như chất lỏng và hơi. Một chất lỏng, giống như tất cả các dạng vật chất khác, gây ra ÁP SUẤT, hoặc lực đẩy lên môi trường xung quanh nó. Ví dụ, không khí lấp đầy bóng bay tạo áp suất lên mặt trong của quả bóng để giữ cho nó phồng lên. Trong khi đó, bầu khí quyển ở bên ngoài gây áp suất lên bề mặt ngoài của bóng bay. Nếu áp suất từ bên trong lớn hơn, bóng bay vẫn phồng lên. Áp suất là tỷ lệ giữa lực đẩy và diện tích bề mặt chịu lực đẩy. Nhiều lực hơn có nghĩa là nhiều áp suất hơn, diện tích càng lớn thì áp suất càng nhỏ.

$$\left. \left. \begin{aligned} \text{Áp suất} &= \frac{\text{Lực tác động}}{\text{Diện tích}} \end{aligned} \right. \right.$$

Các đơn vị phổ biến nhất dùng cho áp suất là PASCAL (Pa) hoặc ATMOSPHERE (atm). Một atmosphere là áp lực mà bầu khí quyển tác động lên Trái Đất ở mực nước biển. Khi bạn đi lên cao hơn, không khí sẽ loãng hơn vì vậy áp suất nhỏ hơn. Sự thay đổi áp suất giữa khu vực cao và khu vực thấp là nguyên nhân gây ra ù tai khi bạn ngồi trong xe và đi qua một ngọn núi cao. Nó cũng giải thích tại sao nước sôi ở nhiệt độ thấp hơn khi ở trên núi: các phần tử chịu tác động của áp suất thấp, vì vậy chúng có thể thoát ra dễ dàng hơn.

Áp suất tác động lên một vật thể phụ thuộc vào phần tử nước hoặc khí phía trên nó. Hãy nghĩ về một đồng sách lớn. Những cuốn sách ở phía dưới trong đồng sách sẽ chịu áp suất lớn hơn vì có nhiều cuốn sách khác phía trên nó. Nếu lặn sâu dưới nước, bạn cảm thấy áp suất lớn hơn nhiều so với khi bạn ở mặt nước với lý do tương tự.

KIỂM TRA KIẾN THỨC CỦA BẠN


- 1 Định nghĩa chất là gì?
- 2 Một bát súp thịt bò - lúa mạch là một hỗn hợp ____
- 3 Nếu áp lực vẫn giữ nguyên, áp suất tăng khi diện tích ____
- 4 Bạn càng lặn sâu xuống biển, áp lực càng ____
- 5 Nồng độ của dung dịch là gì?
- 6 Từ nào mô tả bát cữ thứ gì có thể cháy được, kề cá nước, không khí và dầu?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Chất là thứ mà không thể phá vỡ để được thành những phần đơn giản hơn, các thay đổi vật lý không làm thay đổi thành phần của chất.
- 2 Không đồng nhất
- 3 Giảm
- 4 Cao hơn
- 5 Nồng độ là lượng chất tan có trong dung dịch.
- 6 Chất lỏng

PHẦN

3

Chuyển động,
Lực và Công

Chương 9

CHUYỂN ĐỘNG

CHUYỂN ĐỘNG

CHUYỂN ĐỘNG là sự thay đổi vị trí. Bạn có thể nhìn thấy chuyển động ở khắp mọi nơi. Lật một trang sách này là chuyển động và Trái Đất quay quanh Mặt Trời cũng là chuyển động. Bất cứ lúc nào vị trí của bạn thay đổi, BẠN đang chuyển động.

CHUYỂN ĐỘNG TƯƠNG ĐỐI

Nếu bạn đang đứng bên đường và một chiếc xe tải chạy với vận tốc 30 dặm một giờ, đối với bạn, xe tải đường như di chuyển 30 dặm một giờ trên đường. Tuy nhiên, nếu bạn đang ở trong một chiếc xe cũng chạy với vận tốc 30 dặm một giờ bên cạnh chiếc xe tải, cũng là chiếc xe tải đó nhưng đường như nó không di chuyển.

CHUYỂN ĐỘNG LÀ TƯƠNG ĐỐI: Nó luôn được xác định trong mối liên hệ với một ĐIỂM MỐC.

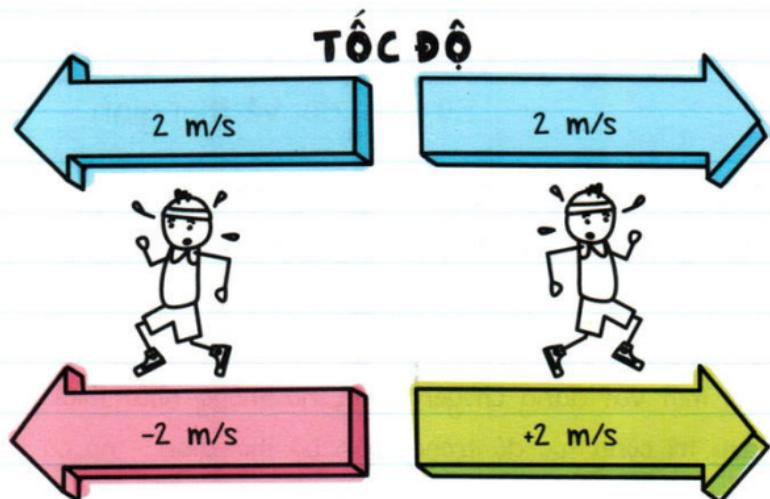
Ví dụ, Trái Đất quay hơn 1.000 dặm một giờ tại xích đạo, nhưng chúng ta có thể thấy hoặc cảm thấy nó quay tròn. Tại sao? Bởi vì mọi thứ chúng ta thấy xung quanh chúng ta đang quay cùng với Trái Đất. Vì vậy từ điểm tham chiếu của chúng ta, không có gì chuyển động.

TỐC ĐỘ và VẬN TỐC

TỐC ĐỘ là khoảng cách một vật đi được trong một khoảng thời gian nhất định.

$$\text{Tốc độ} = \frac{\text{Sự thay đổi về khoảng cách}}{\text{Sự thay đổi về thời gian}}$$

Trong các đơn vị SI, khoảng cách được đo bằng MÉT (m), thời gian được đo bằng GIÂY (s) và do đó tốc độ được đo bằng MÉT/GIÂY (m/s).


Khi một vật đang chuyển động, nó không nhất thiết phải duy trì cùng tốc độ trong toàn bộ thời gian - nó có thể thay đổi tốc độ và di chuyển nhanh hơn hoặc chậm hơn giữa điểm xuất phát và điểm dừng. Trong trường hợp đó, chúng ta sử dụng TỐC ĐỘ TRUNG BÌNH, hoặc lấy tổng quãng đường đi được chia cho tổng số thời gian đã đi.

TỐC ĐỘ TỰ THỜI là tốc độ tại một thời điểm nhất định.

Ví dụ, một vận động viên Olympic chạy nước rút cuộc đua 100 m trong 10 s có vẻ giống như cô ấy sẽ đi 10 m/s, nhưng đó chỉ là tốc độ TRUNG BÌNH của cô ấy. Gần vạch đích, cô ấy chạy nhanh hơn nhiều.

VẬN TỐC

VẬN TỐC giống như tốc độ ngoại trừ việc nó bao gồm phương hướng. Nếu bạn đang chạy bộ với tốc độ 2 m/s và đột nhiên bạn quay lại và chạy bộ 2 m/s theo hướng ngược lại, tốc độ của bạn trước và sau sẽ vẫn giống nhau, nhưng vận tốc của bạn sẽ khác. Bạn sẽ là chạy bộ 2 m/s lúc đầu và - 2 m/s sau khi quay lại. Vận tốc sẽ có độ lớn bằng nhau nhưng ngược nhau về hướng.

VẬN TỐC

VẬN TỐC là tốc độ theo một hướng nhất định. Vì vậy một sự thay đổi về vận tốc có nghĩa là một sự thay đổi về HƯỚNG hoặc thay đổi về TỐC ĐỘ.

KHI XE Ô TÔ CUA GÓC, NÓ ĐANG THAY ĐỔI VẬN TỐC, NGAY CẢ KHI NÓ VẪN GIỮ TỐC ĐỘ CŨ.

GIA TỐC

Tỷ lệ vận tốc thay đổi theo thời gian được gọi là **GIA TỐC**.
Bất cứ khi nào một vật thể thay đổi vận tốc, đó chính là
gia tốc. Một số vật thể có thể tạo gia tốc bằng cách:

TĂNG TỐC,

GIẢM TỐC, HOẶC

THAY ĐỔI HƯỚNG.

Công thức tính gia tốc như sau:

$$\text{Gia tốc} = \frac{\text{Vận tốc cuối cùng} - \text{Vận tốc ban đầu}}{\text{Thời gian}}$$

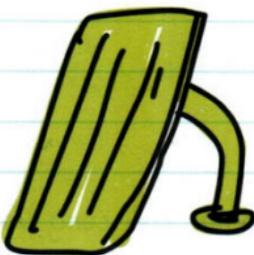
Vận tốc cuối cùng và ban đầu (bắt đầu) thường được đo bằng **MÉT/GIÂY** (m/s) và thời gian được đo bằng **GIÂY** (s). Do đó gia tốc được đo bằng đơn vị **MÉT/GIÂY BÌNH PHƯƠNG** (m/s²).

Bởi vì vận tốc có hướng nên gia tốc cũng vậy. Do đó, khi xe của bạn đi qua góc (ngay cả khi nó giữ nguyên tốc độ), bạn cảm thấy gia tốc như một lực mà dường như đẩy bạn về phía ra khỏi góc đó.

Gia tốc dương khi nó cùng hướng với chuyển động của vật thể và gia tốc dương có nghĩa là vật thể đang tăng tốc. Gia tốc âm khi nó hướng ngược lại chuyển động của vật thể và có nghĩa là vật thể đang giảm tốc. Gia tốc âm cũng có thể là gọi là GIẢM TỐC.

PHANH

(bộ giảm tốc)


-

BÀN ĐẠP GA

(bộ gia tốc)

+

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Công thức tính tốc độ?
- 2 Một con cá heo bơi 56 mét trong 8 giây và một con hải mã bơi 30 mét trong 6 giây. Con nào bơi nhanh hơn?
- 3 Giải thích tại sao chuyển động là tương đối. Cho một ví dụ.
- 4 Cần những yếu tố nào để biết vận tốc của một vật?
- 5 Nếu bạn đi bộ xung quanh một cột vuông với cùng một tốc độ đi, vận tốc của bạn thay đổi bao nhiêu lần và tốc độ của bạn thay đổi bao nhiêu lần?
- 6 Nếu một tài xế xe tải đang lái xe ở tốc độ 30 km/h và cô ấy quay đầu xe, sau đó bắt đầu lái xe với tốc độ 30 km/h ở hướng ngược lại, vậy tốc độ hay vận tốc của người lái thay đổi sau khi đổi hướng? Tại sao?
- 7 Nếu một con ong bay vòng tròn với tốc độ không đổi thì con ong đó đang tăng tốc đúng không?
- 8 Ba cách để một vật thể nào đó có thể tăng tốc là gì?

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 Tốc độ = $\frac{\text{Thay đổi về khoảng cách}}{\text{Thay đổi về thời gian}}$

2 Tốc độ của cá heo = $\frac{56 \text{ m}}{8 \text{ s}} = 7 \text{ m/s}$

Tốc độ của hải mã = $\frac{30 \text{ m}}{6 \text{ s}} = 5 \text{ m/s}$

Vậy tốc độ bơi của cá heo nhanh hơn.

3 Chuyển động là tương đối vì chuyển động luôn được mô tả trong mỗi liên quan đến một điểm tham chiếu. Ví dụ, chúng ta không thấy Trái Đất quay bơi vì mọi thứ xung quanh chúng ta đang di chuyển cùng với nó (bao gồm cả chúng ta).

4 Tốc độ và hướng chuyển động.

5 Vận tốc của bạn thay đổi bốn lần (vì bạn đang đi bộ theo mỗi hướng khác nhau ở mỗi mặt của khối vuông). Bạn đi cùng tốc độ trong toàn bộ thời gian, do đó tốc độ của bạn không thay đổi.

6 Vận tốc của người lái thay đổi vì người lái thay đổi hướng. Tốc độ của người lái không thay đổi.

7 Đúng, con ong đang tăng tốc. Bởi vì gia tốc là sự thay đổi vận tốc trên một đơn vị thời gian và con ong luôn thay đổi hướng, con ong cũng liên tục thay đổi vận tốc và do đó có tăng tốc.

8 Tăng tốc, giảm tốc và thay đổi hướng.

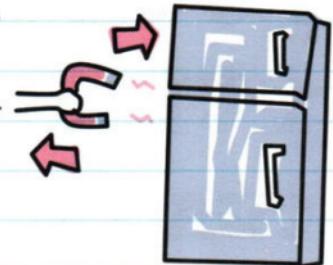
Câu số 3 có nhiều đáp án.

Chương 10

LỰC VÀ CÁC ĐỊNH LUẬT VỀ CHUYỂN ĐỘNG cỦA NEWTON

LỰC

Điều gì làm cho vật chuyển động? Điều gì khiến cho một chiếc xe tăng tốc? Điều gì khiến cho các bánh xe trên một chiếc xe đạp quay? Câu trả lời là **LỰC**. Lực là lực đẩy hoặc lực kéo, và lực được dùng để thay đổi chuyển động của một vật. Lực bạn tác động lên bàn đạp của xe đạp làm cho bánh xe quay. Trong một chiếc xe ô tô, lực đằng sau sự chuyển động chính là một động cơ.


Lực luôn có **CƯỜNG ĐỘ** (độ lớn) và **hướng**. Các lực có thể khiến một vật chuyển động hoặc thay đổi tốc độ và hướng chuyển động. Sự chuyển động không phải là việc di chuyển từ một vị trí này sang một vị trí khác, nó cũng có thể là sự thay đổi hình dạng của các vật thể. Hãy nghĩ về việc ép một lon sô-đa rỗng cho đến khi nó bẹp nát - bạn không ném lon vào thùng rác, nhưng bạn đã gây ra chuyển động bằng cách thay đổi hình dạng của chiếc lon đó.

Tổng hợp lực

Đôi khi sẽ có nhiều hơn một lực tác động lên một vật.

Ví dụ, khi bạn rút nam châm ra khỏi tủ lạnh, sẽ có hai lực tác động: lực từ giữ nam châm vào tủ lạnh và lực bạn tác động lên nam châm. Sự kết hợp của tất cả các lực tác động lên một vật sẽ được gọi là **TỔNG HỢP LỰC**.

Tổng hợp lực lên một vật sẽ có thể được tính bằng cách cộng tất cả các lực tác động lên một vật.

LỰC + LỰC = TỔNG NGOẠI LỰC

Lực, giống như vận tốc và gia tốc, có hướng. Vì vậy để tính toán tổng hợp lực, bạn cần xác định hướng của lực vào vật thể. Nếu các lực cùng hướng, bạn cộng chúng lại với nhau; nếu các lực ở hai hướng ngược nhau, bạn trừ chúng cho nhau.

ISAAC NEWTON

ISAAC NEWTON đã phát hiện ra lực, vì vậy đơn vị đo lực được đặt theo tên ông. Đơn vị đo lường quốc tế SI cho lực là một newton (N). 1N là lực cần thiết cho một vật có khối lượng 1 kg gia tốc 1 m/s².

$$1\text{N} = 1\text{kg} \times 1\frac{\text{m}}{\text{s}^2}$$

Trong thực tế, để giữ được một quả táo chống lại lực hấp dẫn thì cần một ngoại lực là 1N

LỰC và CHUYỂN ĐỘNG

Isaac Newton đã tìm ra tất cả các lực này và chuyển động của vật chất, ông đã đưa ra **CÁC ĐỊNH LUẬT VỀ CHUYỂN ĐỘNG** để mô tả chuyển động của tất cả các vật thể trong Vũ Trụ.

ĐỊNH LUẬT THỨ NHẤT CỦA NEWTON VỀ CHUYỂN ĐỘNG:

"Một vật thể đang chuyển động sẽ tiếp tục chuyển động và một vật thể đứng yên sẽ tiếp tục đứng yên, trừ khi có một tổng hợp lực tác động lên vật."

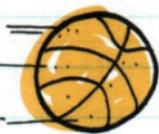
Ví dụ, một quả bóng đá đang nằm trên sân cỏ. Quả bóng sẽ vẫn nằm im đó trừ khi có lực bên ngoài tác động lên nó, giống như việc ai đó đá vào quả bóng. Một khi quả bóng đang chuyển động, nó sẽ vẫn chuyển động trừ khi một lực bên ngoài tác động lên nó, như ma sát giữa quả bóng và cỏ, sức cản không khí, trọng lực, hoặc một cầu thủ khác dùng chân chặn quả bóng lại. Mặt khác, nếu bạn đá một quả bóng ra bên ngoài khi quyền, nó sẽ tiếp tục bay (cho đến khi trọng lực từ một ngôi sao hoặc hành tinh uốn cong đường đi của nó).

CON YÊU ƠI,
DÂY THÔI!!

NHƯNG... QUÁN TÍNH...

Quán tính và động lực

Vật chất không thích thay đổi trạng thái hiện tại của nó. Nếu nó đang chuyển động, nó thích duy trì chuyển động đó, nếu nó đang ở trạng thái nghỉ, nó thích duy trì trạng thái nghỉ. **QUÁN TÍNH** là tinh chất bao toàn trạng thái chuyển động của một vật. Vật chất sẽ vẫn ở trạng thái nghỉ hoặc chuyển động liên tục trừ khi bị tác động bởi một lực bên ngoài. Đó là lý do tại sao định luật thứ nhất của Newton được gọi là **ĐỊNH LUẬT QUÁN TÍNH**.


Các vật có khối lượng lớn hơn sẽ có quán tính lớn hơn. Hãy liên tưởng tới việc bắt bóng

tennis so với việc bắt bóng rổ.

Nếu chúng có cùng vận tốc,

bắt một quả bóng tennis sẽ dễ dàng hơn vì quả bóng tennis có

khối lượng nhỏ hơn bóng rổ.

ĐỘNG LƯỢNG là thước đo mức độ khó thay đổi quán tính của một vật. Bạn có thể tính động lượng lực tổng hợp này:

$$\text{Động lượng} = \text{Khối lượng} \times \text{vận tốc}$$

Bảo toàn động lượng

Nếu năng lượng không bị mất trong quá trình va chạm (có thể thông qua ma sát hoặc nhiệt), tổng động lượng của các vật thể trước và sau khi va chạm là bằng nhau. Ví dụ khi bạn chơi bia 16 viên, động lượng của quả bóng mà gây bia đánh trúng sẽ truyền đến quả bóng mà nó chạm phải và tổng động lượng trong hệ thống đó là không đổi (trừ một chút ít năng lượng đã chuyển thành nhiệt khi chúng va chạm). **ĐỊNH LUẬT BẢO TOÀN ĐỘNG LƯỢNG** có thể được sử dụng để dự đoán vận tốc của vật có bắt cứ khối lượng và vận tốc nào trước và sau khi chúng va chạm.

ĐỊNH LUẬT THỨ HAI CỦA NEWTON VỀ CHUYỂN ĐỘNG

ĐỊNH LUẬT THỨ HAI CỦA NEWTON VỀ CHUYỂN ĐỘNG:

"Gia tốc của một vật bằng với tổng hợp lực trên một vật chia cho khối lượng của vật."

Định luật thứ hai của Newton về cơ bản cho rằng càng nhiều lực tác động lên vật, nó sẽ tăng tốc càng nhanh. Đồng thời một vật có khối lượng càng lớn thì càng cần nhiều lực tác động để nó tăng tốc. Mối quan hệ giữa lực và gia tốc thường được thể hiện như thế này:

$$\left. \begin{array}{l} \text{Gia tốc} = \frac{\text{Lực tổng hợp}}{\text{Khối lượng}} \end{array} \right\}$$

Chúng ta cũng có thể sử dụng các kỹ năng đại số của mình để sắp xếp lại công thức này từ đó tìm ra lực tổng hợp:

$$\left. \begin{array}{l} \text{Lực tổng hợp} = \text{Khối lượng} \times \text{Gia tốc} \end{array} \right\}$$

Hãy nghĩ đến về việc đẩy một xe mua hàng và đẩy một chiếc xe hơi. Nếu bạn tác động cùng một lực cho cả hai chiếc xe, xe mua hàng sẽ phóng vọt lên, nhưng chiếc xe ô tô sẽ không di chuyển. Vì vậy vật có khối lượng lớn hơn sẽ tăng tốc ít hơn với cùng một lực tác động.

Một lực có thể khiến một số vật tăng tốc hoặc giảm tốc.
Đây là cách bạn có thể mô tả điều gì sẽ xảy ra:

Khi lực tổng hợp (và gia tốc) có **CÙNG HƯỚNG** với vận tốc, vật thể sẽ **TĂNG TỐC**.

Khi lực tổng hợp **NGƯỢC HƯỚNG** với vận tốc, vật sẽ **GIẢM TỐC**.

Khi bạn lao dốc trên một chiếc xe đạp với gió thổi sau lưng bạn, lực tổng hợp có cùng hướng, vì vậy bạn sẽ tăng tốc về phía trước.

Nhớ rằng:

Gia tốc = $\frac{\text{vận tốc cuối cùng} - \text{vận tốc bắt đầu}}{\text{thời gian}}$

Gia tốc liên quan đến lực vì vận tốc là sự chuyển động, và lực gây ra chuyển động.

Khi bạn đang lao dốc trên một chiếc xe đạp ngược chiều gió, tổng hợp lực đang đẩy theo hướng ngược lại, vì thế bạn bị giảm tốc độ.

MỘT LỰC KHÔNG CÂN BẰNG

Có ngoại lực theo một hướng

LỰC TỔNG HỢP

CÁC LỰC CÂN BẰNG

Triệt tiêu lẫn nhau do đó không có lực tác động.

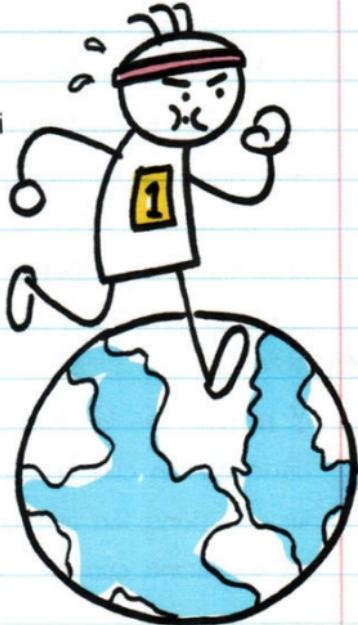
LỰC TỔNG HỢP - 0

ĐỊNH LUẬT THỨ BA CỦA NEWTON VỀ CHUYỂN ĐỘNG

ĐỊNH LUẬT THỨ BA CỦA NEWTON VỀ CHUYỂN ĐỘNG:

"Các lực tương tác theo cặp: đối với mỗi lực tác động, sẽ có một phản lực cùng độ lớn."

Hãy tưởng tượng bạn đang cầm một quả bóng bowling gần ngực và ném nó về phía trước. Bạn có thể đẩy nó lên phía trước một vài feet, nhưng nó cũng đẩy bạn lại phía sau. Định luật thứ ba của Newton nói đến cặp lực có cùng độ lớn nhưng ngược chiều nhau.


Ý nghĩa: Độ lớn của lực tác động lên quả bóng bowling bằng độ lớn của lực tác động lên cơ thể bạn; hướng của lực tác động lên quả bóng bowling (về phía trước) ngược lại với hướng của lực tác động lên cơ thể của bạn (về phía sau).

CẤP LỰC còn được gọi là CẤP LỰC TRỰC ĐỐI, chúng có cùng độ lớn nhưng ngược chiều nhau. Bạn tác dụng một lực khi bạn đáp xuống tấm bạt lò xo căng trên khung và tấm bạt lò xo tác động một lực cùng độ lớn nhưng ngược chiều lên bạn, khiến bạn bật lên cao.

Định luật thứ ba của Newton cũng áp dụng cho việc chạy. Khi đôi chân bạn giẫm xuống mặt đất, bạn tác động lực lên Trái Đất và Trái Đất tác động lại một lực tương đương nhưng ngược chiều lên bạn, đẩy bạn về phía trước. Vì vậy nếu bạn tác động một lực lên Trái Đất, điều gì sẽ xảy ra khi Trái Đất không di chuyển? Hãy nhớ lại định luật thứ hai của Newton:

"Gia tốc của một vật bằng với lực tổng hợp lên một vật chia cho khối lượng của vật."

Bởi vì Trái Đất có khối lượng lớn hơn chúng ta rất nhiều, cùng một lực tác động, lực đó có thể khiến chúng ta tăng tốc nhưng không thực sự có ảnh hưởng nhiều đến Trái Đất (nhưng vẫn có).

KIỂM TRA TRIẾT THỨC CỦA BẠN

- 1 Mô tả sự khác biệt giữa lực cân bằng và lực không cân bằng.
- 2 Bạn và anh trai chơi kéo co. Bạn kéo với một lực 15 N và anh trai của bạn kéo với lực 10 N. Tổng hợp lực bằng bao nhiêu?
- 3 Định luật thứ nhất của Newton là gì?
- 4 Nếu một chiếc xe ô tô nặng 2.000 kg tăng tốc ở tốc độ 3 m/s, động cơ tác động lên xe một lực là bao nhiêu?
- 5 Định luật thứ hai của Newton là gì?
- 6 Đơn vị tính của một lực là gì và 1 đơn vị tương đương với gì?
- 7 Định luật thứ ba của Newton là gì?
- 8 Giải thích tại sao khi bạn nhảy lên không trung, bạn di chuyển nhưng mặt đất lại không di chuyển nhiều?

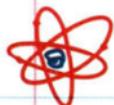
KIỂM TRA ĐÁP ÁN CỦA BẠN

1 Lực không cân bằng có một lực tổng hợp theo cùng một hướng. Các lực cân bằng triệt tiêu lẫn nhau nên không có lực tổng hợp tác động.

2 $15\text{ N} - 10\text{ N} = 5\text{ N}$

3 Các vật chuyển động sẽ vẫn chuyển động trừ khi chịu tác động bởi một lực tổng hợp và các vật ở trạng thái nghỉ sẽ vẫn ở trạng thái nghỉ trừ khi chịu tác động bởi một lực tổng hợp.

4 $F = m \times a = (2.000\text{ kg}) \times (3\frac{m}{s^2}) = 6.000\text{ N}$


5 Gia tốc của một vật bằng lực tổng hợp tác động lên vật chia cho khối lượng của vật.

$$\text{Gia tốc} = \frac{\text{Lực tổng hợp}}{\text{Khối lượng}}$$

6 Một newton. $1\text{ N} = 1\text{ kg} \times \frac{m}{s^2}$

7 Lực tác động theo cặp: Đối với mỗi lực tác động bao giờ cũng có một phản lực cùng độ lớn nhưng ngược hướng.

8 Trong khi lực bạn tác động lên Trái Đất cân bằng với lực mà Trái Đất tác động ngược lại bạn, bạn có các gia tốc khác nhau bởi vì các mức khối lượng của bạn là khác nhau. Lực mà Trái Đất tác động lên bạn là đủ lớn để đưa bạn bay lên không trung, nhưng lực bạn tác động lên Trái Đất không đủ lớn để khiến Trái Đất di chuyển khỏi bạn một khoảng đáng kể.

Chương 11

LỰC HẤP DẪN, MA SÁT VÀ CÁC LỰC KHÁC TRONG CUỘC SỐNG THƯỜNG NGÀY

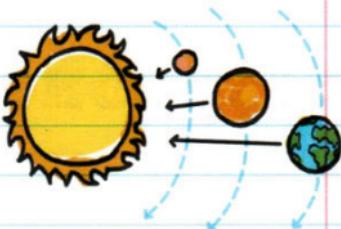
Ở bất cứ nơi nào trong cuộc sống hằng ngày chúng ta đều thấy có sự hoạt động của lực.

LỰC HẤP DẪN

LỰC HẤP DẪN không chỉ là lực

mà chúng ta thấy khi vật rơi xuống đất, lực hấp dẫn tác động lên tất cả các vật. Lực hấp dẫn là lực hút giữa tất cả các vật có khối lượng. Độ lớn của lực hấp dẫn phụ thuộc vào cả khối lượng và khoảng cách giữa các vật. Vật có khối lượng lớn hơn sẽ có lực hấp dẫn lớn hơn. Đồng thời các vật ở gần hơn sẽ hút bạn với lực hấp dẫn lớn hơn. Nếu lực hấp dẫn tác động lên tất cả các vật thế, tại sao chúng ta không bị hút bởi một tòa nhà khi chúng ta đi ngang qua nó. Lực hấp dẫn giữa các vật thể trên Trái Đất rất nhỏ đến mức chúng ta không cảm nhận được nó - đặc biệt là khi so sánh với lực hấp dẫn của Trái Đất.

LỰC HẤP DẪN

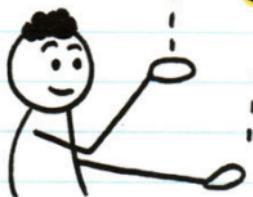

là lực hút giữa các vật

LỰC HẤP DẪN LUÔN
LÀ LỰC KÉO, KHÔNG
PHẢI LÀ LỰC ĐẨY

Lực hấp dẫn
cũng là lực giữ
Trái Đất ở quỹ
đạo quay quanh
Mặt Trời. Mặt Trời
có khối lượng rất

lớn, điều đó khiến Mặt Trời tác động lực
hấp dẫn lên toàn bộ Hệ Mặt Trời của
chúng ta, giữ tất cả các hành tinh, bao
gồm Trái Đất, trên một quỹ đạo.

Tại sao các hành tinh trên quỹ đạo quanh Mặt Trời
không bị hút về phía Mặt Trời? Bởi vì dù có lực hấp
dẫn của Mặt Trời thì các hành tinh cũng đang di
chuyển sang ngang. Nếu bạn xoay cái yo-yo xung
quanh người bạn, bạn đang kéo nó về phía chính mình
bằng cách giữ sợi dây của nó, giống như lực hấp dẫn
của Mặt Trời, nhưng chuyển động sang ngang giữ cho
chiếc yo-yo xoay quanh trong cùng một vòng tròn.


TRỌNG LƯỢNG

TRỌNG LƯỢNG thực chất là thước đo lực hấp dẫn. Trọng
lượng phụ thuộc vào cả lực hấp dẫn và khối lượng của vật.
Nếu bạn cân hai vật trên một cái cân, vật có khối lượng
lớn hơn sẽ nặng hơn.

Khối lượng không phụ thuộc vào vị trí, nhưng trọng lượng thì
có, vì lực hấp dẫn có thể thay đổi tùy thuộc vào vị trí của
bạn. Ví dụ, lực hấp dẫn trên Mặt Trăng sẽ nhỏ hơn so với
trên Trái Đất. (Lực hấp dẫn phụ thuộc vào khối lượng, và bởi
vì Mặt Trăng nhỏ hơn Trái Đất rất nhiều nên nó có lực hấp
dẫn nhỏ hơn). Do đó, cùng một vật, khi ở trên Mặt Trăng sẽ
nhẹ hơn so với trên Trái Đất (khoảng một phần sáu).

Có một gia tốc không đổi hướng về mặt đất, bởi vì lực hấp dẫn
kéo bạn rơi xuống đất. Lực hấp dẫn của Trái Đất xấp xỉ $9.8 \frac{m}{s^2}$.

Vì vậy, khi bạn ném một cái gì đó lên không trung, nó sẽ di chuyển chậm hơn cho đến khi nó dừng lại giữa không trung, rồi lại rơi về phía mặt đất, gia tốc giảm cho đến khi nó rơi xuống đất. ↑

Đó là **GIA TỐC ÂM**.

MA SÁT

Định luật thứ nhất của Newton cho rằng một vật đang chuyển động sẽ giữ nguyên chuyển động trừ khi chịu tác động bởi một lực tổng hợp. Hãy thử trượt cuốn sổ tay này trên bàn. Nó chậm lại và cuối cùng dừng hẳn. Vậy tổng hợp lực nào đã tác động lên cuốn sách? **MA SÁT!** Nó là lực cản chuyển động giữa hai bề mặt tiếp xúc và luôn ngược hướng với chuyển động. Khi bạn trượt ván, bánh xe chạy chậm lại do ma sát với via hè và vòng bi trong bánh xe.

Nói chung, các bề mặt thô ráp hơn có ma sát cao hơn. Trượt trên giấy nhám sẽ khó hơn giấy thường vì bề mặt của nó ráp hơn và do đó ma sát nhiều hơn. Mặt khác, bạn có thể giảm thiểu lực ma sát bằng cách bôi trơn các bề mặt. Thậm chí cơ thể chúng ta có nhiều cách để giảm bớt ma sát. Chúng ta có dịch khớp đầu gối để giảm ma sát khớp.

Ngoài ra còn có ma sát với không khí và nước. Thuật ngữ kỹ thuật hơn cho lực ma sát với không khí là **LỰC CÂN CỦA KHÔNG KHÍ**. Khi bạn thả một chiếc lông vũ, nó bay từ bên này sang bên kia vì không khí cản lại chuyển động theo

hướng đi xuống. Bởi vì ma sát là lực cản lại chuyển động giữa các bề mặt tiếp xúc, các vật có diện tích bề mặt tiếp xúc nhiều hơn sẽ có lực cản của không khí lớn hơn.

MỘT SỐ LOẠI MA SÁT:

MA SÁT TĨNH: lực ma sát giữa các bề mặt không chuyển động. Ma sát tĩnh là kết quả của hiện tượng các phần tử trên một bề mặt dính chặt lấy một bề mặt khác.

KHÔNG CHUYỂN ĐỘNG

LỰC → ← MA SÁT

MA SÁT TRƯỢT: còn được gọi là **MA SÁT ĐỘNG**, lực ma sát tác động đến các bề mặt trong chuyển động. Khi bạn đang đẩy một cái hộp, lực ma sát chống lại chuyển động chính là ma sát trượt. Bởi vì các bề mặt luôn không dính vào nhau như khi chúng ở ma sát tĩnh nên ma sát trượt yếu hơn ma sát tĩnh.

CHUYỂN ĐỘNG TRƯỢT

LỰC → ← MA SÁT TRƯỢT

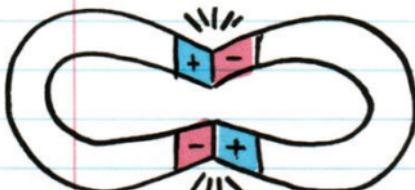
MA SÁT LĂN: ma sát giữa các bề mặt, khi một vật thể, chẳng hạn như một bánh xe hoặc một quả bóng, lăn tự do trên một bề mặt khác. Ma sát giữa các bánh xe của ván trượt và via hè là ma sát lăn. Ma sát lăn yếu hơn ma sát trượt, đó là lý do tại sao sẽ dễ dàng hơn nhiều để di chuyển một cái gì đó trên bánh xe!

CHUYỂN ĐỘNG LĂN

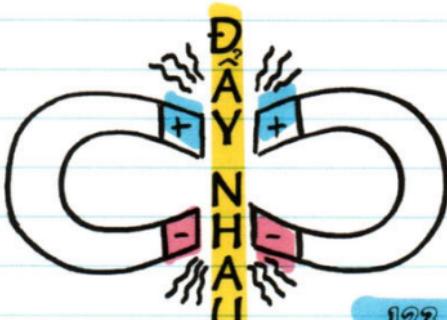
← LỰC

MA SÁT LĂN →

VẬN TỐC CUỐI CÙNG



Khi một vật rơi xuống đất, có hai lực tác dụng lên nó: lực hấp dẫn và lực cản của không khí đang chống lại chuyển động của nó. Khi lực cản của không khí cân bằng với lực hấp dẫn lên vật thì sẽ không có tổng hợp lực tác động lên vật, các lực là cân bằng. Không có tổng hợp lực tác động, vật không gia tốc và nó tiếp tục rơi ở một tốc độ nhất định. **VẬN TỐC CUỐI CÙNG** là tốc độ mà tại đó lực hấp dẫn cân bằng với lực cản của không khí. Tốc độ này phụ thuộc vào nhiều yếu tố, bao gồm cả diện tích bề mặt của vật, khối lượng, hướng và thậm chí độ dày của lớp không khí!


NAM CHÂM và LỰC ĐIỆN TỬ

Khi chơi với nam châm, bạn có thể cảm nhận thấy có một lực hút hoặc lực đẩy. **MỘT THANH NAM CHÂM** là một vật liệu dùng để hút sắt, thép hoặc thanh nam châm khác. Nam châm có một cực dương và một cực âm. **TRÁI DẦU HÚT NHAU** và **CÙNG DẦU ĐẨY NHAU**. Vì vậy khi bạn đặt một cực dương với một cực âm, **LỰC TỬ** sẽ hút chúng lại với nhau. Nếu bạn cố gắng đặt

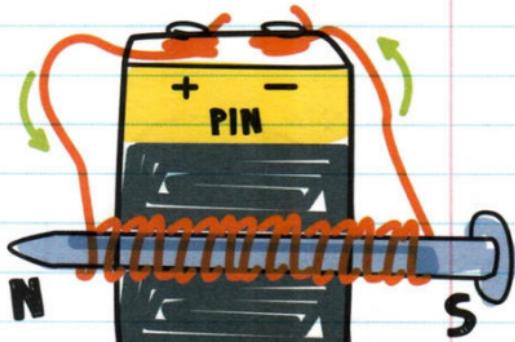
Đôi khi được gọi là cực bắc (N) và cực Nam (S)

HÚT NHAU

123

cực âm với một cực âm khác, hoặc một cực dương với một cực dương khác bạn sẽ thấy có lực đẩy (chúng đẩy nhau ra xa).

LỰC ĐIỆN TỪ

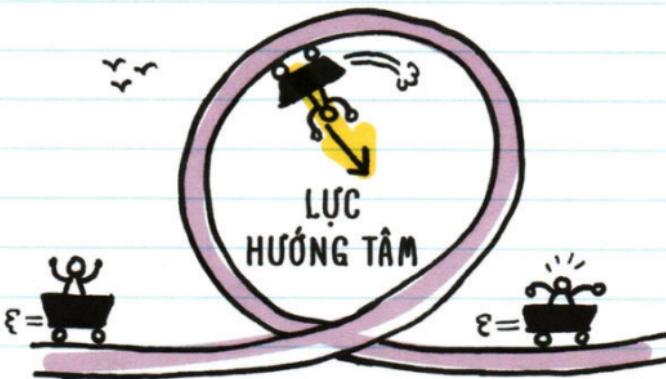

Cùng điện tích đẩy nhau, trái điện tích hút nhau

LỰC ĐIỆN TỪ

giống như lực từ được tạo ra bởi điện tích dương và điện tích âm trong các vật. Trong khi lực từ được tạo ra bởi các điện tích không chuyển động, lực điện từ được tạo ra bởi các điện tích chuyển động. Độ lớn của lực điện và lực từ đều liên quan đến lượng điện tích và khoảng cách giữa các điện tích. Lực điện và lực từ sẽ tăng lên khi điện tích mạnh hơn và khi các điện cực gần nhau hơn.

HIỆN TƯỢNG ĐIỆN TỪ là sự tương tác của lực điện và **TỪ TRƯỜNG** - mọi điện tích chuyển động đều có một vùng từ trường xung quanh nó. Một dây mang điện được bao quanh bởi một từ trường. Bạn có thể tạo ra một **NAM CHÂM ĐIỆN** bằng cách quấn một sợi dây mang điện xung quanh một lõi sắt. Cũng giống như các nam châm khác - một đầu là cực bắc, đầu còn lại là cực nam.

Cực bắc và cực nam của thanh được xác định bởi hướng của dòng điện. Nếu bạn đảo ngược dòng điện thì các cực sẽ đảo ngược lại!

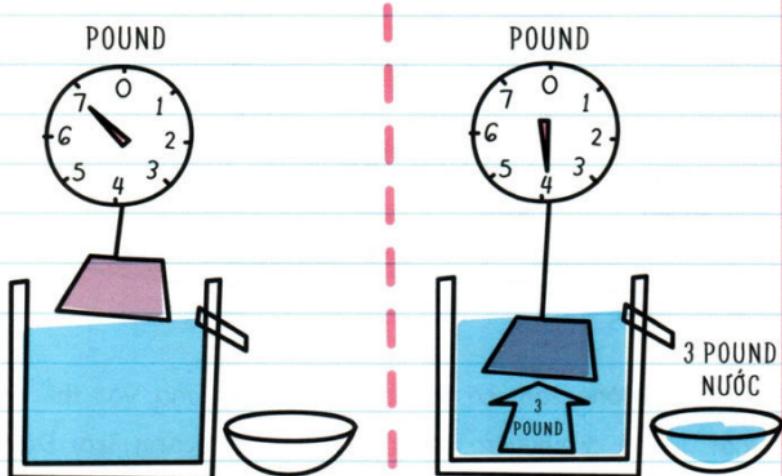

LỰC HƯỚNG TÂM

Vì vận tốc bao gồm cả tốc độ và hướng, một vật thể trong một chuyển động tròn sẽ liên tục thay đổi vận tốc của nó, dẫn tới gia tốc. Vì một vật chuyển động tròn đang gia tốc nên sẽ phải có một ngoại lực tác động vào nó (theo định luật thứ hai của Newton, lực bằng khối lượng nhân với gia tốc). Lực tác động lên một vật chuyển động tròn được gọi là **LỰC HƯỚNG TÂM**.

Một lực hướng tâm luôn có hướng về phía tâm của đường tròn của chuyển động.

LỰC HƯỚNG TÂM:

là lực mà khiến một vật thể chuyển động theo một đường cong hoặc vòng tròn và có hướng về phía tâm của vòng quay


Một lực hướng tâm có thể là bất kỳ số lượng vật thể nào. Mặt Trăng di chuyển theo quỹ đạo tròn quanh Trái Đất và bị tác động bởi lực hướng tâm của trọng lực. Nếu bạn quay một chiếc yo-yo theo vòng tròn, lực căng từ sợi dây là hướng tâm lực giữ yo-yo trong chuyển động tròn.

LỰC ĐẨY ARCHIMEDES (ÁC-SI-MÉT) VÀ KHỐI LƯỢNG RIÊNG

Lực giữ cho một con vịt cao su có thể nổi được gọi là **LỰC ĐẨY ÁC-SI-MÉT**. Lực đẩy Ác-si-mét là một lực hướng lên được tạo ra bởi một chất lỏng tác động lên một vật được ngâm trong chất lỏng.

Lực đẩy Ác-si-mét phụ thuộc vào khối lượng riêng của chất lỏng và lượng chất lỏng mà vật đó chiếm chỗ. Chất lỏng càng đặc và lượng chất lỏng bị chiếm chỗ càng ít thì lực đẩy Ác-si-mét càng lớn. Lực đẩy Ác-si-mét thực chất bằng với trọng lượng của chất lỏng đã bị chiếm chỗ, đây là **ĐỊNH LUẬT ÁC-SI-MÉT**.

GHİ NHỚ: Một vật đặt vào chất lỏng sẽ
nổi nếu ít đặc hơn chất lỏng, nó sẽ
chìm nếu đặc hơn chất lỏng.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Lực nào hút các vật lại nhau?
- 2 Tại sao một con voi có lực hấp dẫn lớn hơn một con hổ?
- 3 Khi bạn đẩy một xe mua hàng, ma sát mà chống lại chuyển động đó được gọi là ma sát ____.
- 4 Lực hướng tâm là gì?
- 5 Lực hướng tâm luôn hướng về phía ____ của đường tròn của chuyển động.
- 6 Tại sao chiếc lông vũ sẽ bay qua bay lại khi nó được thả rơi xuống?
- 7 Lực hấp dẫn giảm khi ____ giữa các vật tăng.
- 8 Trong lực từ và lực điện, cùng dấu ____ và trái dấu hút nhau.
- 9 Khi lực cản của không khí bằng với lực hấp dẫn, một vật rơi đạt vận tốc ____.
- 10 Tên của một lực hướng lên tác động lên một con thuyền trên mặt nước là gì?
- 11 Lực đẩy Ác-si-mét của một con chó là bao nhiêu nếu con chó đã chiếm chỗ của 10 pound nước?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Lực hấp dẫn
- 2 Vì khối lượng lớn hơn, nên lực hấp dẫn cũng vậy.
- 3 Lăn
- 4 Lực hướng tâm là lực khiến cho các vật thể có chuyển động tròn.
- 5 Tâm
- 6 Vị lực cản của Không khí.
- 7 Khoảng cách
- 8 Đẩy nhau
- 9 Cuối cùng
- 10 Lực đẩy Ác-si-mét
- 11 10 pound

Chương 12

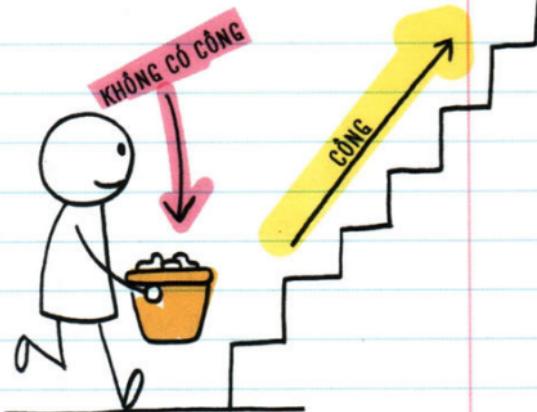
CÔNG VÀ ĐỘNG CƠ

Định nghĩa khoa học của **CÔNG** khác với cách chúng ta sử dụng từ này mỗi ngày. Trong khoa học, công là khi một lực tác động làm cho một vật chuyển động cùng chiều với lực tác dụng. Vì vậy kéo một chiếc xe là công vì lực tác động và kết quả của chuyển động đều theo cùng một hướng. Nâng một cuốn sách lên khỏi mặt đất cũng là công. Bạn tác động một lực hướng lên và cuốn sách di chuyển lên trên. Số lượng công phụ thuộc vào cả số lượng lực tác dụng và khoảng cách mà lực được áp dụng:

$$\text{công} = \text{lực} \times \text{khoảng cách}$$

Công được đo bằng Jun (J), lực được đo bằng Newton (N) và khoảng cách được đo bằng mét (m).

Để tính công, chúng ta chỉ có thể thêm vào lực có cùng hướng với chuyển động. Nghĩa là, nếu bạn bê một chậu đồ giặt ủi, bạn sẽ không thực hiện công khi bạn đi bộ xuống phòng, nhưng ngay khi bạn đi lên cầu thang bạn đang thực hiện công. Tại sao?


Lực bạn tác động lên chậu đồ giặt ủi thăng lực hấp dẫn và chậu đồ giặt sẽ được giữ theo hướng thẳng đứng. Khi bạn đi bộ xuống, chuyển động của chậu

nằm ngang (không thẳng đứng), vì vậy bạn không thể gộp khoảng cách ngang khi tính công. Khi bạn đi lên cầu thang, lực là thẳng đứng (vì bạn phải thẳng được lực hấp dẫn) và chuyển động cũng thẳng đứng, vì vậy bạn đang thực hiện công!

CÔNG

Tác động một lực qua một khoảng cách, lực phải cùng hướng với sự chuyển động.

$$\text{CÔNG - LỰC X KHOẢNG CÁCH}$$
$$J = N \times M$$

Đôi khi lực chỉ có một phần theo hướng của chuyển động. Ví dụ, nếu bạn không thể

hoàn toàn tự bê được túi rác, bạn nhắc lên một chút khi bạn kéo túi (để thăng ma sát trượt), do đó bạn tác động lực theo hai hướng: dọc và ngang. Tuy nhiên, vì túi chỉ di chuyển ngang trên sàn nên chỉ có một số lượng lực tác động theo phương nằm ngang được gọi là công.

CÔNG SUẤT

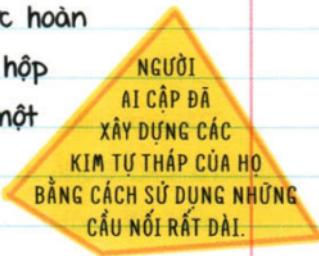
CÔNG SUẤT là tốc độ hoàn thành công - nói cách khác, mức công được hoàn thành nhanh hay chậm. Động cơ mạnh hơn thực hiện công nhanh hơn.

$$\text{Công suất} = \frac{\text{Công}}{\text{Thời gian}}$$

Công suất được đo bằng watt (W) và thời gian được đo bằng giây (s).

NHỮNG ĐỘNG CƠ ĐƠN GIẢN

Để thực hiện công dễ dàng hơn, con người đã phát minh ra CÁC ĐỘNG CƠ. Khi nghĩ tới một động cơ, bạn có thể nghĩ tới một chiếc máy kéo hoặc xe hơi, nhưng một động cơ có thể siêu đơn giản. Một động cơ là bất kỳ thứ gì giúp cho việc thực hiện công dễ dàng hơn - ngay cả CẦU NỐI cũng là động cơ. Một động cơ đơn giản không làm giảm tổng số lượng công phải thực hiện, nhưng nó làm giảm số lượng lực cần thiết để thực hiện cùng một công bằng cách tăng khoảng cách.


ĐỘNG CƠ ĐƠN GIẢN là một động cơ hoạt động với chuyển động đơn lẻ giống như một dụng cụ mở nắp đồ hộp, trái ngược với **ĐỘNG CƠ GHÉP** là kết hợp một số động cơ đơn giản để tạo ra một động cơ phức tạp hơn.

Mặt phẳng nghiêng

Một MẶT PHẲNG

NGHIÊNG hoặc cầu nồi là một ví dụ về động cơ đơn giản. Nó giảm lượng lực cần thiết bằng cách tăng khoảng cách của công. Hãy nghĩ tới việc đầy hộp rát nặng vào thùng phía sau xe tải.

Với một cầu nồi, bạn có thể lăn hộp lên cầu nồi, việc này sẽ giúp tốn ít lực hơn nhiều so với việc nâng chiếc thùng vào trong xe tải. Chiếc thùng được đưa lên cùng một độ cao, như vậy lượng công như nhau đã được hoàn thành. Tuy nhiên, bởi vì bạn đã đầy chiếc hộp qua một khoảng cách dài hơn nên trong một khoảng thời gian nhất định lượng lực cần sẽ ít hơn. Mặt phẳng nghiêng càng dài, lực cần càng ít để nâng một vật trong cùng một khoảng cách.

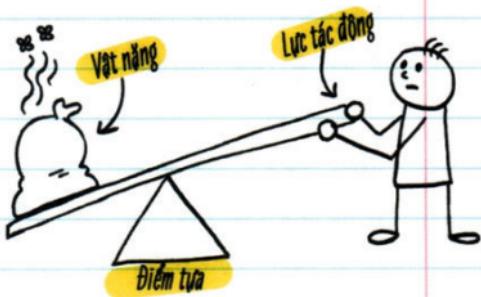
Ném

NÊM là một mặt nghiêng di động. nó giúp giảm lượng công cần thiết để tách hoặc bẩy các vật thể.

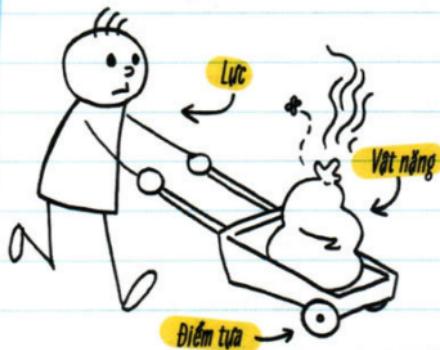
Một số ví dụ về nêm là dao, riu, thanh đệm cửa và cày. Để giảm lực cần thiết để chặt cùi, người ta dùng riu hình nêm để chè cùi. Chiếc riu có thể cắm sâu vào khúc cùi, nhưng một chiếc riu sẽ giúp tiết kiệm lực hơn là tách khúc cùi bằng tay không.

Đinh vít

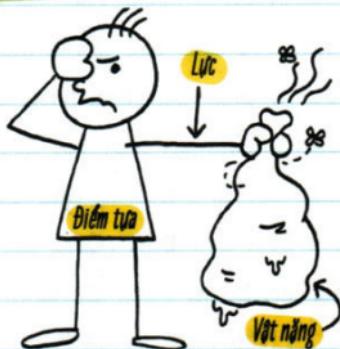
ĐINH VÍT là một cái nêm (một mặt phẳng nghiêng) quấn quanh một trục hoặc trụ. Khi bạn vặn vít, nêm đẩy vật vào trục (hoặc vít vào vật). Lượng lực cần thiết để bao đảm một chiếc đinh vít được gắn vào tường là ít hơn so với dùng búa đóng một cái đinh cùng kích thước, nhưng chiếc đinh vít sẽ phải cắm sâu hơn vì nó phải quay rất nhiều lần.



Đòn bẩy


ĐÒN BẤY làm giảm lượng lực cần thiết để nâng một cái gì đó lên. Một đòn bẩy giống như một cái bập bênh: một thanh cứng hoặc ván với một điểm chốt được gọi là ĐIỂM TỰA. Khi bạn tác động một lực lên một bên của điểm tựa, vật ở phía bên kia cũng bị di chuyển. Hãy liên tưởng tới khi bạn ngồi trên một cái bập bênh với một người bạn - Khi bạn ấn ghế xuống, ghế của bạn kia sẽ nâng lên. Ngay cả khi bạn của bạn nặng gấp đôi bạn, bạn có thể nâng anh ta lên bằng cách để anh ta ngồi gần điểm tựa. Bạn đẩy với nhiều khoảng cách hơn, vì vậy bạn cần ít lực hơn.

Đòn bẩy được phân loại theo nơi điểm tựa và vật nặng được đặt lên và vị trí bạn tác động lực.


LOẠI ĐẦU TIÊN: Điểm tựa ở khoảng giữa, vật nặng và lực tác động ở hai bên của điểm tựa (giống cái bập bênh).

LOẠI THỨ HAI: Điểm tựa ở một phía, vật nặng ở trong giữa và lực tác động ở phía còn lại (giống xe cút kit).

LOẠI THỨ BA: Điểm tựa là một bên, lực tác động ở giữa và vật nặng ở phía bên kia (như cánh tay của bạn khi bạn nâng một vật nặng).

Bánh xe và trục xe

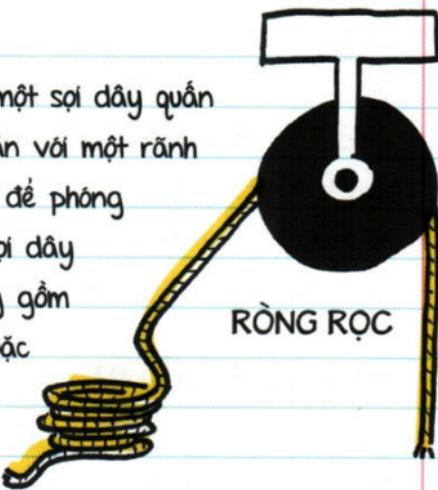
BÁNH XE và TRỤC XE làm cho việc xoay một số thứ dễ dàng hơn bằng cách gắn một cái bánh xe lớn hơn vào một trục, hoặc thanh, mà thực chất là một bánh xe nhỏ hơn. Có hai cách sử dụng bánh xe và trục:

Bánh xe

Trục

HỌ TĂNG LỰC ĐẦU RA:

Quay một bánh xe lớn hơn dài hồi ít lực hơn so với quay một bánh xe nhỏ hơn (bánh xe lớn hơn phải xoay một khoảng cách lớn hơn, vì vậy nó dài hồi ít lực hơn để cùng thực hiện một công). Hãy suy nghĩ về việc vặn mở một vòi nước: sẽ dễ dàng để vặn cỗ vòi vài inch hơn việc xoay ở tay vặn vòi chỉ hép bằng chiếc bút chì. Trục gây ra lực đầu ra.


HỌ GIẢM KHOẢNG CÁCH CẦN THIẾT ĐỂ DI CHUYỂN BÁNH XE:

Quay bánh xe nhỏ dài hồi nhiều lực hơn quay bánh xe lớn, nhưng bánh xe nhỏ hơn phải được quay một khoảng cách nhỏ hơn nhiều để thực hiện cùng một công đầu ra. Cơ chế này được sử dụng trên xe đạp: Bạn tác dụng lực lên một khoảng cách ngắn hơn với bàn đạp, bánh sau tác dụng lực ít hơn trên một khoảng cách dài hơn. Bánh xe gây ra lực đầu ra.

Ròng rọc

RÒNG RỌC là một bánh xe với một sợi dây quấn xung quanh nó. Sợi dây vừa vặn với một rãnh trên bánh xe, nó được sử dụng để phỏng đại lực mà bạn tác động lên sợi dây (nếu bạn thiết lập một hệ thống gồm hai hoặc nhiều ròng rọc hơn) hoặc thay đổi hướng của lực giúp bạn kéo dễ dàng hơn.

CÔNG bằng NĂNG LƯỢNG và HIỆU SUẤT

Năng lượng của một vật tăng lên khi bạn thực hiện công lên vật. Ví dụ, khi bạn đẩy một vật thể, vật thể bắt đầu di chuyển, chuyển động đó là một dạng năng lượng. Công tương đương với năng lượng, vì vậy tất cả các công được thực hiện trên một vật thể được bảo tồn dưới dạng năng lượng.

Năng lượng có nhiều dạng, chẳng hạn như nhiệt và chuyển động. Nếu bạn đang thực hiện công trên một vật và một phần năng lượng bạn sử dụng mất đi dưới dạng nhiệt (chẳng hạn như nhiệt do ma sát tạo ra), bạn đã mất một lượng công của bạn. Bao nhiêu công, hoặc năng lượng, bạn mất cho nhiệt, sẽ quyết định **HIỆU SUẤT**. Một động cơ không mất nhiều năng lượng để sinh ra nhiệt tạo ra nhiều công hơn và do đó năng suất hơn.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Khi nào một người thực hiện công? Liệt kê một số công mà bạn thực hiện trong cuộc sống hàng ngày.
- 2 Khi bạn đánh rơi một cuốn sách, Trái Đất sẽ tác động một lực hướng lên là 10 newtons lên cuốn sách. Nếu cuốn sách rơi từ độ cao 0,5 m thì công mà Trái Đất đã thực hiện là bao nhiêu?
- 3 Sự khác biệt giữa động cơ đơn và động cơ ghép?
- 4 Nếu tên của một hoạt động sử dụng đòn bẩy.
- 5 Điểm tựa trên đòn bẩy được gọi là ____
- 6 Một mặt phẳng nghiêng tạo công dễ dàng hơn như thế nào? Bạn vẫn thực hiện công như cũ đúng không?
- 7 Hai cách để một bánh xe và trực xe có thể thực hiện công dễ dàng hơn là gì?
- 8 Ròng rọc là một ____ với một ____ quẩn quanh nó.


KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Bất cứ khi nào một người tác động một lực theo hướng của chuyển động, người đó đang thực hiện công. Nhảy cao, nâng một chiếc ba-lô và ném một quả bóng đều là ví dụ về công.
- 2 Công = lực x khoảng cách.
 $10 \text{ Newton} \times 0.5 \text{ mét} = 5 \text{ Joule công}$
- 3 Một động cơ đơn giản thực hiện công với một chuyển động và một động cơ ghép kết hợp các động cơ khác nhau để thực hiện công.
- 4 Vận chuyển đất bằng xe cát kit là ví dụ của một hoạt động sử dụng đòn bẩy loại 2.
- 5 Điểm tựa
- 6 Một mặt phẳng nghiêng làm giảm lượng lực cần thiết để nâng một vật lên một độ cao nhất định bằng cách tăng khoảng cách di chuyển của vật đó. Một mặt phẳng nghiêng làm tăng khoảng cách lực tác dụng, nhưng bạn vẫn thực hiện một công không đổi.
- 7 Tăng lực đầu ra, hoặc giảm khoảng cách cần thiết để di chuyển bánh xe.
- 8 Bánh xe, dây

Câu số 1 và câu số 4 có nhiều đáp án.

PHẦN

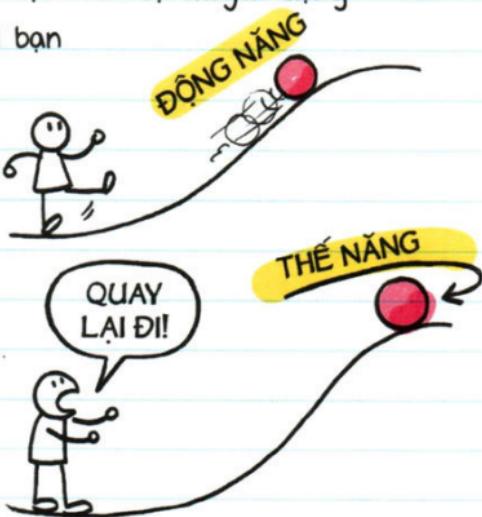
4

Năng lượng

Chương 13

CÁC DẠNG NĂNG LƯỢNG

BẢO TOÀN NĂNG LƯỢNG


NĂNG LƯỢNG là một đặc tính của vật chất, nó có nhiều dạng, như là nhiệt, âm thanh, ánh sáng, hay chuyển động. Năng lượng, cũng giống như vật chất, luôn được bảo toàn. Lượng năng lượng trong một hệ thống luôn được giữ nguyên, mặc dù nó có thể thay đổi dạng thút và truyền giữa các vật thể. Ví dụ, khi một người chơi golf đánh quả bóng golf, năng lượng từ cú đánh truyền đến quả bóng (với hy vọng rơi trúng vào lỗ).

ĐỊNH LUẬT BẢO TOÀN NĂNG LƯỢNG cho rằng năng lượng không thể tự nhiên sinh ra và mất đi - nó chỉ chuyển từ dạng này sang dạng khác. Ví dụ về chuyển đổi năng lượng là năng lượng ánh sáng từ Mặt Trời được lá cây hấp thụ để sinh trưởng và phát triển. Năng lượng được sản sinh ra trong lá cây chuyển thành năng lượng trong cơ thể chúng ta khi chúng ta ăn rau. Khi chúng ta chạy hoặc di chuyển, chúng ta giải phóng năng lượng hóa học được lưu trữ, thành năng lượng cơ học.

← VÌ VẬY, CHÍNH XÁC THÌ CHÚNG TA ĐƯỢC CUNG CẤP NĂNG LƯỢNG TỪ MẶT TRỜI.

THẾ NĂNG và ĐỘNG NĂNG

Khi bạn thả một chiếc bút, **THẾ NĂNG** được chuyển đổi thành **ĐỘNG NĂNG**. Cả hai đều là dạng **CƠ NĂNG**, là năng lượng của một vật thể dựa trên sự chuyển động hoặc vị trí của nó. Ví dụ, khi bạn đá một quả bóng lên một ngọn đồi, nó có động năng vì nó đang chuyển động. Khi nó chậm lại và dừng lại, năng lượng của chuyển động được chuyển sang thế năng ở vị trí của quả bóng. Thế năng của quả bóng có thể nhanh chóng được chuyển đổi lại thành động năng khi quả bóng lăn trở lại ngọn đồi. Năng lượng của quả bóng được chuyển đổi qua lại giữa các dạng thế năng và động năng, vì vậy năng lượng được bảo toàn.

Chúng ta gọi đây là **NĂNG LƯỢNG HẤP DẪN** bởi vì nó có thế năng, để giải phóng năng lượng dự trữ bằng cách sử dụng trọng lực.

Động năng có thể được truyền đến các vật thể khác thông qua va chạm. Hãy nghĩ về những chiếc xe đụng - khi một chiếc xe va vào một chiếc xe khác, nó sẽ truyền năng lượng của nó, khiến chiếc xe kia di chuyển.

Động năng của một vật thể phụ thuộc vào cả khối lượng và vận tốc của nó. Khối lượng lớn hơn và/hoặc chuyển động càng nhanh có nghĩa là nhiều năng lượng hơn. Thể năng phụ thuộc vào cả khối lượng và chiều cao của vật. Khối lượng lớn hơn và/hoặc cao hơn nghĩa là nhiều năng lượng hơn.

Khối lượng lớn hơn và/hoặc chuyển động nhanh hơn có nghĩa là nhiều năng lượng hơn. Nói một cách dễ hiểu, điều này có nghĩa là bạn thả để một quả bóng tennis rơi trên đầu hơn là một quả bóng bowling, bởi vì quả bóng tennis nhẹ hơn. Bạn cũng thả bật quả bóng tennis từ hai chân lên trên đầu chứ không phải từ đỉnh của một tòa nhà chọc trời, bởi vì quả bóng sẽ chuyển động chậm hơn.

Thể năng của một vật thể có thể thay đổi dựa trên cách nó được sắp xếp. Chẳng hạn, một cuốn sách ở kệ trên cùng của tủ sách sẽ có thể năng lớn hơn một cuốn sách ở kệ dưới cùng, vì cuốn sách cao hơn có khoảng cách xa hơn để rơi.

Một số nhà khoa học cho rằng chỉ có hai loại năng lượng (động năng và thể năng), một số nói bảy, một số khác lại nói có chín loại! Điều quan trọng là hiểu rằng năng lượng có nhiều dạng (cà di chuyển và dự trữ) và năng lượng đó liên tục thay đổi từ dạng này sang dạng khác.

ĐỘNG NĂNG

ĐỘNG NĂNG

Dịch chuyển vật

NHIỆT NĂNG

Các phân tử chuyển động ảnh hưởng đến nhiệt độ

NĂNG LƯỢNG ĐIỆN TỬ

Các sóng ánh sáng (cả hữu hình và vô hình)

NĂNG LƯỢNG ÂM THANH

Các phân tử va vào nhau để truyền âm thanh

NĂNG LƯỢNG ĐIỆN

Dòng chảy của các electron

THẾ NĂNG

THẾ NĂNG HẤP DẪN

(hay THẾ NĂNG CƠ HỌC)

Được lưu trữ trong độ cao của vật

NĂNG LƯỢNG ĐÀN HỒI

Được lưu trữ trong quá trình nén hoặc kéo vật liệu đàn hồi

NĂNG LƯỢNG HẠT NHÂN

được lưu trữ trong hạt nhân của các nguyên tử phóng xạ. Trong một quá trình gọi là **PHÂN HẠCH NGUYÊN TỬ**, các nguyên tử bị phân tách và năng lượng đó được giải phóng.

CHÚNG TA SẢN XUẤT ĐIỆN TỪ NĂNG LƯỢNG HẠT NHÂN THEO CÁCH NÀY.

NĂNG LƯỢNG HÓA HỌC

là năng lượng được lưu trữ trong các liên kết hóa học. Trước khi một liên kết bị phá vỡ, năng lượng hóa học được lưu trữ trong liên kết là một dạng THẾ NĂNG. Khi liên kết bị phá vỡ, năng lượng hóa học có thể được giải phóng. Thực phẩm, dầu, gas, cùi và than là tất cả các nguồn năng lượng hóa học. Bất cứ thứ gì được coi là nhiên liệu (cho những thứ sống và không sống) đều có năng lượng hóa học được lưu trữ trong liên kết của nó.

KIỂM TRA KIẾN THỨC CỦA BẠN

Kết hợp thuật ngữ với định nghĩa đúng:

1. Bảo toàn năng lượng	A. Năng lượng được lưu trữ.
2. Thể năng	B. Năng lượng không tự nhiên sinh ra, không tự nhiên mất đi. Lượng năng lượng bảo toàn.
3. Động năng	C. Năng lượng của một vật thể dựa trên chuyển động của nó.

4. Khi một con bò ăn cỏ, nó tiêu hóa và phá vỡ các liên kết hóa học trong cỏ để giải phóng nhiệt và động _____

5. Năng lượng hóa học là gì?

6. Hai yếu tố nào ảnh hưởng đến lượng thể năng của một vật thể?

7. Năng lượng thường xuyên _____ từ dạng này sang dạng khác.

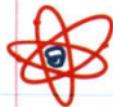
8. Chiếc xe đụng của bạn đâm vào chiếc xe đụng của một người bạn, khiến cô ấy té về phía trước. Những loại năng lượng nào xảy ra?

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 B.

2 A.

3 C.


4 Năng

5 Năng lượng hóa học là năng lượng được lưu trữ trong các liên kết hóa học.

6 Khối lượng và chiều cao

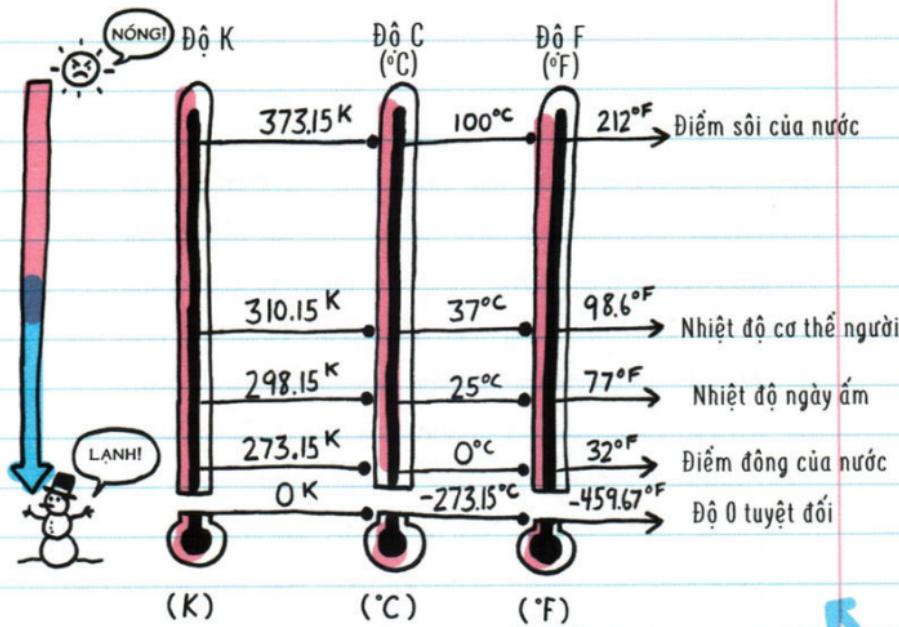
7 Thay đổi

8 Động năng

Chương 14

NHỆT NĂNG

NHỆT ĐỘ


Định nghĩa hằng ngày của chúng ta về **NHỆT ĐỘ** là nóng hoặc lạnh, nhưng định nghĩa thực sự của "nhệt độ" là động năng trung bình của các phân tử trong một chất. Các phân tử trong chất lỏng, rắn hoặc hơi luôn luôn chuyển động. Các phân tử này di chuyển xung quanh và va vào nhau. Do các phân tử chuyển động, chúng có động năng, khi các phân tử di chuyển càng nhanh, động năng của chúng càng nhiều. Nếu bạn so sánh các phân tử trong một cốc cacao nóng với các phân tử trong một cốc sữa sô-cô-la lạnh thì các phân tử cacao nóng sẽ bị nén xung quanh nhanh hơn nhiều so với các phân tử sữa sô-cô-la lạnh.

NHỆT ĐỘ

động năng trung bình
của các phân tử trong
một chất

Đo nhiệt độ

Thông thường, khi một vật nóng lên, chúng nở ra và khi hạ nhiệt, chúng co lại. Nhiệt kế hoạt động dựa trên sự giãn nở hoặc co lại của vật liệu theo nhiệt độ. Khi một vật ở nhiệt độ cao hơn, chất lỏng chứa trong nhiệt kế sẽ nở ra và chỉ ra nhiệt độ cao hơn.

Phân tử ngừng di chuyển, vì vậy nhiệt độ không thể lạnh hơn - các phân tử không thể chậm hơn dừng lại.

Chuyển đổi nhiệt độ

Chúng ta thường đo nhiệt độ bằng Celsius (°C), là thang đo hệ mét (m), hoặc Fahrenheit (°F). Bạn có thể chuyển đổi giữa °C và °F theo công thức sau:

$$T_{(^\circ F)} = (T_{(^\circ C)} \times \frac{9}{5}) + 32$$

$$T_{(^\circ C)} = (T_{(^\circ F)} - 32) \times \frac{5}{9}$$

Các nhà khoa học thường sử dụng thang đo Kelvin (K), là đơn vị SI cho nhiệt độ. Để chuyển đổi giữa $^\circ C$ và độ Kelvin, hãy sử dụng công thức sau:

$$T_{(K)} = T_{(^\circ C)} + 273.5$$

$$T_{(^\circ C)} = T_{(K)} - 273.5$$

NHIỆT NĂNG

Tổng năng lượng động năng và thế năng của tất cả các phân tử có sự khác biệt giữa nhiệt độ và năng lượng nhiệt của chất là **NHIỆT NĂNG** của nó. Sự khác biệt giữa nhiệt độ và nhiệt năng: nhiệt độ là **năng lượng**

NHIỆT NĂNG

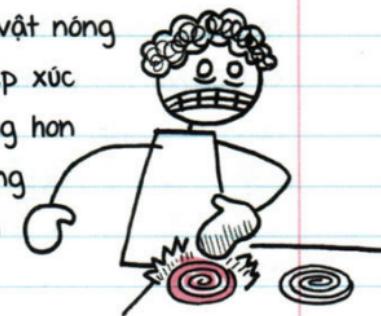
tổng động năng và nhiệt năng của tất cả các phân tử trong vật chất

ĐỘNG NĂNG TRUNG BÌNH của các phân tử trong vật chất và nhiệt năng là **TỔNG** của động năng và thế năng của tất cả các phân tử trong một chất. Ví dụ, một viên gạch có ít nhiệt năng hơn một chồng gạch vì nó có ít thế năng hơn, nhưng một viên gạch và một chồng gạch có thể có cùng nhiệt độ.

Khi chúng ta cảm thấy một vật nóng, đó là bởi vì vật đó ấm hơn tay của chúng ta.

Nhiệt

NHIỆT về mặt cơ bản là sự truyền nhiệt năng từ chất nóng hơn sang chất lạnh hơn. Nhiệt năng luôn chuyển từ năng lượng cao sang năng lượng thấp, hay nói cách khác, từ vật nóng hơn sang vật lạnh hơn. Nhiệt năng sẽ tiếp tục truyền giữa các chất cho đến khi cả hai ở cùng nhiệt độ.


NHIỆT

sự chuyển đổi của nhiệt năng từ vật nóng hơn sang vật lạnh hơn

Truyền nhiệt có thể xảy ra thông qua:

DÂM TRUYỀN: sự truyền nhiệt từ vật nóng

hơn sang vật lạnh hơn thông qua tiếp xúc trực tiếp. Các phân tử trong vật nóng hơn va chạm với các phân tử chuyển động chậm hơn trong vật lạnh hơn, truyền năng lượng. Ví dụ, chạm tay vào bếp nóng.

BỨC XA: sự truyền nhiệt qua các tia điện từ. Ví dụ, Mặt Trời sưởi ấm Trái Đất hoặc hơi ấm bạn cảm thấy khi ngồi cạnh đống lửa.

ĐỐI LƯU: sự truyền nhiệt qua chuyển động của chất lỏng (như không khí hoặc nước). Không khí trong nhà bạn di chuyển theo **CÁC ĐỘNG ĐỐI LƯU** - không khí nóng từ lò sưởi tăng lên, hạ xuống, sau đó hấp thụ xuống sàn nhà. Bạn có thể tăng lưu thông khí (đối lưu) bằng quạt trần.

HỆ TƯỢNG ĐỐI LƯU
một dòng điện trong chất lỏng di chuyển nhiệt xung quanh

KIỂM TRA TRIẾT THỨC CỦA BẠN

- 1 Sự khác biệt giữa nhiệt độ và nhiệt năng là gì?
- 2 Nếu bạn có một ly nước trái cây lớn và một ly nhỏ, cả hai ở nhiệt độ phòng, cái nào có nhiều nhiệt năng hơn?
- 3 ___ là sự truyền nhiệt thông qua sự chuyển động của chất lỏng như nước hoặc không khí.
- 4 Những loại truyền nhiệt xảy ra trong lò vi sóng?
- 5 Khi bạn liếm que kem, nhiệt năng giữa que kem và lưỡi của bạn như thế nào? Đó là loại truyền nhiệt nào?
- 6 Công thức để chuyển đổi $^{\circ}\text{C}$ thành độ Kelvin là gì?
- 7 Nhiệt năng luôn chuyển từ năng lượng ___ sang ___
- 8 Khi một vật nóng lên, nó ___
Khi một vật nguội đi, nó ___

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Nhiệt độ là động năng trung bình của các phân tử trong một chất và nhiệt năng là tổng năng lượng của động năng và thế năng của tất cả các phân tử trong một chất.
- 2 Nhiệt năng của ly nước trái cây lớn hơn vì nó có nhiều phân tử hơn. Nhiều phân tử hơn có nghĩa là nhiều nhiệt năng hơn - nó có nhiều năng lượng động năng và thế năng hơn.
- 3 Đổi lưu.
- 4 Bức xạ.
- 5 Nhiệt truyền từ vật nóng hơn sang vật lạnh hơn, do đó nhiệt năng được truyền từ lưỡi của bạn đến que kem, làm que kem tan chảy. Loại truyền nhiệt này là sự dẫn nhiệt.
- 6 $T(^{\circ}\text{C}) = T(\text{K}) - 273.5$
- 7 Cao, thấp.
- 8 Nở ra, co lại.

Chương 15

SÓNG ÁNH SÁNG VÀ SÓNG ẨM

SÓNG

SÓNG là những **ĐAO ĐỘNG** mang năng lượng. Sóng có thể di chuyển qua môi trường vật chất hoặc **CHÂN KHÔNG**. Sóng di chuyển qua môi trường vật chất gọi là SÓNG CƠ HỌC, sóng di chuyển qua môi trường chân không gọi là SÓNG ĐIỆN TỬ.

ĐAO ĐỘNG

một chuyển động lên xuống hoặc từ sau ra trước

CHÂN KHÔNG

không gian không có vật chất bên trong (hãy nghĩ tới một máy hút chân không đang hút từng chút vật chất ra khỏi một khoảng không)

Hai ví dụ về sóng cơ học:

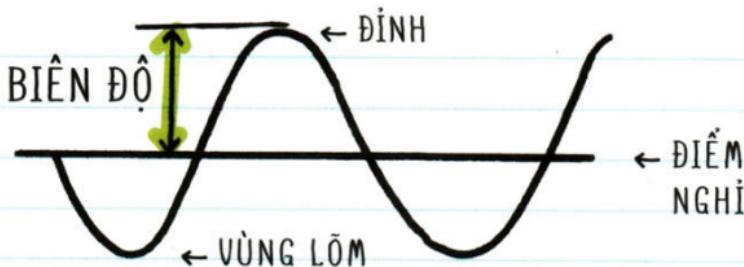
1. Sóng trong nước được tạo ra từ phía sau của một chiếc tàu cao tốc. Năng lượng di từ phân tử nước này đến phân tử nước khác, tạo ra những gợn sóng.

Trong không gian vũ trụ, bạn không thể nghe thấy bất kỳ âm thanh nào bởi vì ở đó không có không khí để sóng truyền qua!

2. Nói chuyện tạo ra sóng âm thanh, truyền đi bằng cách truyền các rung động từ phân tử này sang phân tử khác và truyền âm thanh từ miệng tới tai.

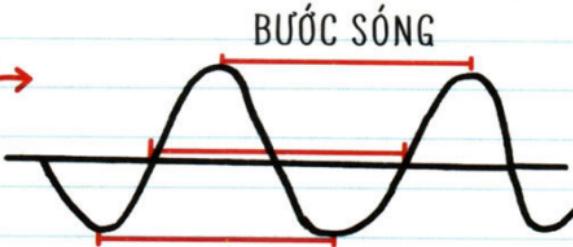
Không giống như sóng cơ học, sóng điện từ không cần phải di chuyển trong vật chất - chúng có thể di chuyển trong chân không, chẳng hạn như ngoài Vũ Trụ. Một số ví dụ về sóng điện từ bao gồm:

SÓNG ÁNH SÁNG


TIA X

SÓNG RADIO

Thuộc tính sóng


Bốn đặc điểm chính của sóng là:

I. **BIÊN ĐỘ** là một nửa khoảng cách giữa điểm cao của sóng, hoặc **NGỌN SÓNG**, với điểm thấp của sóng, hoặc **VÙNG LỐM**. Biên độ đo lượng sóng bị dịch chuyển khỏi điểm nghỉ của nó. Sóng có nhiều năng lượng hơn có biên độ lớn hơn. Hãy nghĩ về sóng ở đại dương: Sóng mang nhiều năng lượng sẽ dịch chuyển cao hơn và xa hơn so với mực nước thông thường, do đó chúng có biên độ lớn hơn.


2. **BƯỚC SÓNG** được đo từ một điểm trên sóng đến cùng một điểm trên sóng tiếp theo - giống như đỉnh tới đỉnh hoặc vùng lõm tới vùng lõm - và được viết là λ (lambda - một chữ cái trong mẫu tự Hy Lạp). Sự khác biệt giữa các màu là bởi các bước sóng ánh sáng khác nhau. Màu đỏ có bước sóng dài hơn màu xanh.

Bạn có thể đo bước sóng theo ba cách sau.

3. Số lượng sóng đi qua một điểm cố định trong một đơn vị thời gian nhất định được gọi là **TẦN SỐ**, được viết là f . Đơn vị cho tần số là một **hertz (Hz)**, là số lượng sóng mỗi giây. Tần số và bước sóng tự lẻ nghịch với nhau nếu sóng truyền cùng tốc độ, nghĩa là: Khi tần số cao hơn, bước sóng phải nhỏ hơn (và ngược lại).

Ví dụ:

Mười sóng chảy qua một vũng tàu trong 10 giây (các sóng có tần số cao hơn).

Hai sóng chảy qua một vũng tàu trong 10 giây (các sóng có tần số thấp hơn).

Trong tình huống đầu tiên, mười sóng phải chảy qua trong cùng một khoảng thời gian hai sóng chảy qua! Vì các sóng di chuyển cùng tốc độ, mười sóng phải gần nhau (chúng có bước sóng ngắn hơn).

(Tần số cao hơn - bước sóng nhỏ hơn)

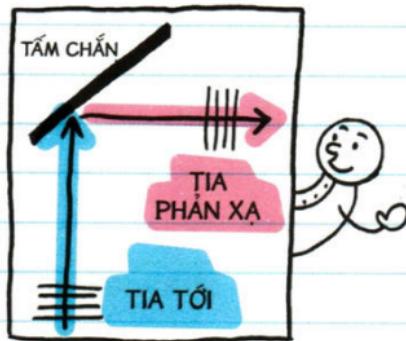
4. Thời gian để sóng di chuyển từ điểm này sang điểm khác được gọi là **TỐC ĐỘ TRUYỀN SÓNG**, được biểu diễn theo phương trình là v (chi vận tốc). Phương trình của tốc độ truyền sóng là:

$$\text{tốc độ sóng} = \text{tần số} \times \text{bước sóng}$$

(viết tắt là $v = f \times \lambda$)

Tốc độ truyền sóng được đo bằng **MÉT TRÊN GIÂY** (m/s), tần số được đo bằng **HERTZ** (Hz) và bước sóng được đo bằng **MÉT** (m).

Sóng truyền qua các môi trường khác nhau với tốc độ khác nhau. Ví dụ, sóng cơ học, chẳng hạn như sóng âm thanh, truyền trong nước nhanh hơn trong không khí. Sóng điện từ, chẳng hạn như ánh sáng, thì ngược lại: Chúng truyền trong


Không khí nhanh hơn trong nước. Khi bạn cầm một cây bút chì vào ly nước, cây bút chì trông như bị biến dạng vì sóng ánh sáng phản xạ từ cây bút chì di chuyển nhanh hơn trong không khí so với dưới nước.

Cách di chuyển của sóng

PHẢN XẠ là khi sóng bật ra khỏi bề mặt. Khi nhìn vào gương, bạn nhìn thấy chính mình vì sóng ánh sáng đã phản chiếu gương.

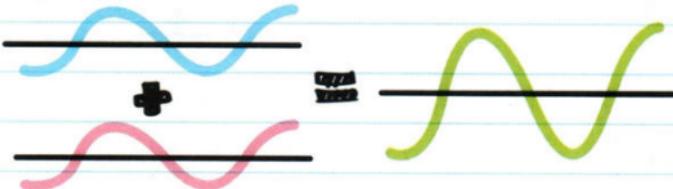
Một **TIẾNG VANG** cũng là sự dội lại của âm thanh.

ĐỊNH LUẬT PHẢN XẠ giải thích rằng sóng được phản xạ theo một cách cụ thể - một sóng phản xạ ở góc cùng với góc mà nó di chuyển về phía tám chẵn. Vì vậy, nếu một sóng di chuyển về phía bức tường ở 90 độ → Gọi là tia tới độ nó cũng sẽ bật ra ở 90 độ. ← Gọi là tia phản xạ

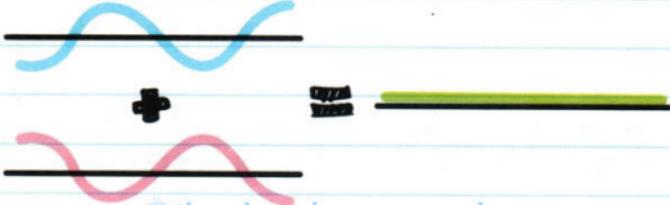


Sự bẻ cong của sóng khi chúng truyền qua các môi trường khác nhau (như sóng ánh sáng biến dạng của chiếc bút chì trong cốc nước) được gọi là **KHÚC XẠ** và được gây ra bởi sóng truyền đi ở tốc độ khác nhau trong các môi trường khác nhau (hoặc các chất).

Đây cũng lý do tại sao chân của bạn thỉnh thoảng trông sẽ rất ngắn khi bạn đứng ở dưới hồ bơi!



SỰ NHIỄU XẠ sự uốn cong của sóng xung quanh một tấm chắn hoặc sự lan rộng của sóng qua các khe hở nhỏ. Bạn có thể thấy nhiều xạ khi sóng biển đi qua cầu tàu hoặc bên tàu.



Kết quả của các sóng va chạm với nhau được gọi là SỰ GIAO THOA. Khi hai sóng va chạm, chúng kết hợp với nhau tạo thành một sóng lớn hơn, quá trình đó gọi là GIAO THOA TĂNG, hoặc chúng giao thoa với nhau và triệt tiêu lẫn nhau, quá trình đó gọi là GIAO THOA GIẢM. Khi bạn nhảy trên tấm bạt lò xo căng trên khung với bạn bè, bạn trải nghiệm giao thoa tăng và giao thoa giảm. Khi bạn nhảy vào đúng lúc, bạn sẽ được phóng lên không trung! Trong khi có những lúc bạn sẽ khó chuyển động. Đôi khi sự giao thoa nằm ở đâu đó giữa tăng và giảm.

GIAO THOA TĂNG

GIAO THOA GIẢM

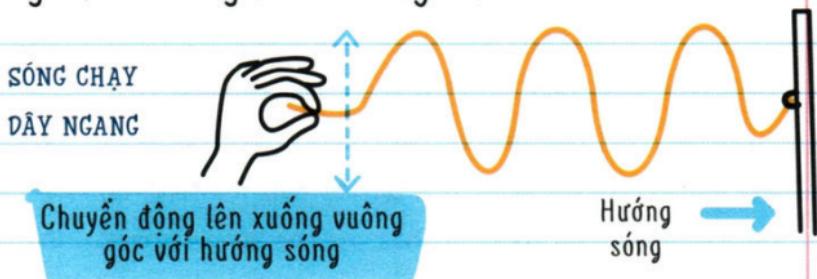
SỰ HẤP THỤ

Nếu một sóng truyền qua vật chất, SỰ HẤP THỤ có thể xảy ra. Hấp thụ là

sự truyền năng lượng từ sóng sang vật chất khi sóng truyền qua nó. Ví dụ, sóng ánh sáng từ Mặt Trời chiếu vào đại dương và được hấp thụ khi di chuyển xuống phía dưới, đó là lý do tại sao bạn càng bơi sâu, nước càng trở nên tối hơn.

Cách thức sóng được hấp thu phụ thuộc vào tính chất của vật chất mà nó đi qua và độ dày của vật chất đó. Ví dụ, phòng thu âm thường sử dụng cách âm để hấp thụ sóng âm. Khi sóng âm chạm vào lớp cách âm, hầu hết các sóng được hấp thụ, một số sóng bị phản xạ và rất ít sóng có thể đi qua được. Một số chất chỉ hấp thụ một vài bước sóng cụ thể, đó là cách chúng ta nhìn thấy màu sắc. Khi chúng ta nhìn thấy một quả táo màu đỏ, là do mọi màu khác NGOẠI TRỪ màu đỏ đang được hấp thụ và màu đỏ đang được phản xạ.

MÀU ĐƯỢC HẤP THỤ


MÀU ĐƯỢC
PHẢN XẠ

Ngoài ra, khi một sóng đang được hấp thụ, năng lượng của nó có thể được chuyển đổi. Khi các tia sáng được hấp thụ, chúng được chuyển thành một dạng năng lượng khác, chẳng hạn như nhiệt. Đây là lý do tại sao màu sắc hấp thụ nhiều tia sáng (màu tối) sẽ nóng lên khi ở trong ánh sáng.

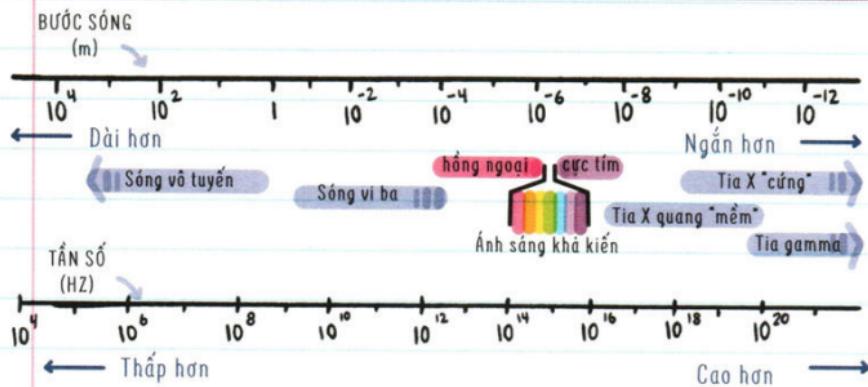
NHƯ MẶT ĐƯỜNG VÀO MỘT NGÀY HÈ NÓNG NỨC

QUANG PHỔ ĐIỆN TỬ

Sóng điện tử là SÓNG NGANG, có nghĩa là chúng dao động vuông góc với hướng chuyển động. Sóng điện tử được tạo thành từ điện trường và từ trường dao động vuông góc với nhau, do đó nó có tên gọi là sóng điện tử. Sóng điện tử về cơ bản là sóng ánh sáng, nhưng hầu hết sóng điện tử không thể nhìn thấy được.

PHỔ SÓNG ĐIỆN TỬ có phạm vi bước sóng từ hàng ngàn mét đến một phần nghìn tý mét. Loại sóng điện tử duy nhất chúng ta có thể nhìn thấy bằng mắt thường là ánh sáng. Khi ánh sáng, nó chỉ là một phần rất nhỏ trong rất nhiều loại sóng điện tử - **QUANG**

PHỔ ánh sáng chỉ nằm trong khoảng từ 700 đến 400 nanomet (một phần tý mét).


QUANG PHỔ

những bước sóng và dải tần số của sóng điện tử

Sóng

Sóng dọc theo toàn bộ phổ điện tử sẽ khác nhau về năng lượng, bước sóng và tần số. Một dải năng lượng thấp của quang phổ, sóng có bước sóng dài hơn và tần số thấp hơn. Một dải năng lượng cao của quang phổ, sóng có bước sóng ngắn hơn và tần số cao hơn.

QUANG PHỔ ĐIỆN TỬ

Quang phổ của sóng điện từ theo thứ tự từ mức năng lượng thấp đến cao là:

SÓNG VÔ TUYẾN

- Sóng điện từ có năng lượng thấp nhất
- Dài hơn 0,3 m
- Truyền nhạc bạn nghe trên radio

SÓNG VIBA

- Trong khoảng từ 0,3 m đến 0,003 m
- Sóng nấu thức ăn trong lò vi sóng

Tần số của sóng vi ba trong lò vi sóng của bạn thích hợp để rung động các phân tử nước làm nóng phần ướt trong thức ăn.

SÓNG HỒNG NGOẠI

- Chỉ dài hơn ánh sáng đỏ trong quang phổ khả kiến (đó là lý do tại sao được gọi là hồng ngoại)
- Các vật ấm phát ra sóng hồng ngoại, vì vậy kính bảo hộ nhìn vào ban đêm nhạy cảm với sóng hồng ngoại để giúp nhìn thấy động vật có máu nóng và con người vào ban đêm.

ÁNH SÁNG NHÌN THẤY ĐƯỢC

→ Ánh sáng mà con người có thể nhìn thấy là trong quang phổ này, vào khoảng giữa 700 nanomét và 400 nanomét

Màu sắc của cầu vồng được sắp xếp theo thứ tự từ bước sóng dài nhất (đỏ) đến bước sóng ngắn nhất (tím). Để ghi nhớ màu sắc trong quang phổ khả kiến từ bước sóng dài nhất đến bước sóng ngắn nhất, hãy nghĩ về một người tên **ROY G. BIV**

(hoặc **Red, Orange, Yellow, Green, Blue, Indigo, Violet** –

Đỏ, Cam, Vàng, Lục, Xanh, Xanh lam, Tím).

TIA TỪ NGOẠI (TIA UV)

→ Tần số nhỏ hơn và năng lượng cao hơn ánh sáng khả kiến trong khoảng từ 400 nanomét và 10 nanomét

→ Mặt Trời phát ra tia UV gây ra da cháy nắng khi đi biển.

TIA X

→ Năng lượng cao hơn và tần số cao hơn tia UV

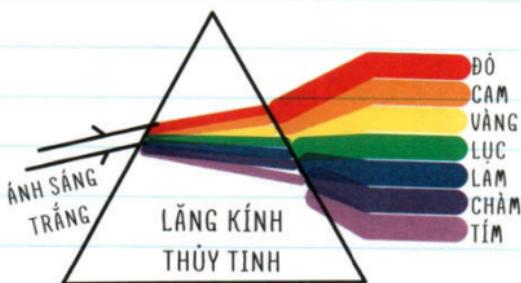
→ Tia X có thể xuyên qua da và thịt, nhưng không qua xương, vì vậy chúng được sử dụng để kiểm tra xương.

TIA GAMMA

→ Sóng có năng lượng cao nhất, tần số cao nhất

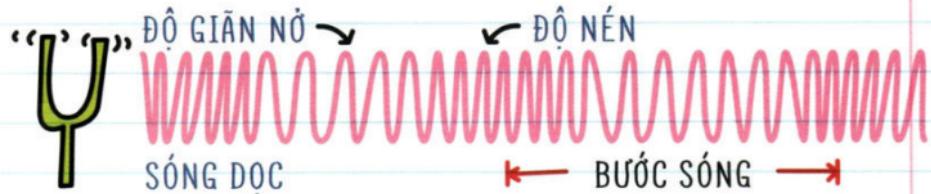
→ Các tia phóng xạ này có hại cho con người và các sinh vật sống khác.

Để ghi nhớ quang phổ khả kiến, từ năng lượng thấp đến cao với những ghi chú sau:


Roger Makes Instruments:
Violins, Ukuleles, Xylophones, and Guitars

(hoặc Radio - Sóng vô tuyến, Microwaves - Sóng Viba, Infrared - Hồng ngoại, Visible - Khả kiến, Ultraviolet - Tử ngoại, X-rays - Tia X, Gamma rays - Tia Gamma).

Cảm nhận ánh sáng và màu sắc


Sóng điện từ truyền đi cực kỳ nhanh - gần 300.000 km/s. Mất khoảng 8,5 phút để ánh sáng di chuyển khoảng 150 triệu km từ Mặt Trời đến Trái Đất. Sóng ánh sáng phản chiếu các vật thể và đi vào mắt chúng ta. Thông thường, chúng ta sẽ nghĩ ánh sáng có màu trắng, nhưng thực ra ánh sáng trắng là sự kết hợp của các màu sắc khác nhau. Khi ánh sáng bị khúc xạ, các màu trong ánh sáng trắng sẽ tách ra thành từng bước sóng ánh sáng riêng biệt.

CẨU VỐNG LÀ KẾT QUẢ CỦA ÁNH SÁNG ĐƯỢC PHẢN XẠ QUA NHỮNG GIỌT MƯA NHỎ TRONG KHÔNG KHÍ.

Âm thanh

Tiếng ồn gây ra bởi sóng âm chứa các phân tử đơn giản đang rung động. Một sóng âm là một SÓNG DỌC, nghĩa là nó dao động theo cùng hướng nó di chuyển. Sóng âm có thể truyền trong bất kỳ vật chất nào chỉ vì nó cần truyền năng lượng từ phân tử này sang phân tử khác. Vì vậy, nếu bạn đưa đồng hồ báo thức của mình ra ngoài VŨ TRỤ, vì là môi trường chân không, nó sẽ không tạo ra âm thanh! Không cần bật nút báo thức!

Tốc độ của âm thanh

Sóng âm truyền chậm hơn nhiều so với sóng ánh sáng - sóng ánh sáng truyền trong không khí với tốc độ khoảng 300.000.000 m/s trong khi sóng âm truyền trong không khí với tốc độ khoảng 340 m/s. Đó là lý do tại sao bạn nhìn thấy sét trước khi bạn nghe thấy tiếng sấm.

Sóng ánh sáng truyền chậm nhất trong chất rắn, sóng âm truyền nhanh nhất trong chất rắn. Các phân tử gần nhau hơn trong chất rắn, vì vậy các phân tử có thể va vào nhau nhanh hơn và truyền sóng âm nhanh hơn.

Cường độ âm thanh

CUỐNG ĐỘ của sóng âm là lượng năng lượng mà sóng âm truyền qua tại một diện tích nhất định. Biên độ của sóng âm gây ra cường độ - biên độ càng lớn, cường độ càng cao và âm thanh càng lớn. Cường độ của sóng âm giảm dần khi bạn càng ở xa nguồn âm thanh, đó là lý do tại sao mọi thứ nghe có vẻ yên tĩnh hơn khi ở khoảng cách xa. Khi sóng truyền đi, chúng bị hấp thụ bởi không khí và các vật thể khác.

Âm lượng hay cường độ của âm thanh được đo theo thang decibel (dB). Mỗi khi tăng cường độ 10 dB, sóng âm mang năng lượng lớn gấp 100 lần. Con người thường nói ở mức 50 dB. Âm thanh của một chiếc máy bay cất cánh là 150 dB, đó là lý do tại sao nhân viên sân bay đeo tai kín khi đeo bảo vệ tai.

Cao độ

Khi bạn nghe một bài hát, bạn nghe thấy nhiều âm điệu khác nhau. Các âm khác nhau mà chúng ta nghe được có liên quan đến tần số âm thanh, hoặc số lần rung mỗi giây. Âm thanh cao hơn có tần số cao hơn (buốt sóng ngắn) và âm thanh thấp hơn có tần số thấp hơn (buốt sóng dài). Cảm nhận của chúng ta về tần số âm thanh được gọi là CAO ĐỘ.

GIỌNG NAM TRẦM

GIỌNG NỮ CAO

Sự khác biệt giữa cao độ giọng nam trầm và cao độ giọng nữ cao là do tần số hoặc bước sóng âm thanh. Âm thanh có cao độ lớn hơn có tần số cao hơn (và do đó bước sóng nhỏ hơn).

Sóng âm là một ví dụ về tín hiệu **TƯƠNG TỰ**. Tín hiệu tương tự mang thông tin liên tục thay đổi cả về biên độ và tần số. Ngoài ra, nó dùng tín hiệu **SỐ** gửi thông tin dưới dạng sóng xung và chỉ kết nối qua 1s và 0s, vì vậy sẽ làm đơn giản hóa cách thức truyền thông tin. Khi bạn nói vào điện thoại di động, sóng âm tương tự giọng nói của bạn sẽ được chuyển đổi thành tín hiệu số thông qua chiếc điện thoại. Tín hiệu số giọng nói của bạn sau đó sẽ được gửi qua một tháp di động, bật ra khỏi một vệ tinh, gửi qua một tháp di động khác, cuối cùng đến điện thoại bạn của bạn. Khi âm thanh phát ra từ điện thoại đó, sóng lại trở thành tín hiệu tương tự lần nữa. Vì tín hiệu số chỉ được gửi qua 1s và 0s, bạn của bạn sẽ nghe giọng nói của bạn một cách hoàn hảo nhất, bởi vì các tín hiệu nhiều sẽ không thể chuyển thành tín hiệu số. (Vì sóng tương tự có thể chứa nhiều giá trị khác nhau, chúng trở nên dễ bị nhiễu hơn và do đó loại sóng này không còn đáng tin cậy để gửi thông tin).

KIỂM TRA KiẾN THỨC CỦA BẠN

- 1 Cách ghi nhớ thứ tự các màu trong quang phổ khả kiến là gì? Thứ tự của màu sắc là gì?
- 2 Sóng âm cường độ cao có ____ lớn.
- 3 Giữa hơi, chất lỏng và chất rắn, sóng âm truyền đi nhanh nhất trong ____.
- 4 Sóng bạn sử dụng để hâm nóng thức ăn là gì?
- 5 Sóng điện từ nào có năng lượng cao mà lại có hại?
- 6 Sóng nào gây cháy nổ?
- 7 Sóng điện từ nào chúng ta có thể nhìn thấy được?
- 8 Những loại sóng cơ thể âm tỏa ra?
- 9 Tại sao điện thoại di động không tạo ra âm thanh trong không gian?
- 10 Tại sao âm thanh có cao độ cao hơn sẽ có tần số cao hơn?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 ROY G. BIV: đỏ, cam, vàng, lục, lam, chàm, tím
- 2 Biên độ
- 3 Chất rắn
- 4 Sóng viba
- 5 Tia Gamma
- 6 Tia cực tím
- 7 Khả kiến
- 8 Tia hồng ngoại
- 9 Sóng âm cần vật chất để chúng có thể truyền từ phân tử này sang phân tử khác. Không có vật chất trong không gian Vũ Trụ.
- 10 Âm thanh có cao độ cao hơn có bước sóng ngắn hơn, nghĩa là mỗi giây chúng có nhiều rung động hơn.

Chương 16

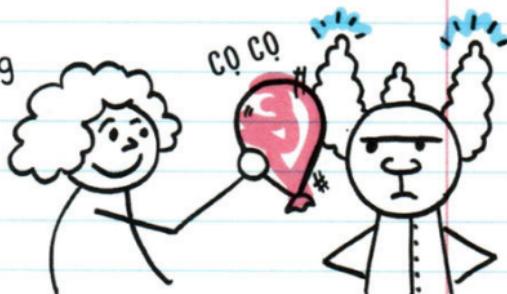
ĐIỆN VÀ TỪ TÍNH H

Điện và từ tính liên kết với nhau vì cả hai đều được tạo ra bởi sự tương tác giữa các điện tích dương và điện tích âm trong vật chất. Khi điện tích trong vật chất tương tác, chúng có thể tạo ra cả lực điện và lực từ.

ĐIỆN

Điện tích và lực điện

Tất cả các nguyên tử đều có electron là các hạt tích điện âm và proton là các hạt tích điện dương. Khi số lượng proton và electron trong một nguyên tử bằng nhau, điện tích dương và âm triệt tiêu lẫn nhau và khi đó nguyên tử trung hòa về điện.

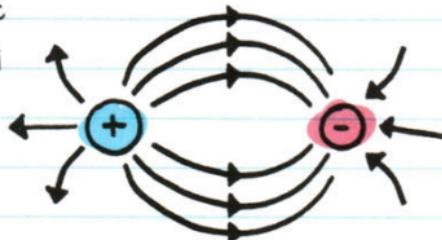

Tuy nhiên các nguyên tử bị mất và thu được các electron khá dễ dàng. Khi một nguyên tử thu được các electron, nó sẽ có nhiều điện tích âm hơn, do đó nó có **ĐIỆN TÍCH ÂM**. Khi một nguyên tử mất electron, nó sẽ trở thành **ĐIỆN TÍCH DƯƠNG**. Các nguyên tử mang điện tích dương hoặc âm được gọi là **ION**.

Giống như các điện tích đẩy nhau và không giống như các điện tích hút nhau, các ion tạo ra lực hấp dẫn và lực đẩy, được gọi là **LỰC ĐIỆN**, các electron âm muốn di chuyển đến nơi có nhiều điện tích dương hơn. Đó gọi là dòng electron!

Độ lớn của lực điện phụ thuộc vào mật độ các nguyên tử tích điện và khoảng cách của chúng. Lực điện tăng khi tăng điện tích và giảm khoảng cách giữa các điện tích.

Tĩnh điện

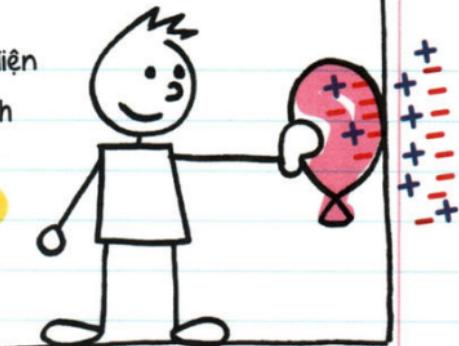
Các electron di chuyển tương đối dễ dàng từ nguyên tử này sang nguyên tử khác. Điện tích tích tụ tại vật thể và chuyển từ vật thể này sang vật thể khác được


gọi là **ĐIỆN TÍCH TÍNH** hoặc **TĨNH ĐIỆN**. Các vật cọ xát với nhau, như cọ xát một quả bóng bay vào tóc của bạn, có thể tạo ra các điện tích tĩnh vì bạn đang khử các electron ra khỏi tóc và chuyển sang quả bóng!

Khi bạn cảm thấy điện giật, bạn đang trải qua điều ngược lại: sự phóng điện nhanh chóng của các electron, được gọi là **SỰ PHÓNG ĐIỆN** hoặc **SỰ PHÓNG TĨNH ĐIỆN**. Tia chớp là hiện tượng phóng điện không lồ.

Điện trường

Môi trường đặc biệt trong điện từ bao quanh các điện tích được gọi là **ĐIỆN TRƯỜNG**. Bạn càng ở xa điện tích thì điện trường càng yếu và ngược lại. Điện tích càng lớn thì điện trường càng lớn. **ĐƯỜNG SỨC ĐIỆN TRƯỜNG** hiển thị hướng của lực điện và chúng có xu hướng di về một điện tích âm và di ra xa một điện tích dương.


Hiện tượng cảm ứng

Khi bạn đặt một vật tích điện gần một vật khác có thể làm các vật gần đó cũng bị tích điện. Ví dụ, nếu bạn đặt một

quả bóng bay được tích điện âm gần tường, quả bóng sẽ đẩy các electron khác vào phần tường đó, đẩy chúng ra khỏi bề mặt và tạo ra một điện tích dương tạm thời cục bộ. Đôi khi bạn có thể làm một quả bóng bay dính

ĐIỆN TRƯỜNG
Môi trường đặc biệt trong điện từ bao quanh điện tích

vào tường hoặc cửa sổ bằng điện tích tạm thời này. Sự phân tách các điện tích gây ra bởi một điện trường được gọi là **HIỆN TƯỢNG CẢM ỨNG**.

Chất cách điện và chất dẫn điện

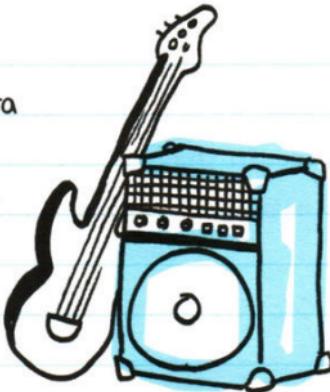
CHẤT CÁCH ĐIỆN là vật liệu không cho phép các electron di chuyển dễ dàng, do đó không cho phép

dòng điện chạy qua. Mặt khác, **CHẤT DẪN ĐIỆN** là vật liệu truyền năng lượng tốt vì nó được làm từ vật liệu mà trong đó các electron di chuyển dễ dàng. Vàng, đồng và hầu hết các kim loại khác là những chất dẫn điện tốt. Thông thường, dây điện được làm bằng một dây dẫn được bọc trong một chất cách điện như nhựa để ngăn dòng điện chạy vào các dây dẫn khác, chẳng hạn như cơ thể bạn.

HIỆN TƯỢNG CẢM ỨNG

Sự phân tách của điện tích được gây ra bởi điện trường

VÍ DỤ BAO GỒM KÍNH, NHỰA, CAO SU, SỨ VÀ XỐP


ĐIỆN TRỞ là một vật cản dòng electron nhưng vẫn cho phép chúng đi qua. Chúng thường nóng lên, sáng lên hoặc cả hai khi các electron chảy qua. Các ví dụ bao gồm dây mỏng (dây tóc) trong bóng đèn thông thường, cuộn dây nung trong máy nướng bánh mì và cả cơ thể người.

DÒNG ĐIỆN

Khi điện tích di chuyển, chúng tạo ra

DÒNG ĐIỆN. Dòng điện được đo

bằng lượng điện tích chảy qua một điểm nhất định mỗi giây và đơn vị SI cho dòng điện là một **ampere** (A) hoặc amp.

DÒNG ĐIỆN

số lượng electron chảy qua một điểm nhất định trong một khoảng thời gian nhất định

Có hai loại dòng điện:

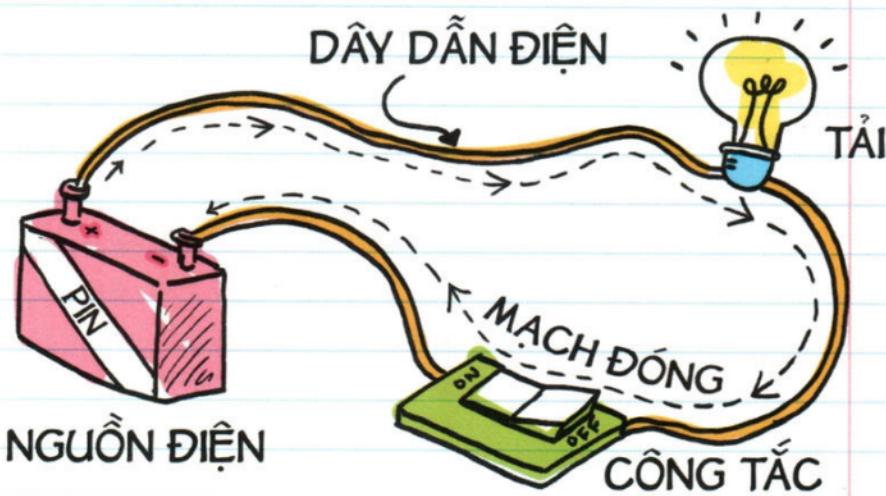
DÒNG ĐIỆN MỘT CHIỀU (DC): điện tích trong dòng điện di chuyển theo một hướng trong toàn bộ thời gian, giống như dòng điện được tạo ra bằng pin.

DÒNG ĐIỆN XOAY CHIỀU (AC): dòng điện tích thay đổi hướng định kỳ. Điện từ ồ cắm cung cấp dòng điện xoay chiều.

Mạch điện

Một dòng điện sẽ chảy liên tục nếu các điện tích có thể truyền trong một vòng dẫn kín, được gọi là MẠCH. Điện trường giữ cho điện tích di chuyển.

Các thành phần của mạch điện là:


CẤU TẠO ĐIỆN.

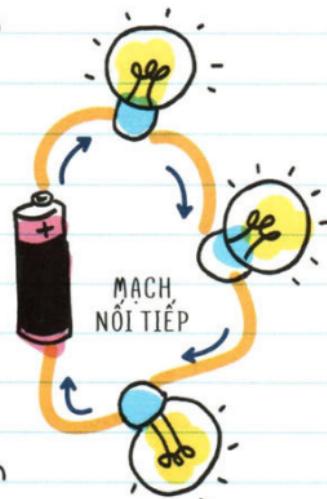
chẳng hạn như **DÂY ĐIỆN**, kết nối với một nguồn điện để tạo thành một **VÒNG KÍN** (một kết nối không có lỗ mở hoặc ngắt)

TÀI

(không cần thiết, thường được lắp ở mạch điện), một thiết bị mà mạch cấp nguồn, như bóng đèn, quạt hoặc loa

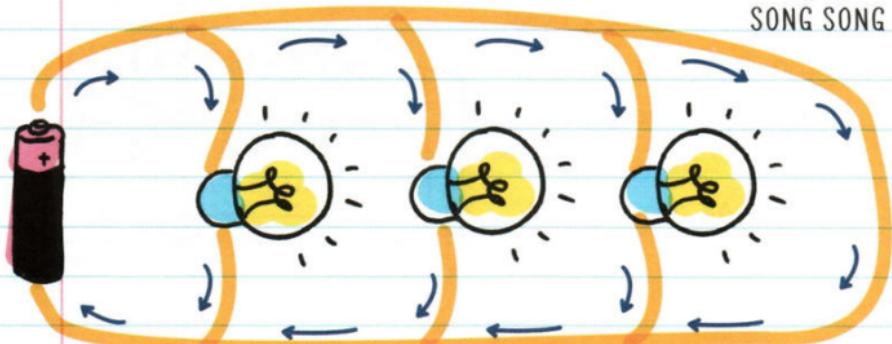
DÂY DẪN ĐIỆN

NGUỒN ĐIỆN


Năng lượng điện
chẳng hạn như **PIN**

CÔNG TẮC

(không cần thiết, nhưng thường có trong mạch điện). Một thiết bị dùng để mở và đóng mạch điện.


Mạch nối tiếp và mạch song song

Nếu một electron giống như một chiếc ô tô, mạch điện sẽ giống như con đường. Mạch điện cung cấp electron cho các vật đi qua nó. Khi chỉ có một đường cho một electron đi qua, mạch được gọi là MẠCH NỐI TIẾP. Trong mạch nối tiếp, tất cả các dòng điện chạy theo một hướng thông qua mọi thành phần trong mạch và nếu mạch được mở tại bất kỳ điểm nào, dòng điện trong mạch sẽ dừng lại. Vì vậy nếu một bóng đèn trong mạch nối tiếp bị cháy sẽ làm đứt mạch, khiến dòng điện ngừng chạy.

MẠCH SONG SONG giống như đi trên một con đường có ngã ba, nơi ô tô có thể rẽ phải hoặc trái. Trong mạch song song, các electron có thể đi qua nhiều con đường. Khi một đường đi bị đứt, dòng điện có thể tiếp tục chảy vì các electron vẫn còn một đường dẫn khác để đi.

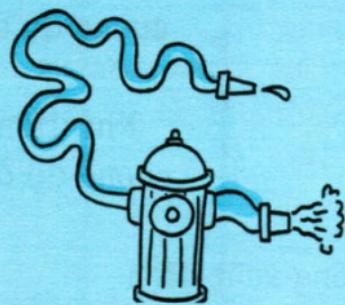
MẠCH SONG SONG

Pin

Pin cung cấp nguồn năng lượng để đẩy các điện tích quanh mạch điện. Khi được kết nối với mạch, pin sẽ tạo ra một điện trường có cực dương và cực âm ở mỗi đầu (ký hiệu bởi dấu + hoặc - mà bạn nhìn thấy ở hai mặt pin). Các electron là các điện tích chuyển động trong dòng điện, bị hút về cực dương và bị đẩy bởi cực âm. Chúng di chuyển như đang tham gia giao thông trên một con đường vậy (nếu mạch là một vòng khép kín).

Điện áp

Năng lượng của dòng chảy các electron trong mạch điện được gọi là **HIỆU ĐIỆN THẾ**. Hiệu điện thế được đo bằng **vôn (V)**, là sự chênh lệch về điện thế giữa hai điểm trong mạch, như cực dương và cực âm của pin. Hiệu điện thế cung cấp thế năng cho electron, giống như trọng lực cung cấp thế năng cho một quả bóng để nó đứng trên mặt đất. Hiệu điện thế càng cao, chênh lệch điện thế càng lớn và dòng điện có thể cung cấp càng nhiều năng lượng. Do đó pin 9 vôn sẽ làm cho bóng đèn phát sáng hơn nhiều so với pin AA (loại 1,5 vôn).



Điện trở

Khi các electron di chuyển trong dòng điện, chúng có thể va vào vật. Điều này làm cho việc di cho chúng di chuyển lại khó khăn hơn. **ĐIỆN TRỞ**, được đo bằng ôm - ohms (viết tắt là R và ký hiệu là Ω), đo lượng mức độ khó khăn của các electron khi di chuyển qua một thứ gì đó - hay nói cách khác, điện trở đo tính chất cản trở dòng điện, khả năng chống lại dòng chảy.

Các dây điện có điện trở thấp có thể giữ các mạch điện hiệu quả hơn - năng lượng trong các dây có điện trở cao có thể bị mất dưới dạng nhiệt năng do các va chạm. Điện trở trong dây tăng khi dây mỏng hơn và/hoặc dài hơn.

Hãy nghĩ về dây điện giống như vòi nước: Khi vòi nước dài hơn và/hoặc hẹp hơn, nước sẽ gặp khó khăn hơn khi đi qua vòi. Các ống nước dài hơn và/hoặc mỏng hơn có khả năng chống chảy tốt hơn. Quy tắc này được áp dụng tương tự cho dây điện.

Bóng đèn cung cấp điện trở trong mạch điện: Dây tóc của bóng đèn rất mỏng và khi các electron di qua dây tóc, chúng va chạm và làm nóng dây tóc, giải phóng năng lượng dưới dạng nhiệt và ánh sáng.

Định Luật Ohm

Định luật Ohm cho thấy mối quan hệ giữa điện áp, dòng điện và điện trở trong mạch:

Hiệu điện thế = Cường độ dòng điện x Điện trở

Đôi khi được viết tắt là I.

Điện áp được đo bằng vôn (V), dòng điện đo bằng ampe (A) và điện trở đo bằng ôm (Ω). Định luật Ohm cho thấy rằng nếu điện điện thế tăng, cường độ dòng điện, điện trở hoặc cả hai cũng sẽ tăng. Định luật này cũng cho thấy rằng nếu hiệu điện thế giữ nguyên:

{ Khi điện trở giảm thì
cường độ dòng điện tăng. }

{ Khi điện trở tăng thì
cường độ dòng điện giảm. }

Công suất điện

Công suất điện là tốc độ điện năng chuyển thành dạng năng lượng khác. Ví dụ, công suất điện của máy nướng bánh mì là tốc độ mà máy nướng bánh mì chuyển đổi điện năng thành nhiệt năng. Phương trình của công suất điện là:

Công suất điện = cường độ dòng điện x hiệu điện thế

Hãy ghi nhớ: công suất được đo bằng **watt**, cường độ dòng điện tinh bằng **ampere** và hiệu điện thế tinh bằng **volt**.

THIẾT BỊ	SỐ WATT MỖI GIỜ
Lò nướng	1,000 w
Máy giặt	500 w
Máy sấy quần áo	5,000 w
Máy tính	200 w

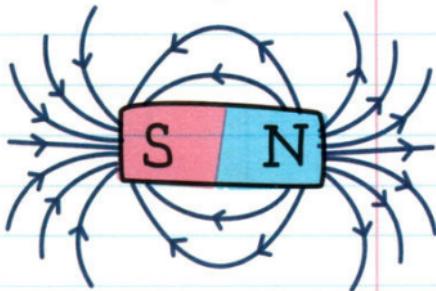
Bảo toàn năng lượng trong mạch điện

Điện năng cũng tuân theo định luật bảo toàn năng lượng. Vậy năng lượng từ pin đi đâu? Khi dòng điện đi qua mạch điện, điện năng sẽ được chuyển đổi thành các dạng năng lượng khác như nhiệt, ánh sáng, hoặc động năng. Chẳng hạn như chuyển động của một món đồ chơi chạy bằng pin.

LỰC TỪ

Hãy nhớ rằng nam châm có hai đầu cực là cực dương và cực âm (CỰC là vùng tích điện mạnh trên nam châm). Lực từ là lực hấp dẫn và lực đẩy giữa hai cực.

Các cực tích điện hút và đẩy nhau (giống như các hạt điện tích).


ĐÓI KHI ĐƯỢC
GOI LÀ CỰC BẮC
VÀ CỰC NAM

Tử trường

Khu vực xung quanh một nam châm chịu tác động của lực từ được gọi là **TỬ TRƯỜNG**.

ĐƯỜNG SỨC TỬ thể hiện hướng và cường độ của từ trường.

Đường sức từ đi từ cực bắc đến cực nam, càng gần đường sức từ lực từ càng mạnh.

Điện từ

Điện tích khi chuyển động tạo ra từ trường. Vì dòng điện là một điện tích chuyển động, nên bất kỳ dây nào có dòng điện chạy qua cũng được bao quanh bởi một từ trường. Khi một dây mang điện được quấn trong một cuộn dây, các đường sức từ xung quanh mỗi đoạn dây sẽ tạo ra từ trường mạnh hơn. Dây quấn quanh cuộn dây càng nhiều lần thì từ trường càng mạnh.

Trái Đất giống như một nam châm khổng lồ và cũng có từ trường. Kim la bàn kỳ thực là một nam châm nhỏ, có cực bắc và cực nam. Khi một la bàn đang chỉ về hướng bắc đó là cực nam của nam châm trong la bàn bị hút về Cực Bắc của Trái Đất - đó là lý do người ta gọi hai đầu cực của Trái Đất là Bắc Cực và Nam Cực.

Động cơ

Vì dây mang điện có từ trường, nó có thể bị hút hoặc đẩy bởi các nam châm. Một số **ĐỘNG CƠ** sử dụng lực hút và lực đẩy giữa các dây mang điện và nam châm để tạo ra chuyển động trong dây. Dây mang dòng điện tạo thành một cuộn và được đặt trong từ trường, nó quay liên tục và tạo ra động năng có thể chuyển thành điện năng.

Máy phát điện

Sử dụng cùng một cách thức (nhưng ngược lại), chúng ta có thể biến đổi động năng cơ học thành điện năng bằng cách di chuyển dây qua từ trường (hoặc di chuyển một nam châm qua cuộn dây). Làm như vậy, chúng ta đã làm cho các electron di chuyển, tạo ra dòng điện.

MÁY PHÁT ĐIỆN biến động năng của dây trong từ trường thành điện. Trong một máy phát điện, nguồn năng lượng sẽ quay một cuộn dây thông qua từ trường, tạo ra một dòng điện trong mạch. quá trình này được gọi là **HIỆN TƯỢNG CẢM ỨNG ĐIỆN**

MÁY PHÁT ĐIỆN

TỪ: Các nhà máy điện sử dụng máy phát điện để tạo ra điện, nhiều nguồn điện khác nhau cung cấp động năng được sử dụng để xoay cuộn dây trong từ trường.

MÁY PHÁT ĐIỆN

thiết bị chuyển đổi động
năng thành điện năng

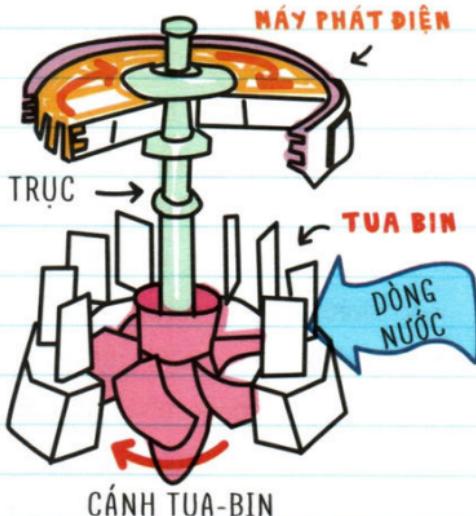
KIỂM TRA KIẾN THỨC CỦA BẠN

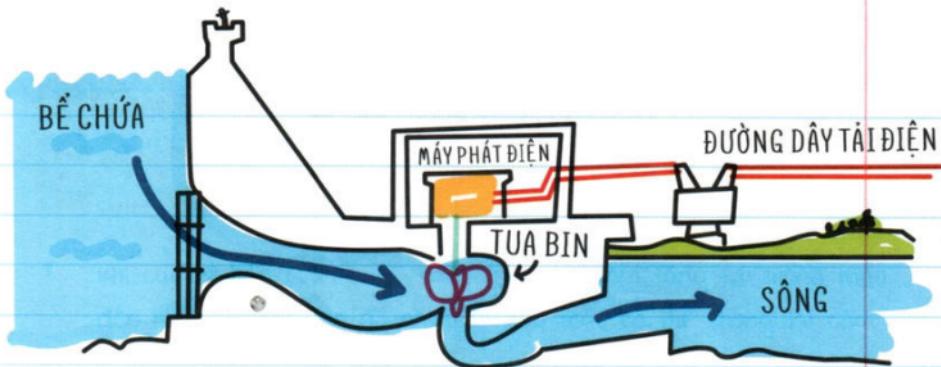
- 1 Cực nào của kim la bàn chỉ về hướng bắc?
- 2 Hai dây dẫn có một dòng điện chạy qua chúng và được đặt cạnh nhau. Một dây sẽ chịu tác động từ lực từ của dây còn lại. Hãy giải thích trường hợp này?
- 3 Làm cách nào để một điện trường thay đổi với khoảng cách và tăng điện tích?
- 4 Bạn phải thay đổi bóng trong đèn pin, bóng đèn mới có điện trở lớn hơn. Nếu hiệu điện thế của pin không thay đổi, điều gì sẽ xảy ra với cường độ dòng điện đi qua đèn pin?
- 5 Khi nào một nguyên tử có điện tích âm?
- 6 Nếu bạn đặt một bàn chải tóc tích điện âm lại gần tóc, tóc của bạn sẽ mang điện tích nào?
- 7 Điều gì sẽ xảy ra với điện trở của dây khi nó rộng hơn?
- 8 Điều gì sẽ xảy ra với điện trở của dây khi nó dài hơn?
- 9 Nếu đèn của cây thông Giáng sinh được mắc nối tiếp và một ngọn đèn bị cháy, liệu rằng tất cả các đèn khác có bị tắt không?
- 10 Nếu đèn của cây thông Giáng sinh được mắc song song và một đèn bị cháy, liệu rằng tất cả các đèn khác có tắt không?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Cực nam của kim la bàn (hút cực đối diện).
- 2 Đúng, nó sẽ chịu lực từ dây còn lại vì cả hai dây đều có dòng điện chạy qua và do đó cả hai đều có từ trường.
- 3 Điện trường trở nên yếu hơn khi khoảng cách ngày càng tăng, khi diện tích càng lớn thì điện trường càng mạnh.
- 4 $V = IR$, do đó điện trở tăng và hiệu điện thế không đổi, cường độ dòng điện giảm.
- 5 Một nguyên tử được tích điện âm khi nó có nhiều electron hơn proton.
- 6 Điện tích âm trên bàn chải tóc sẽ tạo ra một điện tích dương trên tóc của bạn. Kết quả là, tóc của bạn sẽ bị hút bởi bàn chải (và bị đẩy khỏi các sợi tóc khác).
- 7 Khi dây trở nên rộng hơn, điện trở sẽ nhỏ hơn.
- 8 Khi dây dài hơn, điện trở sẽ lớn hơn.
- 9 Nếu đèn được mắc nối tiếp và khi một đèn bị cháy, tất cả các đèn khác cũng tắt theo vì mạch điện bị ngắt - nó không còn là một vòng khép kín.
- 10 Nếu đèn được mắc song song, điện vẫn có thể chạy trong một vòng kín qua các đèn khác, vì vậy các bóng đèn còn lại vẫn tiếp tục hoạt động.

Chương 17


CÁC NGUỒN NĂNG LƯỢNG ĐIỆN


Tất cả lượng điện năng mà chúng ta sử dụng hằng ngày đến từ đâu?

TAO RA ĐIỆN NĂNG: TUA-BIN

Nguồn năng lượng làm quay TUA-BIN, có cấu tạo một phần giống như chân vịt quay trực kim loại nằm trong một máy phát điện.

Ví dụ, nhà máy thủy điện sử dụng nước để làm quay tuabin. Tuabin quay sẽ chuyển đổi động năng thành điện (và một lượng nhiệt năng do ma sát).

Sử dụng định luật bảo toàn năng lượng ta đã biến đổi các dạng năng lượng khác nhau thành điện năng. Một số nguồn năng lượng phổ biến nhất là:

- **NĂNG LƯỢNG HẠT NHÂN**

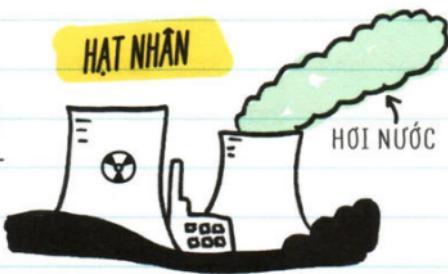
- **NHIÊN LIỆU HÓA THẠCH**, chẳng hạn như dầu, than và khí tự nhiên.

- **NĂNG LƯỢNG TÁI TẠO**, như thủy điện, năng lượng mặt trời, năng lượng địa nhiệt, thủy triều và năng lượng gió.

TÀI NGUYÊN KHÔNG THỂ TÁI TẠO

Nhiên liệu hóa Thạch

NHIÊN LIỆU HÓA THẠCH sử dụng năng lượng hóa học được lưu trữ trong các sinh vật hóa thạch cổ đại biến thành dầu, than và khí tự nhiên sau hàng triệu năm do nhiệt và áp suất. Khi nhiên liệu hóa thạch bị đốt cháy, năng lượng hóa học được giải phóng dưới dạng nhiệt năng, làm sôi nước từ đó làm quay tua-bin để tạo ra điện năng.


Nhiên liệu hóa thạch được coi là **TÀI NGUYÊN KHÔNG THỂ TÁI** TẠO sớm hay muộn nhiên liệu ← **CHÚNG TA ĐANG SỬ DỤNG CHÚNG NHIỀU HƠN LƯỢNG CHÚNG ĐƯỢC BỔ SUNG** hóa thạch sẽ cạn kiệt. Đốt cháy nhiên liệu hóa thạch cũng gây ra ô nhiễm rất có hại cho môi trường sống. Khi CO₂ được thải ra khi đốt nhiên liệu hóa thạch đang gây ra **SỰ NÓNG LÊN TOÀN CẦU**.

SỰ NÓNG LÊN TOÀN CẦU

sự tăng nhiệt độ toàn bộ không khí trong bầu khí quyển Trái Đất một phần do nguyên nhân từ con người

Năng lượng hạt nhân

NĂNG LƯỢNG HẠT NHÂN sử dụng năng lượng chứa trong hạt nhân được làm giàu uranium. Khi hạt nhân phân rã, nó giải phóng ra lượng năng lượng khổng lồ có thể được sử dụng để làm sôi nước, tạo ra hơi nước để quay máy phát điện. Mặc dù năng lượng hạt nhân tạo ra rất ít ô nhiễm không khí, nhưng nó tạo ra chất thải hạt nhân rất độc hại.

Tài nguyên khoáng sản, năng lượng và nước ngầm của Trái Đất phân bố không đều trên khắp hành tinh do các quá trình đang diễn ra như phong hóa, xói mòn và hủy hoại do con người. Ví dụ, khi các sông băng di chuyển, chúng mang khoáng chất đi theo và đem đến những nơi khác. Con người cũng đang làm thay đổi đất đai – theo những cách không thể phục hồi lại được. Khi chúng ta xây dựng một thành phố hoặc dù chỉ là một tòa nhà mới tức là ta đã phá bỏ các tài nguyên trong khu đất đó. Tất cả những điều này đã dẫn đến sự phân phối tài nguyên không đồng đều, nhiều tài nguyên trong số này không thể tái tạo hoặc thay thế được trong hàng ngàn năm.

TÀI NGUYÊN TÁI TẠO

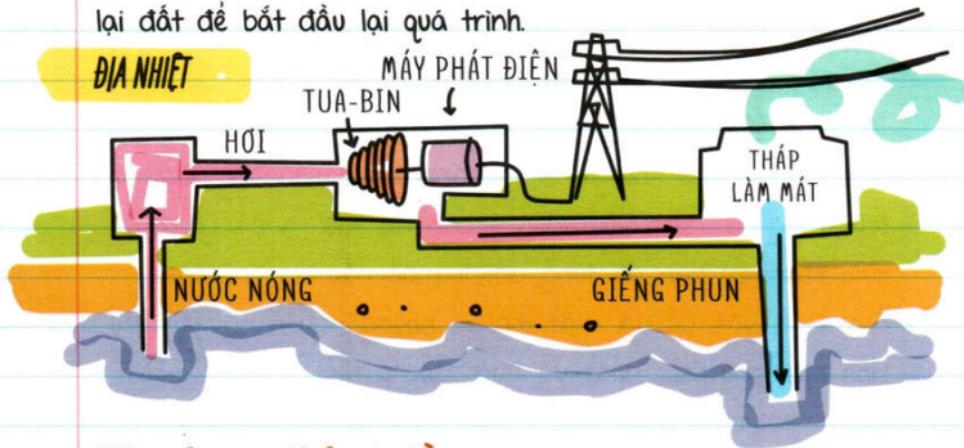
TÀI NGUYÊN TÁI TẠO là dạng tài nguyên có thể được bổ sung. Thủy điện, năng lượng mặt trời, địa nhiệt, thủy triều, sinh chất và năng lượng gió là tất cả các ví dụ về tài nguyên tái tạo.

Thủy điện

THỦY ĐIỆN tạo ra điện từ thế năng trọng lực của nước được tích tại các đập nước, sau đó xả ra vào dòng chảy được kiểm soát (nhờ trọng lực), động năng từ dòng nước chảy làm quay tua-bin, tạo ra điện năng.

Năng lượng mặt trời

NĂNG LƯỢNG MẶT TRỜI nhận năng lượng từ bức xạ mặt trời. Có hai loại bộ thu năng lượng mặt trời:



- **TẦM THU NHIỆT** hấp thụ năng lượng bức xạ mặt trời để làm nóng nước. Sau đó, nước nóng có thể được sử dụng để sưởi ấm nhà hoặc sản xuất hơi nước để cung cấp năng lượng cho tua-bin hơi, tạo ra điện.
- **BỘ THU QUANG ĐIỆN** trực tiếp biến đổi năng lượng bức xạ từ Mặt Trời thành năng lượng điện.

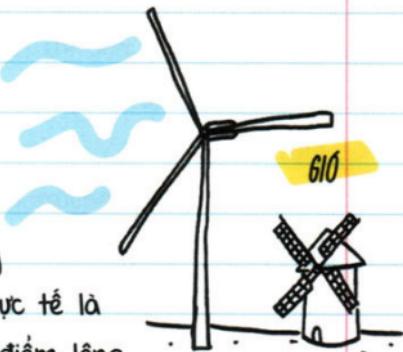
Chi có khoảng 0,1% năng lượng của chúng ta đến từ năng lượng mặt trời vì việc thu nạp nó rất tốn kém. Nhưng có thể khá thi trong tương lai!

Năng lượng địa nhiệt

Tâm Trái Đất cực kỳ nóng đến mức có thể làm tan chảy đá. Ở nhiều nơi, đá nóng chảy gọi là MAGMA, nằm gần bề mặt Trái Đất và có thể làm nóng nước để tạo thành hơi. Các giếng được khoan để tiếp cận các nguồn hơi và nước nóng dưới lòng đất. Hơi nước sau đó được sử dụng để tạo ra điện. Khi hơi nước ngoài đi trong tháp làm mát, nó ngưng tụ và trở lại thành nước. Nước mát được đưa trở lại đất để bắt đầu lại quá trình.

Năng lượng thủy triều

NĂNG LƯỢNG THỦY TRIỀU được lấy từ năng lượng thủy triều nước biển. Đại dương chảy mạnh không ngừng - chúng dịch chuyển giữa thủy triều thấp và thủy triều cao khoảng hai lần một ngày. Ở những nơi chênh lệch giữa thủy triều cao và thấp khá lớn, tua bin dưới nước nhận lượng năng lượng vô tận từ dòng nước chảy qua.



Năng lượng gió

NĂNG LƯỢNG GIÓ cũng có thể được thu nhận để sản xuất điện.

Động năng của gió được sử dụng để quay tua-bin gió, tạo ra điện.

Năng lượng gió là một nguồn năng lượng tái tạo hàng đầu, mặc dù thực tế là các tua-bin phải được đặt ở những điểm rộng gió để có hiệu quả cao nhất.

Năng lượng sinh khối

Năng lượng sinh khối sử dụng năng lượng hóa học được lưu trữ trong các sinh vật sống - bạn đã tạo ra năng lượng sinh khối nếu bạn đã từng đốt lửa để nấu ăn hoặc giữ ấm. Thực vật, gỗ và chất thải là những nguồn nguyên liệu sinh khối phổ biến nhất và được gọi là **NHIÊN LIỆU SINH KHỐI**. Đốt cháy, khử nước hoặc gia cố nguyên liệu sinh khối tạo ra nhiệt năng, sau

Nếu nguyên liệu sinh khối không được tạo, năng lượng sinh khối cũng không thể tái tạo.

đó được chuyển đổi thành điện. Một trong những cách phổ biến nhất để tạo ra năng lượng sinh khối là đốt phế liệu từ các nhà máy giấy hoặc gỗ, hoặc thậm chí cả chất thải rắn đô thị.

BỐC MỦI NHUNG XANH!

Mặc dù nguyên liệu sinh khối có thể tái tạo, nhưng chúng tạo ra ô nhiễm không khí.

KIỂM TRA TRIẾT THỨC CỦA BẠN

- 1 Ké tên một số nguồn năng lượng tái tạo và không thể tái tạo.
- 2 Ké tên một số vấn đề trong việc sử dụng nhiên liệu hóa thạch làm nguồn năng lượng chính của chúng ta.
- 3 Vấn đề trong việc sử dụng năng lượng hạt nhân là gì?
- 4 Tuabin là gì?
- 5 Những nguồn năng lượng điện nào sử dụng tuabin để sản xuất năng lượng?
- 6 Hai bộ vật liệu để thu năng lượng mặt trời là gì, chúng khác nhau như thế nào?
- 7 Năng lượng trong năng lượng hạt nhân đến từ đâu?
- 8 Thủy điện sản xuất ra năng lượng như thế nào?
- 9 Năng lượng địa nhiệt đòi hỏi những công đoạn nào để làm nóng nước và tạo ra hơi nước?
- 10 Năng lượng sinh khối là gì? Cho một vài ví dụ về nguyên liệu sinh khối.

KIỂM TRA ĐÁP ÁN CỦA BẠN

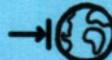
- 1 Năng lượng tái tạo: thủy điện, năng lượng mặt trời, địa nhiệt, gió, sinh khối và năng lượng thủy triều. Năng lượng không thể tái tạo: nhiên liệu hóa thạch và hạt nhân.
- 2 Khi sử dụng các nhiên liệu hóa thạch trên Trái Đất, chúng ta sẽ làm cạn kiệt nguồn nguyên liệu này sau vài triệu năm. Đốt nhiên liệu hóa thạch cũng giải phóng rất nhiều ô nhiễm không khí vào môi trường. CO_2 được tạo ra góp phần gây ra hiện tượng nóng lên toàn cầu.
- 3 Năng lượng hạt nhân tạo ra chất thải độc hại, và việc xử lý và thu trữ chất thải là vẫn đề nan giải.
- 4 Một mảnh giống như chân vịt quay quanh trục kim loại trong máy phát điện.
- 5 Tất cả các nguồn năng lượng điện đều sử dụng chúng!
- 6 Bộ thu nhiệt và bộ thu quang điện. Bộ thu nhiệt hấp thụ năng lượng bức xạ mặt trời để làm nóng nước, sau đó tạo ra điện năng. Bộ thu quang điện trực tiếp biến năng lượng mặt trời thành điện năng.
- 7 Năng lượng hạt nhân sử dụng năng lượng trong hạt nhân đã làm giàu uranium.
- 8 Nước được tích tại các đập nước, sau đó xả ra (nhờ trọng lực) thành dòng chảy được kiểm soát, động năng từ dòng nước chảy làm quay tua-bin, tạo ra điện năng.
- 9 Magma hoặc đá nóng chảy được tạo ra từ lõi Trái Đất.
- 10 Năng lượng sinh khối sử dụng năng lượng hóa học được lưu trữ của các sinh vật sống. Một số ví dụ về nguyên liệu sinh khối là thực vật, gỗ và chất thải.

PHẦN

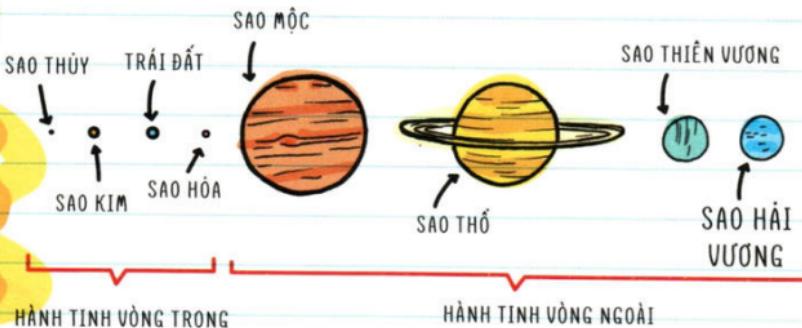
5

Không gian:
Vũ Trụ
và Hệ Mặt Trời

Chương 18


HỆ MẶT TRỜI VÀ THÁM HIỂM KHÔNG GIAN

Hệ Mặt Trời của chúng ta rất **BAO LA!** Khoảng cách từ Trái Đất tới Mặt Trời là khoảng 150.000.000 km (khoảng 93.000.000 dặm), đó chỉ là một phần nhỏ của Hệ Mặt Trời. Hệ Mặt Trời bao gồm mọi thứ chịu ảnh hưởng bởi lực hấp dẫn của Mặt Trời. Nó bao gồm Mặt Trời và mọi thứ quay xung quanh nó - tâm hành tinh và nhiều vật thể khác, như các mặt trăng, các tiểu hành tinh và các Sao chổi.


ĐÓ CÓ THỂ LÀ CHÍN HÀNH TINH! CÁC NHÀ KHOA HỌC GẦN ĐÂY ĐÃ TÌM RA DẤU HIỆU CỦA LỰC HẤP DẪN KÉO MỘT VẬT THỂ LỚN BÊN TRÊN SAO HẢI VƯƠNG, NHƯNG CHƯA MỘT AI TỪNG TRÔNG THẤY NÓ!

Khoảng cách trung bình từ Trái Đất đến Mặt Trời (150.000.000 km) là một con số khá khó để tính toán. Vì vậy các nhà khoa học quyết định gọi nó là **MỘT ĐƠN VỊ THIỀN VĂN (AU)**.

HỆ MẶT TRỜI CỦA CHÚNG TA* • TỶ LỆ CHUẨN

Khi nhìn vào các mô hình, hãy nhìn kỹ các kích thước để hiểu những thay đổi trong **TỶ LỆ XÍCH** ảnh hưởng đến mô hình như thế nào. Một mô hình tỷ lệ xích vẫn giữ "tỷ lệ chuẩn", có nghĩa là nó vẫn biểu diễn một hệ thống theo quy luật tự nhiên đồng thời giữ mối quan hệ giữa các vật thể theo tỷ lệ.

HÀNH TINH VÒNG TRONG

Bốn hành tinh gần nhất với Mặt Trời được gọi là các **HÀNH TINH VÒNG TRONG**. Tất cả các hành tinh vòng trong là **HÀNH TINH TRÁI ĐẤT**, có nghĩa là "giống như Trái Đất". Các

hành tinh Trái Đất có thành phần chủ yếu là đá và có lõi kim loại, giống như Trái Đất. Nhiều hành tinh vòng trong có các miệng hố hoặc lỗ trên bề mặt của chúng do đá va đập. Đây là những hành tinh vòng trong (được liệt kê theo thứ tự từ gần Mặt Trời nhất đến xa Mặt Trời nhất) và đặc điểm của chúng như sau:

TỶ LỆ XÍCH

sự biểu diễn một vật có kích thước lớn hơn hoặc nhỏ hơn kích thước của các vật thông thường

SAO THỦY (MERCURY)

- Có nhiệt độ cực cao (-180°C đến 430°C) bởi vì nó không có bầu khí quyển
- Giống như Mặt Trăng của Trái Đất, có nhiều vách đá và miệng núi lửa
- Không có mặt trăng nào

SAO KIM (VENUS)

- Có kích thước và khối lượng gần giống Trái Đất
- Có bầu khí quyển dày đặc chủ yếu là carbon dioxide hấp thụ nhiệt – duy trì nhiệt độ khoảng 464°C

TRÁI ĐẤT

- Là hành tinh duy nhất được biết đến có sự sống – được hỗ trợ bởi các tính chất đặc trưng của nó, chẳng hạn như nước, bầu khí quyển và tầng ozon.
- Có một vệ tinh tự nhiên rất lớn là Mặt Trăng

SAO HỎA (MARS)

- Trông có màu đỏ vì nó chứa oxit sắt (ri sét)
- Có chỏm băng, thung lũng, và núi lửa Olympus Mons lớn nhất trong Hệ Mặt Trời
- Có một bầu khí quyển mỏng chủ yếu là carbon dioxide
- Có những cơn bão bụi lớn và có các mùa
- Có hai mặt trăng là Phobos và Deimos

CÁC HÀNH TINH VÒNG NGOÀI

CÁC HÀNH TINH VÒNG NGOÀI của Hệ Mặt Trời là các hành tinh ở xa Mặt Trời nhất. Các hành tinh vòng ngoài đều được gọi là các hành tinh khí khổng lồ, bởi vì mặc dù chúng có lõi đá hoặc kim loại, chúng chủ yếu chứa tỷ lệ cao các chất khí. Các hành tinh khí khổng lồ không có đường biên xác định và lớn hơn nhiều so với các hành tinh trái đất hay các hành tinh vòng trong.

SAO MỘC (JUPITER)

- Hành tinh lớn nhất trong Hệ Mặt Trời.
- Có thành phần chủ yếu là hydro, heli, amoniac, mêtan và hơi nước.
- Có ít nhất 66 mặt trăng, bao gồm mặt trăng lớn nhất trong Hệ Mặt Trời.
- Có các sọc trăng, đỏ và nâu là những cơn bão khí. Vết Đỏ Lớn (là một vết đỏ khổng lồ trên Sao Mộc) là một cơn bão khổng lồ.

← GỌI LÀ GANYMEDE

SAO THỒ (SATURN)

- Hành tinh lớn thứ hai, với khối lượng riêng nhỏ nhất
- Chủ yếu là hydro và heli
- Có một hệ thống vành đai hành tinh phức tạp cấu tạo từ băng, hạt đá và bụi
- Có ít nhất 60 mặt trăng (một trong các mặt trăng có các núi lửa hoạt động)

SAO THIÊN VƯƠNG (URANUS)

- Màu xanh lục lam, tạo bởi khí metan trong khí quyển
- Khí quyển có hydro, heli và mêtan
- Có ít nhất 27 mặt trăng
- Có lẽ chủ yếu là băng và đá
- Sao Thiên Vương trông giống như bị lật về một bên – **TRỤC**
tự quay của Sao Thiên Vương gần như
song song với mặt phẳng quỹ đạo của nó
(không giống như các hành tinh khác).

TRỤC

một đường trường tượng mà
vật thể xoay quanh nó

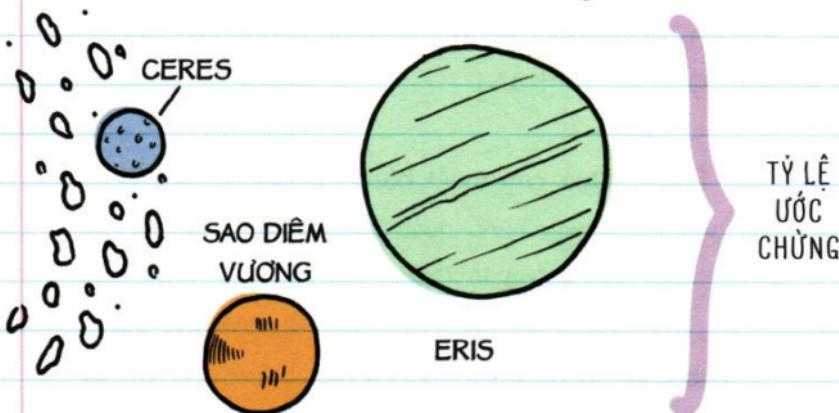
SAO HẢI VƯƠNG (NEPTUNE)

- Hành tinh xa Mặt Trời nhất
- Cũng có màu xanh lục lam
- Khí quyển có thể thay đổi nhanh chóng (có nhiều vết bão)
- Có ít nhất 13 mặt trăng và các vành đai hành tinh.

Đây là một bản
ghi nhớ thứ tự
của 8 hành tinh:

My Very Energetic Malamute Just Swam Until Nighttime
Chú Chó Giống Malamute Đầy Năng Lượng Của Tôi Bơi Tới Tận Đêm

(Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune).


(Sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ,

Sao Thiên Vương, Sao Hải Vương)

tinyurl.com/magncappuccino

CÁC HÀNH TINH LÙN

Các hành tinh lùn nhỏ hơn các hành tinh vòng trong và các hành tinh vòng ngoài, nhưng chúng vẫn quay quanh Mặt Trời như các hành tinh khác. Ngoài ra, chúng không giống như các hành tinh khác vì lực hấp dẫn của chúng không đủ mạnh để kéo vào và dọn sạch phần lớn các mảnh vỡ của khu vực quỹ đạo gần kề của chúng. Các hành tinh lùn lớn nhất là CERES, SAO DIỆM VƯƠNG và ERIS, nhưng có hàng trăm hành tinh lùn được các nhà khoa học tiếp tục khám phá phía bên ngoài Hệ Mặt Trời.

Sao Diêm Vương từng được coi là hành tinh thứ chín, nhưng sau đó các nhà khoa học đã phát hiện ra Eris vào năm 2005, nó lớn hơn một chút so với Sao Diêm Vương, họ đã định nghĩa lại thuật ngữ hành tinh, Sao Diêm Vương được đổi tên thành một hành tinh lùn. Sao Diêm Vương thực sự rất lạnh, nó có cấu tạo từ đá và khí đông lạnh thành băng. Ceres nằm trong vành đai tiểu hành tinh giữa Sao Hỏa và Sao Mộc.

CÁC VẬT THẾ KHÁC trong HỆ MẶT TRỜI

Ngoài các hành tinh và các mặt trăng, còn có những vật thể khác trong Hệ Mặt Trời:

TIỀU HÀNH TINH: những khối đá lớn có hình dạng không đồng đều, chủ yếu nằm trong một khu vực được gọi là **VÀNH ĐAI TIỀU**

HÀNH TINH giữa Sao Hỏa và Sao Mộc, hoặc rác khắp Hệ Mặt Trời. Chúng là những vật thể lớn nhất trong Hệ Mặt Trời bên cạnh các hành tinh và các mặt trăng.

SAO CHỒI: "Quả cầu tuyết bẩn" tạo bởi bụi, hạt đá, khí lạnh và băng, chúng quay quanh Mặt Trời, thường là với quỹ đạo không lồ. Chúng đôi khi được nhìn thấy bằng mắt thường khi chúng đi qua Hệ Mặt Trời vòng trong bởi vì cái đuôi dài của chúng - được tạo ra khi chúng bị hòa hơi tung phần bởi Mặt Trời. (Cái đuôi không theo sau sao chổi, nó luôn luôn hướng ra xa Mặt Trời.)

ĐÁM MÂY OORT là một đám mây chứa hàng tỷ sao chổi phía bên trên Sao Diêm Vương, được đặt theo tên của nhà thiên văn học **JAN OORT**, người đầu tiên đề xuất mô hình.

THIÊN THẠCH, SAO BĂNG, VÂN THẠCH:

THIÊN THẠCH là các mảnh đá nhỏ và bụi (như sao chổi tan rã). Các thiên thạch trở thành **SAO BĂNG** khi chúng thâm nhập vào bầu khí quyển của Trái Đất và đốt cháy tắt cả các ma sát trong khí quyển thành một vệt sáng. Một sao băng rơi xuống Trái Đất mà không bị cháy hết khi đi qua khí quyển được gọi là **VÂN THẠCH**.

Các sao băng trung bình mà bạn nhìn thấy vào ban đêm là chỉ như kích thước của một hạt cát!

MỘT NGÔI SAO BĂNG THỰC CHẤT LÀ MỘT THIÊN THẠCH

THIÊN THẠCH

một mảnh đá hoặc bụi không gian

SAO BĂNG

một thiên thạch đang cháy khi nó đi vào khí quyển của Trái Đất

VÂN THẠCH

khi một thiên thạch rơi xuống Trái Đất

CHỈ CÓ MỘT TỶ LỆ PHẦN TRĂM NHỎ CỦA TẤT CẢ CÁC THIÊN THẠCH

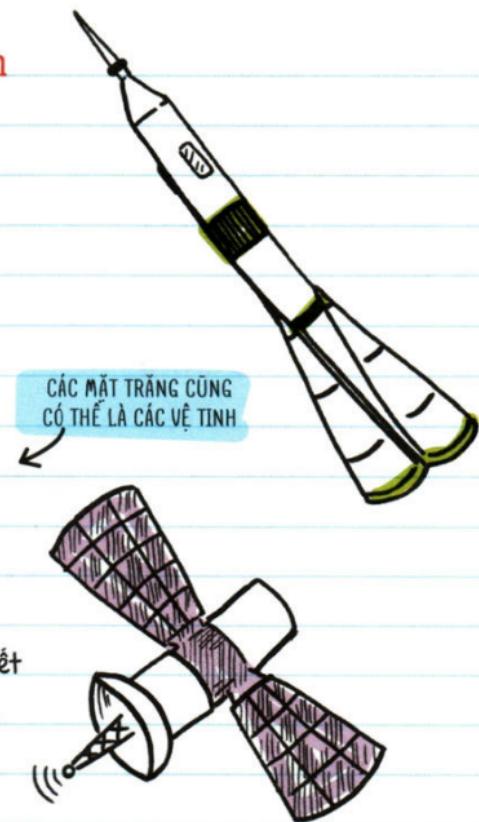
NGHIÊN CỨU và THÁM HIỂM KHÔNG GIAN

Kính thiên văn

Sao và các vật thể khác trong không gian phát ra bức xạ điện từ, chẳng hạn như sóng vô tuyến và ánh sáng khác. Trên Trái Đất, chúng ta nghiên cứu bức xạ này bằng kính thiên văn để giúp chúng ta tìm hiểu về không gian.

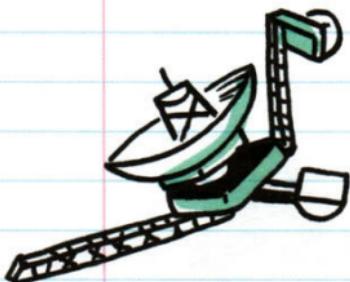
DÀI THIÊN VĂN là các tòa nhà chứa kính thiên văn. Các kính thiên văn khác đang ở trên các vệ tinh quay quanh Trái Đất (để giảm sự biến dạng gây ra bởi khí quyển).

KÍNH THIÊN VĂN QUANG HỌC thu thập ánh sáng từ không gian và phóng to hình ảnh của các vật thể.

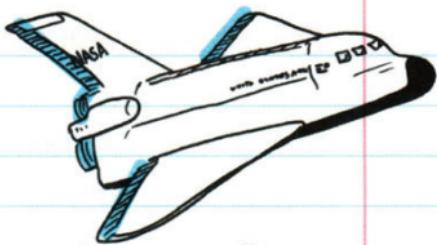

KÍNH THIÊN VĂN VÔ TUYẾN thu thập sóng vô tuyến thay vì sóng ánh sáng. Không giống như các tia sáng, sóng vô tuyến chạm tới bề mặt Trái Đất hai mươi bốn giờ một ngày bất kể điều kiện thời tiết. Một số kính thiên văn vô tuyến gồm nhiều các chào lớn trải rộng trên một khu vực địa lý rộng lớn.

CÁC KÍNH THIÊN VĂN KHÁC có thể thu thập các bức sóng khác nhau của ánh sáng (như tia X, tia gamma, v.v...) để cho chúng ta biết thêm về Hệ Mặt Trời và Vũ Trụ.

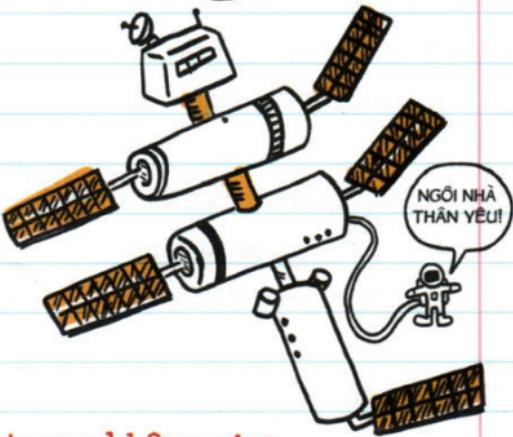
Thám hiểm không gian


TÊN LỬA là các động cơ mạnh được sử dụng để đưa các vật thể như vệ tinh và tàu thăm dò vũ trụ vào không gian.

MỘT VỆ TINH là bất cứ cái gì điều gì xoay quanh một hành tinh hoặc vật thể khác. Vệ tinh nhân tạo thu thập dữ liệu như kiểu thời tiết và hình ảnh rồi chuyên tiếp thông tin trở lại Trái Đất.


CÁC MẶT TRẮNG CÙNG CÓ THỂ LÀ CÁC VỆ TINH

TÀU THĂM ĐÒ VŨ TRỤ là các thiết bị bay du hành trong không gian thu thập và truyền dữ liệu trở lại Trái Đất sử dụng sóng vô tuyến. Rất nhiều những thứ chúng ta biết về các hành tinh và các vật thể trong Hệ Mặt Trời đến từ dữ liệu được thu thập bởi tàu thăm dò vũ trụ.


MỘT TÀU CON THOI TÁI SỬ

DUNG có thể vận chuyển các vệ tinh và phi hành gia lên Vũ Trụ, sắp xếp như một chiếc máy bay lên Vũ Trụ.

TRẠM KHÔNG GIAN

giống như một sự kết hợp giữa phòng thí nghiệm và nhà ở trong không gian cho các phi hành gia.

Đo lường khoảng cách trong không gian

Bởi vì các vật thể trong không gian cách xa nhau, chúng ta phải sử dụng đơn vị đo rất lớn để đo khoảng cách. Các nhà khoa học sử dụng đơn vị NĂM ÁNH SÁNG để đo khoảng cách trong không gian. Một năm ánh sáng là khoảng cách ánh sáng đi được trong một năm, tức là khoảng 9,5 nghìn tỷ km. Ngôi sao gần Trái Đất nhất cách chúng ta khoảng 4,3 năm ánh sáng.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Liệt kê các hành tinh theo thứ tự từ gần nhất đến xa nhất tinh từ Mặt Trời.
- 2 Vành đai tiêu hành tinh nằm trong khoảng ___ đến ___.
- 3 Những quả cầu tuyệt bẩm của Vũ Trụ là ___.
- 4 Tại sao các hành tinh vòng ngoài được gọi là hành tinh khí khổng lồ?
- 5 Các hành tinh Trái Đất là các hành tinh ___.
- 6 Giải thích sự khác biệt giữa thiên thạch, sao băng và vân thạch.
- 7 Vết Đỏ Lớn là một ___ trên ___.
- 8 Giải thích hành tinh lùn là gì.
- 9 Hành tinh ___ có một hệ hành tinh phức tạp.
- 10 Trái Đất là hành tinh duy nhất được biết là hỗ trợ ___.
- 11 Khoảng cách trong không gian được đo bằng ___.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Sao Thủy, Sao Kim, Trái Đất, Sao Hỏa, Sao Mộc, Sao Thổ, Sao Thiên Vương, Sao Hải Vương
- 2 Sao Hỏa, Sao Mộc
- 3 Các Sao Chổi
- 4 Bởi vì chúng chủ yếu được làm từ chất khí với đá hoặc lõi kim loại.
- 5 Vòng tròn
- 6 Một thiên thạch chỉ đơn giản là một mảnh bụi không gian hoặc đá trong không gian. Một sao băng là một thiên thạch rơi vào khí quyển Trái Đất và cháy lên. Một vân thạch là một thiên thạch rơi xuống Trái Đất.
- 7 Con bão, Sao Mộc
- 8 Các hành tinh lùn nhỏ hơn các hành tinh vòng tròn và các hành tinh vòng ngoài, nhưng chúng vẫn quay quanh Mặt Trời như các hành tinh khác. Chúng không thể quét khu vực quỹ đạo lân cận của chúng thành cụm băng lực hấp dẫn của chúng.
- 9 Sao Thổ
- 10 Sự sống
- 11 Năm ánh sáng

Chương 19

HỆ MẶT TRỜI - TRÁI ĐẤT - MẶT TRĂNG

Chúng ta quan sát Mặt Trời, Trái Đất và Mặt Trăng hoạt động hằng ngày. Thúy triều, hoàng hôn, độ dài của ngày, các mùa và Mặt Trăng mọc mòn đều do sự tương tác giữa Mặt Trời, Trái Đất và Mặt Trăng.

TRÁI ĐẤT

Đặc điểm của Trái Đất

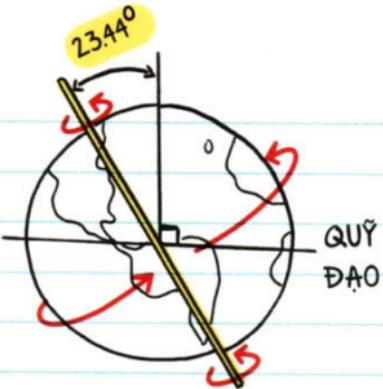
Trái Đất có dạng KHỐI CẦU bị nén một chút, giống như một quả bóng thè dục cao su bị bóp trong lòng tay. Kết quả là, Trái Đất dài hơn quanh xích đạo so với quanh các cực (nhưng không đủ để nhận biết chỉ bằng cách nhìn vào nó). Nó bị kéo dài một chút vì sự tự quay, giống như một cục bột nhão đang quay và bay sẽ kéo dãn ra để tạo thành đế bánh pizza.

Các chuyển động và lối kim loại của Trái Đất tạo cho nó một từ trường. La bàn chỉ đơn giản là một nam châm hướng về cực từ bắc của Trái Đất, mà thực chất nó không ở Cực Bắc về mặt địa lý! Cực từ bắc thay đổi một chút mỗi năm khi từ trường của Trái Đất dao động xung quanh.

Chuyển động của Trái Đất

TỰ QUAY: Trái Đất quay xung quanh một đường tròn tượng thẳng đứng chạy từ Bắc Cực đến Nam Cực, ← GIỐNG QUÀ ĐỊA CẦU chuyền động này được gọi là **TỰ QUAY**. Trái Đất hoàn thành một vòng quay, hoặc một lượt xoay, mất khoảng hai mươi bốn giờ. Sự tự quay này làm cho Mặt Trời xuất hiện rồi di chuyển qua bầu trời.

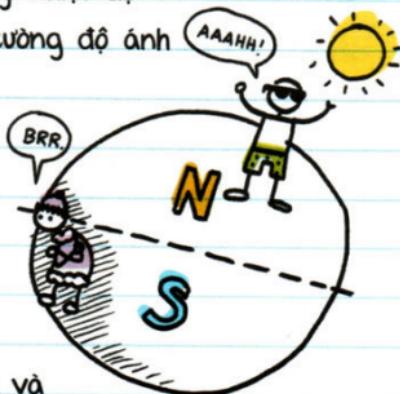
VÒNG QUAY: Khi Trái Đất tự quay, nó cũng xoay quanh Mặt Trời, có nghĩa là nó di chuyển trong một vòng tròn xung quanh Mặt


CỨ MỖI BỐN NĂM CHÚNG
TA CÓ THÊM 1 NGÀY (NĂM
NLUẬN) ĐỂ BỔ SUNG CHO
6 GIỜ VÀ 9 PHÚT THÊM.

Trời. Trái Đất tạo ra một **VÒNG QUAY**, hoặc một vòng tròn xung quanh Mặt Trời, cứ mỗi 365,25 ngày. Năm dương lịch của chúng ta là dựa trên vòng quay của Trái Đất (1 năm có 365 ngày).

Trái Đất quay quanh Mặt Trời tạo thành **QUỹ Đạo**. Quỹ đạo Trái Đất thực sự có dạng giống một hình Ellip, là một hình tròn thuôn dài, giống như **HÌNH OVAL**. Điều này có nghĩa là khoảng cách từ Trái Đất đến Mặt Trời không giống nhau quanh năm.

ĐỘ NGHĨÊNG CỦA TRÁI ĐẤT: Trái Đất cũng đang nghiêng. Trục của Trái Đất nghiêng 23,44 độ so với đường vuông góc với đường thẳng quỹ đạo của nó (có nghĩa là ở góc 90 độ so với

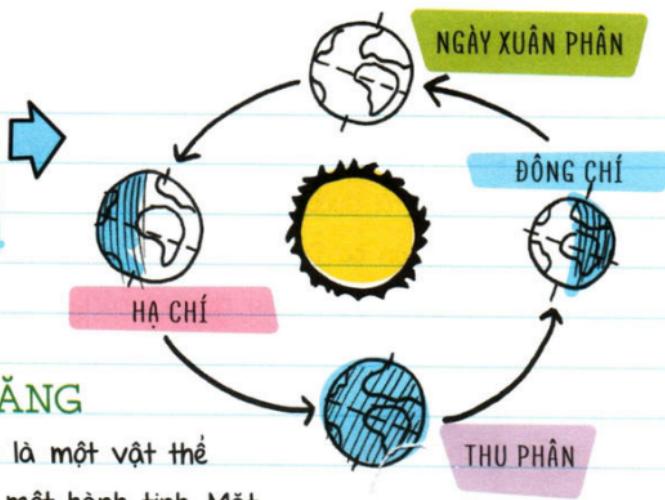

vòng quay của nó quanh Mặt Trời). Vì Trái Đất nghiêng, ánh sáng tác động lên bề mặt Trái Đất ở các góc khác nhau, ở các tầng khác nhau của quỹ đạo của nó.

CÁC MÙA: Quỹ đạo Trái Đất, kết hợp với độ nghiêng của nó, tạo ra các mùa. Khi mà Bắc bán cầu nghiêng về phía Mặt Trời, các tia mặt trời chiếu vào nó ở một góc cao hơn và trong thời gian dài hơn, điều đó có nghĩa là nó nhận được nhiều năng lượng hơn từ Mặt Trời. Sự gia tăng năng lượng mặt trời và thời gian chiếu sáng của Mặt Trời dài hơn đã tạo ra mùa hè cho bán cầu Bắc. Trong suốt mùa hè, nhiệt độ ấm hơn vì ngày trở nên dài hơn và góc ánh sáng mặt trời mạnh hơn.

Khi bán cầu Bắc nghiêng xa khỏi Mặt Trời, tia nắng mặt trời chiếu xuống nó ở một góc thấp hơn và trong ít giờ hơn trong ngày. Kết quả là mùa đông: nhiệt độ lạnh hơn vì ngày ngắn hơn và cường độ ánh sáng mặt trời ít hơn.

Các bán cầu Bắc và Nam luôn trong các mùa đối nghịch nhau. Khi mà Bắc bán cầu bị nghiêng về phía gần Mặt Trời, phía nam bán cầu nghiêng xa khỏi Mặt Trời, và

ngược lại. Khi ở Mỹ là mùa đông, ở nước Úc lại là mùa hè. Trục nghiêng không lắc lư qua lại để tạo ra các mùa - các mùa xảy ra bởi vì Trái Đất quay sang các phía của Mặt Trời.


ĐIỂM CHÍ: Những ngày Trái Đất nghiêng nhiều nhất về Mặt Trời được gọi là **ĐIỂM CHÍ**. Vào ngày chí, Mặt Trời đạt đến khoảng cách lớn nhất về phía bắc hoặc phía nam của đường xích đạo, vì vậy Mặt Trời ở độ cao lớn nhất hoặc thấp nhất trên bầu trời vào buổi trưa. Các ngày chí là khoảng 21 tháng 6 và 21 tháng 12, chúng đánh dấu ngày dài nhất và ngày ngắn nhất trong năm. Mặt Trời cao nhất trên bầu trời vào ngày hè chí và Mặt Trời thấp nhất trên bầu trời vào ngày đông chí. Ngày dài nhất trong năm là vào ngày hè chí và đêm dài nhất trong năm là vào ngày đông chí.

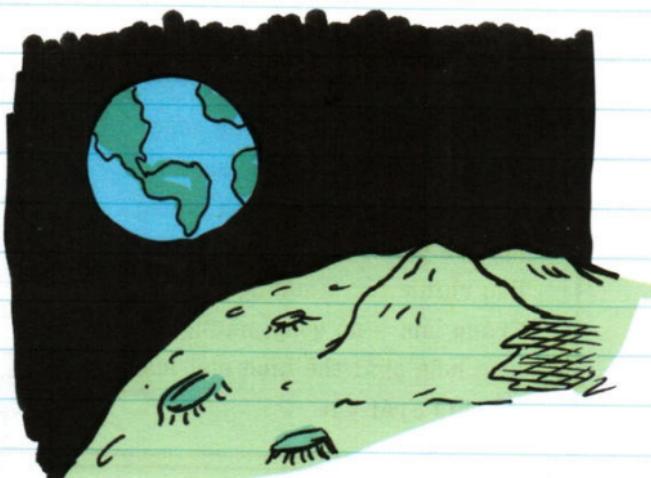
ĐIỂM PHÂN: Trái Đất không bị nghiêng về gần hoặc ra xa Mặt Trời vào ngày **ĐIỂM PHÂN**, vì vậy độ dài trong ngày là như nhau trên toàn thế giới. Vào những ngày điểm phân, Mặt Trời ở ngay trên xích đạo, gây ra ngày và đêm bằng nhau và đều là mười hai giờ ở khắp mọi nơi trên Trái Đất. Điểm phân xảy ra vào mùa xuân và mùa thu, rơi vào khoảng ngày 20 tháng 3 và ngày 22 tháng 9.

Điểm phân vào mùa xuân được gọi là **XUÂN PHÂN**, đánh dấu sự bắt đầu của mùa xuân.

Điểm phân vào mùa thu được gọi là **THU PHÂN**, đánh dấu sự bắt đầu của mùa thu.

Ở NAM BẢN CẦU,
CÁC MÙA SẼ
NGƯỢC LẠI VỚI
CÁC MÙA NÀY

MẶT TRĂNG


MẶT TRĂNG là một vật thể xoay quanh một hành tinh. Mặt

Trăng là một vệ tinh tự nhiên, là bất kỳ vật thể nào quay quanh một hành tinh. Mặt Trăng rất có thể được hình thành sớm nhất trong lịch sử Trái Đất khi hành tinh trẻ của chúng ta va chạm với các mảnh vỡ có kích thước bằng Sao Hỏa. Lực hấp dẫn kéo các mảnh vỡ lại thành một quả bóng lớn trở thành Mặt Trăng của chúng ta.

BỀ MẶT VÀ CẤU TẠO CỦA MẶT TRĂNG

Khi nhìn Mặt

Trăng vào một đêm trời trong, bạn có thể thấy các bề mặt khác nhau. Mặt Trăng có núi, miệng núi lửa, các đồng bằng tối bao gồm dung nham

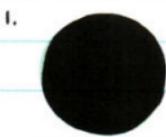
cũng từ các vụ phun trào núi lửa. Các khu vực núi của Mặt Trăng là được gọi là **BÌNH NGUYÊN MẶT TRĂNG** và các vùng đồng bằng tái được gọi là **BIỂN MẶT TRĂNG**. Mặt Trăng thậm chí còn có **ĐỘNG ĐẤT**! Các chuyên bay không gian cũng đã phát hiện ra rằng các cực của Mặt Trăng có thể chứa các vùng **BẮNG**!

KHÔNG HOÀN TOÀN CHỈ CÓ
BẮNG HOẶC NƯỚC - MÓN
TRÁNG MIỄNG MẶT TRĂNG

Chuyển Động của Mặt Trăng

QUAY VÀ TỰ QUAY: Mặt Trăng ở trong một chuyển động không đổi và hoàn thành một vòng quay quanh Trái Đất khoảng 27,3 ngày. Khi Mặt Trăng quay quanh Trái Đất, nó cũng quay quanh trục của nó khoảng 27,3 ngày một lần (giống như Trái Đất tự quay quanh trục của nó và cùng lúc xoay quanh Mặt Trời). Bởi vì vòng quay và tự quay của Mặt Trăng có cùng tốc độ nên chúng ta luôn thấy cùng một mặt của Mặt Trăng.

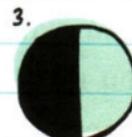
Khi bạn đi chơi trò vòng quay hấp dẫn tại một lễ hội, bạn quay liên tục, nhưng luôn hướng mặt về phía tâm của vòng tròn. Đây chính xác là những gì Mặt Trăng làm - nó quay, nhưng nó luôn luôn phải thể hiện một mặt về phía Trái Đất.



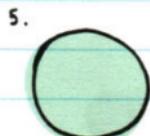
PHA MẶT TRĂNG: Mặt Trăng phát sáng vào ban đêm bởi vì nó phản chiếu ánh sáng mặt trời. Mặt Trời luôn chiếu sáng

một nửa Mặt Trăng, nhưng vì vị trí của Trái Đất và Mặt Trăng thay đổi nên chúng ta thấy các phần sáng khác nhau của Mặt Trăng mỗi đêm. Những thay đổi trong sự xuất hiện của Mặt Trăng được gọi là **PHA MẶT TRĂNG**, chúng phụ thuộc vào vị trí tương đối của Trái Đất, Mặt Trăng và Mặt Trời. Khi Mặt Trăng xuất hiện ngày càng lớn hơn vào ban đêm, đó là **TRĂNG LÊN** (có nghĩa là ngày càng lớn); khi Mặt Trăng ngày càng nhỏ hơn, đó là **TRĂNG LĂN** (có nghĩa là thu nhỏ lại).

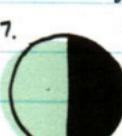
Lần đầu tiên con người nhìn thấy pha Mặt Trăng là cùng vũ trụ


Mặt Trăng trải qua tám pha:

Trăng non

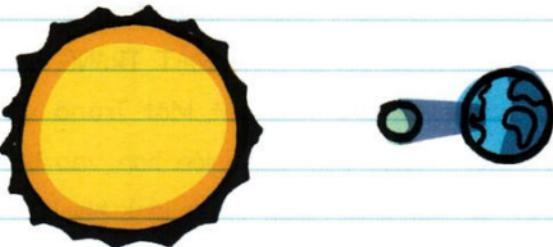

Trăng lưỡi
liềm đầu tháng

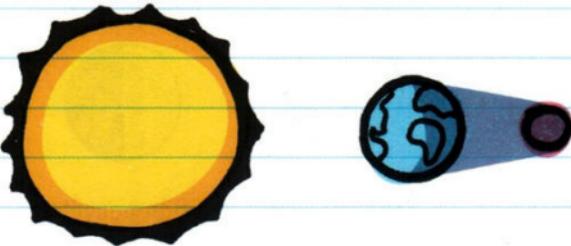
Bán nguyệt
đầu tháng


Trăng khuyết
đầu tháng

Trăng tròn

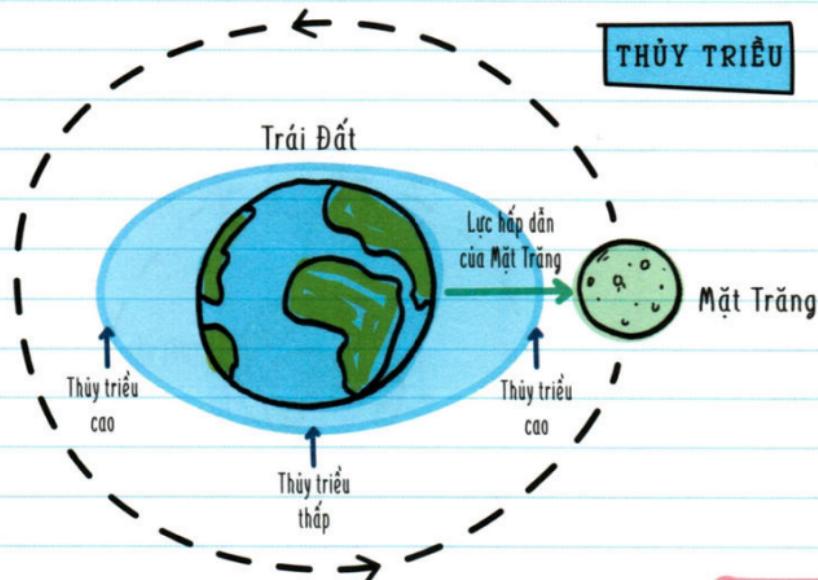
Trăng lưỡi
liềm cuối tháng


Bán nguyệt
cuối tháng

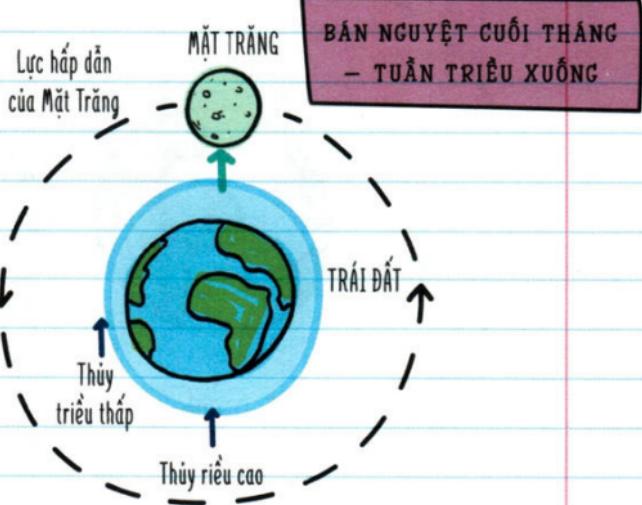
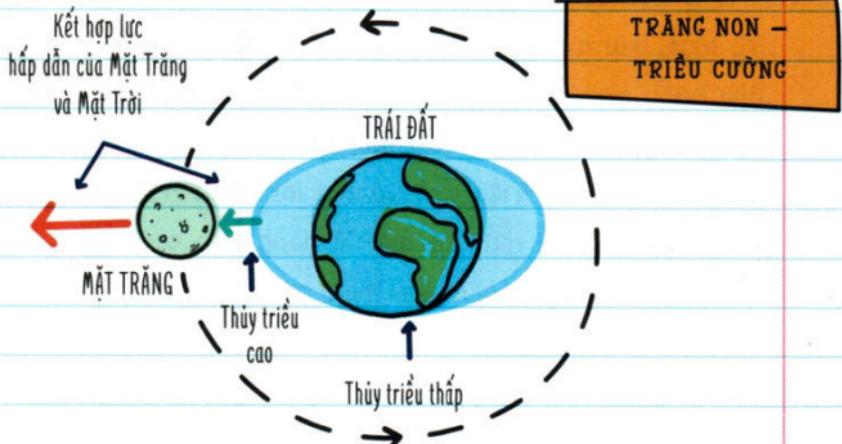

Trăng khuyết
cuối tháng

Mặt Trăng là trăng lưỡi liềm từ lúc là trăng non cho đến khi trăng tròn và khuyết từ trăng tròn cho đến trăng non. **MỘT KỶ TRĂNG**, tức là 29,5 ngày, là khoảng thời gian để Mặt Trăng hoàn thành tất cả tám pha của nó. Chúng ta có thể gọi đó là **một tháng**!

NHẬT THỰC: NHẬT THỰC xảy ra khi Mặt Trăng nằm giữa Trái Đất và Mặt Trời. Ở vị trí này, Mặt Trăng có thể chặn ánh sáng từ Mặt Trời, tạo bóng trên Trái Đất. Khi nhật thực xảy ra, Trái Đất có thể hoàn toàn ở trong bóng tối hoặc chỉ một phần trong bóng tối.


NGUYỆT THỰC: Trái Đất cũng có thể cản trở ánh sáng của Mặt Trời chiếu lên Mặt Trăng. Khi Trái Đất ở giữa Mặt Trời và Mặt Trăng, Trái Đất chiếu bóng lên Mặt Trăng, gây ra NGUYỆT THỰC. Trong kỳ nguyệt thực, một số ánh sáng khúc xạ xuyên qua bầu khí quyển Trái Đất, khiến Mặt Trăng phát sáng màu đỏ.

Thiên thực là những sự kiện hiếm hoi Mặt Trời, Mặt Trăng và Trái Đất sẽ cần được sắp xếp một cách hoàn hảo, vì thế thiên thực không xảy ra thường xuyên.



Thủy Triều

ẢNH HƯỞNG CỦA MẶT TRĂNG: Trong khi lực hấp dẫn của Trái Đất hút Mặt Trăng, giữ nó trên một quỹ đạo, lực hấp dẫn của Mặt Trăng cũng hút Trái Đất, gây ra hiện tượng thủy triều. THỦY TRIỀU là sự lên và xuống thường xuyên của mực nước biển. Các mặt của Trái Đất hoặc gần Mặt Trăng hoặc đối diện trực tiếp với Mặt Trăng trải qua thủy triều cao - nước đang bị kéo hướng về Mặt Trăng. Mức thủy triều cao đi qua Trái Đất giống như hành tinh của chúng ta xoay tròn dưới những chỗ thủy triều phình ra. Vì vậy hầu hết các địa điểm sẽ trải qua hai lần thủy triều cao và hai lần thủy triều thấp mỗi ngày. Bởi vì phải mất 24 giờ để hành tinh của chúng ta xoay nên thời gian giữa khi thủy triều cao và khi thủy triều thấp tiếp theo thường là khoảng 6 giờ.

ẢNH HƯỞNG CỦA MẶT TRỜI:

Khi Trái Đất, Mặt Trời và Mặt Trăng được xếp thành một hàng, lực hấp dẫn của Mặt Trăng và Mặt Trời cộng lại dẫn đến thủy triều cao cao hơn và thủy triều thấp thấp hơn, gọi là **TRIỀU CƯỜNG**. Khi Mặt Trời và Mặt Trăng ở góc 90 độ với nhau so với Trái Đất, lực hấp dẫn không thẳng hàng, vì vậy chúng không cộng dồn. Như kết quả, thủy triều, được gọi là **TUẦN TRIỀU XUỐNG**, ít rõ rệt hơn.

KIỂM TRA KIẾN THỨC CỦA BẠN

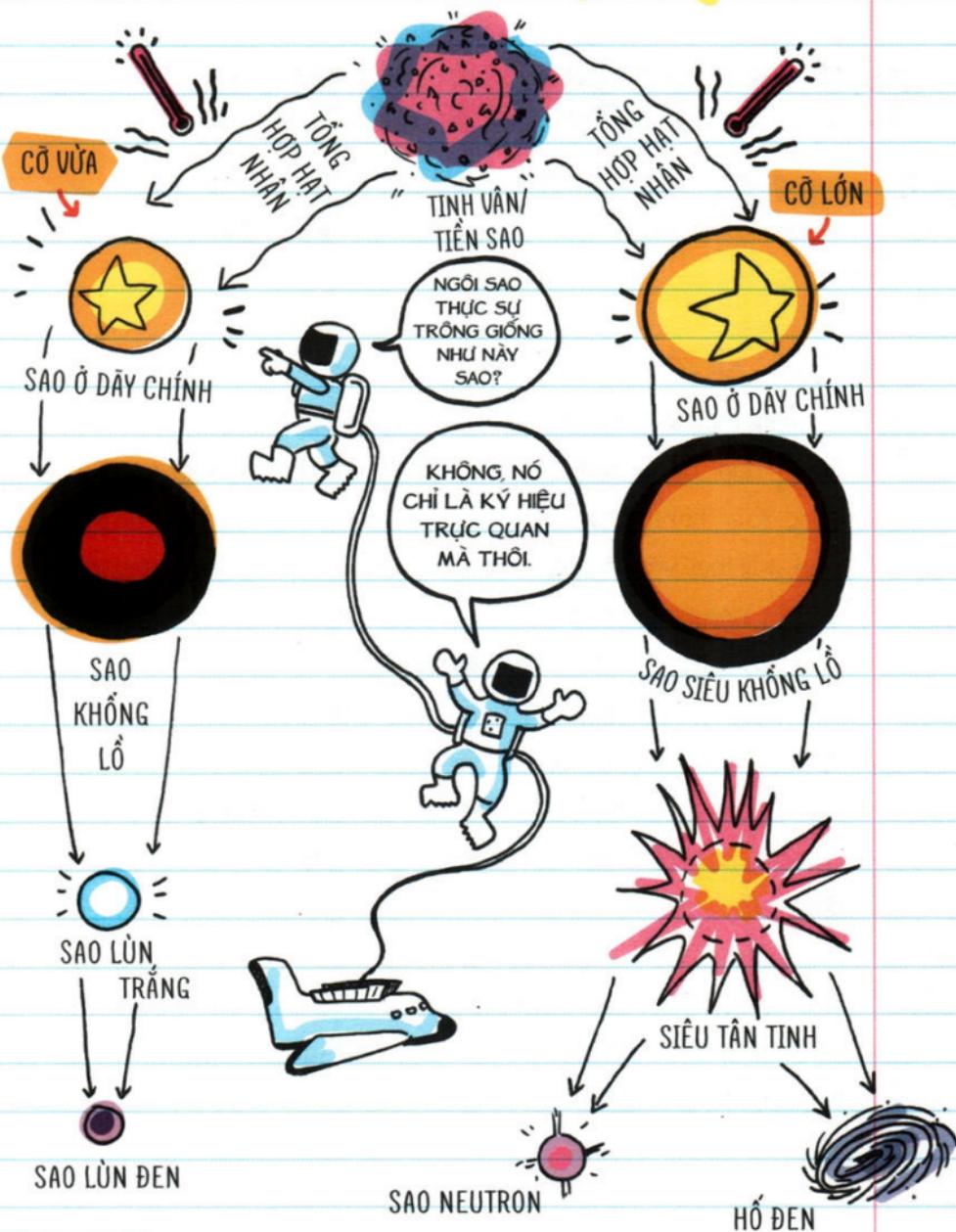
- 1 Một đường tưởng tượng mà chạy qua các cực của Trái Đất và Trái Đất quay xung quanh là gì?
- 2 Mô tả chuyển động hoàn chỉnh của Trái Đất hằng năm.
- 3 Khi nào là mùa hè ở bán cầu Bắc, tại sao?
- 4 Bạn nghĩ các mùa của chúng ta sẽ bị ảnh hưởng như thế nào nếu Trái Đất nghiêng nhiều hơn? Tại sao?
- 5 Giải thích sự khác biệt giữa điểm chí và điểm phân.
- 6 Tại sao chúng ta luôn nhìn thấy cùng một phía của Mặt Trăng?
- 7 Giải thích những gì xảy ra trong nhật thực và những gì xảy ra trong nguyệt thực.
- 8 Lực hấp dẫn của Mặt Trăng ảnh hưởng đến nước trên Trái Đất như thế nào?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Trục của nó
- 2 Trái Đất hoàn thành một vòng quay quanh Mặt Trời mất 365,25 ngày.
- 3 Khi bán cầu Bắc nghiêng về phía Mặt Trời, ánh sáng mặt trời chiếu một góc cao hơn và trong thời gian dài hơn, dẫn đến ngày dài hơn, ấm hơn.
- 4 Các mùa sẽ khắc nghiệt hơn. Ánh sáng mặt trời trong mùa hè sẽ ở một góc chiếu trực tiếp hơn và ngày dài hơn, điều ngược lại sẽ xảy ra với mùa đông.
- 5 Điểm chí là khi Trái Đất nghiêng nhiều nhất về phía Mặt Trời, đánh dấu những ngày dài nhất và đêm ngắn nhất trong năm. Điểm phân xảy ra vào những ngày Trái Đất không nghiêng về phía Mặt Trời, vì vậy độ dài của một ngày bằng nhau ở mọi nơi trên thế giới: 12 giờ ban ngày; 12 giờ ban đêm.
- 6 Chúng ta thấy cùng một phía của Mặt Trăng vì nó tự quay và quay quanh Trái Đất với cùng tốc độ.
- 7 Trong kỳ nhật thực, Mặt Trăng chặn ánh sáng Mặt Trời chiếu lên Trái Đất bởi vì Mặt Trăng thẳng hàng hoàn toàn với Mặt Trời và Trái Đất. Trong kỳ nguyệt thực, Trái Đất thẳng hàng hoàn toàn với Mặt Trời và Mặt Trăng. Trái Đất chặn ánh sáng Mặt Trời và tạo bóng lên Mặt Trăng.
- 8 Lực hấp dẫn của Mặt Trăng hút Trái Đất, gây ra thủy triều (mực nước đại dương tăng và giảm).

Chương 20

CÁC NGÔI SAO VÀ CÁC THIỀN HÀ


CÁC NGÔI SAO

SAO là một vật thể trong không gian phát ra năng lượng dưới dạng ánh sáng và nhiệt năng. Các ngôi sao được tạo thành từ khí và bụi bị hút vào nhau bởi lực hấp dẫn. Khi bụi và khí gần nhau hơn, nhiệt độ tại lõi của sao sẽ rất nóng đến mức hạt nhân của các nguyên tử bắt đầu hợp nhất lại với nhau. Hai nguyên tử hydro kết hợp với nhau tạo thành nguyên tử heli. Phản ứng này được gọi là phản ứng **TỔNG HỢP HẠT NHÂN**, nó phát ra một nguồn năng lượng cực lớn được truyền qua không gian trong các bước sóng ánh sáng khác nhau (năng lượng điện tử).

SỰ SỐNG CỦA CÁC NGÔI SAO

Dưới đây là sự sống của một ngôi sao diễn hình từ lúc hình thành đến khi kết thúc:

VÒNG SỰ SỐNG CỦA MỘT NGÔI SAO DIỄN HÌNH

TỊNH VÂN: Là một đám mây khí và bụi lớn. Theo thời gian, trọng lực kéo các đám tinh vân lại. Một tinh vân được ngưng tụ gọi là **TIỀN SAO**.

PHẢN ỨNG TỔNG HỢP HẠT NHÂN: Khi các tinh vân co lại, nhiệt độ tăng lên cực kỳ lớn (hơn 10 triệu Kelvin) khiến phản ứng tổng hợp hạt nhân của hydro thành heli bắt đầu. Phản ứng tổng hợp hạt nhân giải phóng nguồn năng lượng ở dạng ánh sáng và nhiệt, hình thành một ngôi sao.

SAO Ở ĐÂY CHÍNH: Sự tạo thành của một ngôi sao tạo ra áp lực bên ngoài làm cân bằng lực hấp dẫn. Ngôi sao tiếp tục cung cấp nguồn năng lượng cho phản ứng tổng hợp của nó với hydro tại phần lõi. Nhiều ngôi sao lớn chỉ tồn tại vài triệu năm vì chúng đốt cháy nhiên liệu cực nhanh. Những ngôi sao có kích thước trung bình (như Mặt Trời của chúng ta) có thể tồn tại khoảng 10 tỷ năm (Chúng ta đã đi được nửa đường!) và những ngôi sao nhỏ có thể tồn tại đến một triệu triệu năm.

SAO KHÔNG LỒ: Những ngôi sao có kích thước trung bình chuyển đổi tất cả hydro của nó thành heli vì thế mà nó mất đi nguồn năng lượng và trở nên lạnh. Sự lạnh đi giảm áp suất bên ngoài và lõi co lại. Sự co lại của lõi tạo ra nhiệt độ cao và các tầng ngoài của ngôi sao mở rộng, lạnh đi và đẩy vào không gian. Một ngôi sao trong pha này của vòng đời được gọi là **SAO KHÔNG LỒ**. Những ngôi sao có kích thước lớn tạo thành **SAO SIÊU KHÔNG LỒ**, trong khi các ngôi sao bình thường tạo thành sao không lồ. Khi phần lõi của sao không lồ trở nên cực kỳ nóng từ sự nén khí, nó sẽ bắt đầu lai phản ứng tổng hợp.

Tiếp đó, một sao không lồ có thể thành sao lùn trăng hoặc sao siêu không lồ phát nổ trong một siêu tân tinh.

SAO LÙN TRẮNG: Sau khi sao khổng lồ sử dụng tất cả khí heli sẽ tạo ra một lõi nóng, đặc gọi là sao lùn trắng. Khi sao lùn trắng nguội đi và ngừng phát ra ánh sáng chúng trở thành **SAO LÙN ĐEN**.

SIÊU TÂN TINH: Là một siêu sao, được tạo ra từ một ngôi sao cực kỳ lớn, nén rất nhanh. Như cách nó được tạo thành, nhiệt độ điểm lõi của nó **CỰC KỲ** nóng. Sự kết hợp của các yếu tố lớn hơn bắt đầu từ phần lõi, cho đến khi chúng tạo nên các yếu tố nặng hơn như sắt. Sắt không thể giải phóng năng lượng như phản ứng hạt nhân do đó sắt khiến phần lõi bị sụp đổ dữ dội, truyền sóng qua các lớp bên ngoài của ngôi sao và gây ra vụ nổ ánh sáng gọi là siêu tân tinh. Sau khi siêu tân tinh tự sụp đổ, nó co lại thành một quả bóng cực đặc gọi là **SAO NOTRON** do chỉ có notron có thể tồn tại trong lõi. Những siêu tân tinh nhỏ hơn hình thành sao notron bởi vì notron có thể chống lại lực hấp dẫn kéo các siêu tân tinh lại với nhau. Ở các siêu tân tinh lớn hơn, lực hấp dẫn rất mạnh do không vật nào có thể ngăn chúng sụp đổ. Lực hấp dẫn hút tất cả mọi thứ xung quanh nó thậm chí cả ánh sáng cũng không thể thoát ra được, hình thành nên **LỖ ĐEN**.

Bụi và khí được thoát ra từ một ngôi sao trong suốt vòng đời của nó và nó có thể hình thành các tinh vân mới, bắt đầu lại một vòng đời như thế. Thực tế, nhiều nguyên tố mà chúng ta tìm thấy trên Trái Đất (từ hydro đến cacbon đến oxy đến sắt) đã được hợp nhất với nhau trong các ngôi sao cổ xưa. **CHÚNG TA THỰC SỰ ĐƯỢC TẠO TỪ BỤI SAO!**

Ngôi sao càng lớn, sự phát triển của nó càng nhanh. Thông thường các ngôi sao nhỏ hơn như các sao lùn trắng có thể sống lâu nhất vì chúng không đốt cháy nhanh các nhiên liệu.

Ánh sao

Khi nhìn trên bầu trời, tất cả các ngôi sao đều sáng như nhau. Nhưng thực tế, các ngôi sao phát ra ánh sáng khác nhau. Các ngôi sao khác nhau tỏa ra năng lượng khác nhau, điều đó ảnh hưởng đến màu sắc của ánh sáng. Đó là tất cả các loại sao, hoặc giai đoạn trong vòng đời của một ngôi sao.

Đối với hầu hết các ngôi sao, được biết đến là các ngôi sao dây chính, khi nhiệt độ của một ngôi sao tăng lên, chúng phát ra ánh sáng xanh hơn, sáng hơn. Khi các ngôi sao có nhiệt độ thấp hơn, nó sẽ phát ra ánh sáng đỏ mờ. Các ngôi sao lùn trắng và sao khổng lồ là ngoại lệ vì nhiệt độ của chúng không tương ứng với ánh sáng chúng phát ra. Sao lùn trắng là những ngôi sao rất nhỏ, chúng nóng nhưng không phát sáng, sao khổng lồ và sao siêu khổng lồ tuy rất sáng nhưng nó không nóng như những ngôi sao khác.

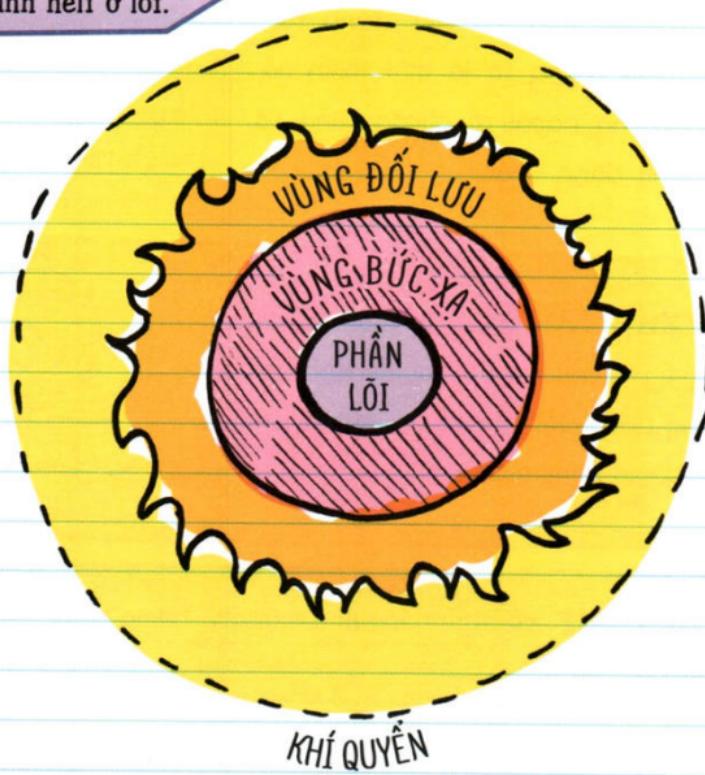
Các yếu tố khác nhau trong bầu khí quyển của các ngôi sao phát ra các QUANG PHỔ khác nhau. Quang phổ là sự kết hợp của các bước sóng ánh sáng, mỗi yếu tố giải phóng một sự kết hợp độc đáo. Các nhà thiên văn học có thể xác định thành phần của các ngôi sao dựa vào các bước sóng ánh sáng khác nhau của chúng.

Chòm sao

Khi bạn nhìn trên bầu trời vào buổi tối, bạn có thể nhìn thấy tất cả các loại sao. Các hình dạng và hình ảnh con người nhìn thấy trên bầu trời được gọi là CHÒM SAO.

Nhóm Sao Bắc Đẩu (một phần của chòm sao lớn hơn có tên gọi là chòm Đại Hùng, hoặc "Gấu Lớn") có lẽ là dễ nhận biết nhất trên bầu trời phía bắc.

Các nhóm sao giống như bản đồ được chiếu lên bầu trời đêm. Từ lâu, khách du lịch đã sử dụng các ngôi sao để định hướng. **SAO BẮC CỰC** nằm ở trên Bán Cầu Bắc. Ở bán cầu Bắc, các chòm sao di chuyển như quay chậm xung quanh sao Bắc Cực. Các chòm sao khác nhau xuất hiện vào các thời điểm khác nhau trong đêm và tại các thời điểm khác nhau trong năm.


MẶT TRỜI

Mặt Trời là một ngôi sao giống như mọi ngôi sao khác về đêm. Các nhà thiên văn học mô tả Mặt Trời như một sao lùn vàng dây chinh, có kích thước trung bình, nằm ở trung tâm Hệ Mặt Trời. Mặt Trời là duy nhất trong thiên hà của chúng vì nó nằm rất xa các ngôi sao khác. Nhiều ngôi sao khác nằm trong cụm hoặc trên quỹ đạo với nhau. Trên thực tế có hơn một nửa số ngôi sao bạn nhìn thấy vào ban đêm thực sự có thể là hai ngôi sao "sinh đôi" xoay quanh nhau nhưng chúng lại gần nhau đến mức chúng trông giống như một ngôi sao.

CÁC LỚP CỦA MẶT TRỜI

PHẦN LÕI: Như các ngôi sao khác, Mặt Trời tạo ra ánh sáng và nhiệt thông qua phản ứng tổng hợp hydro, tạo thành heli ở lõi.

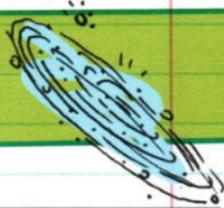
VÙNG BỨC XẠ: Năng lượng từ phản ứng tổng hợp truyền từ phần lõi đến vùng bức xạ.

VÙNG ĐỔI LƯU: Năng lượng từ vùng bức xạ truyền đến vùng đổi lưu, nơi khí lưu thông và truyền năng lượng ra xung quanh theo các dòng đổi lưu.

KHÍ QUYỂN: Khí quyển của Mặt Trời kéo dài vài triệu dặm ra bên ngoài từ Mặt Trời.

THIÊN HÀ và VŨ TRỤ

THIÊN HÀ là một nhóm lớn bao gồm các ngôi sao, khí và bụi. Mặt Trời nằm trong một NGÂN HÀ. Ngân Hà có chiều dài khoảng 100.000 năm ánh sáng. Dài sáng như một vệt ngang giữa của bầu trời đêm được tạo từ khoảng một tỷ ngôi sao trong thiên hà của chúng ta.


Thiên hà của chúng ta là một thiên hà xoắn ốc nhưng ngoài ra chúng cũng có một số hình dạng khác:

Ngân Hà là thiên hà duy nhất trong hàng trăm triệu thiên hà trong vũ trụ của chúng ta (mỗi thiên hà gồm hàng trăm tỷ ngôi sao!).

THIÊN HÀ XOẮN ỐC: các thiên hà có các nhánh xoắn ốc nổi lên từ tâm. Hệ Mặt Trời của chúng ta có một hố đen ở tâm nơi hàng tỷ ngôi sao xoay xung quanh.

THIÊN HÀ ELIP: có hình dáng như một quả trứng khổng lồ.

THIÊN HÀ VÔ ĐỊNH HÌNH: có nhiều hình dáng khác nhau, không có hình xoắn ốc hay hình elip. Tất cả các hình dạng như vậy sẽ thuộc nhóm này.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Sao dây chinh sẽ mở rộng để tạo thành một ____.
- 2 Nguyên nhân khiến sao siêu khổng lồ trở thành siêu tân tinh?
- 3 Các ngôi sao khác nhau tỏa ra lượng năng lượng khác nhau, điều đó ảnh hưởng đến ____ ánh sáng phát ra.
- 4 Các ngôi sao có nhiệt độ lớn hơn thường phát ra ánh sáng có màu ____.
- 5 Tại sao Mặt Trời trong thiên hà của chúng ta là vật thể đặc nhất so với các ngôi sao khác?
- 6 Các nhà khoa học có thể chỉ ra cấu tạo của ngôi sao bằng cách phân tích ____ của chúng.
- 7 Khi sao lùn trắng nguội đi và ngừng phát sáng, chúng trở thành một ____.
- 8 Một ____ có hình dáng giống quả trứng khổng lồ.

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 Sao siêu khổng lồ

2 Khi sao khổng lồ nén lại, nhiệt độ tại phần lõi trở nên cực kỳ nóng. Phản ứng tổng hợp khiến các nguyên tố lớn hơn ở lõi tạo ra các nguyên tố ngày càng nặng hơn nữa, như sắt. Bởi vì sắt không giải phóng ra năng lượng, phần lõi sẽ bị sụp đổ dữ dội, truyền các sóng qua các lớp ngoài ngôi sao và tạo ra vụ nổ ánh sáng gọi là siêu tân tinh.

3 Mâu sắc

4 Mâu lam

5 Mặt Trời của chúng ta là duy nhất vì nó nằm cách xa các ngôi sao khác, các ngôi sao khác thường cụm lại với nhau hoặc xoay xung quanh nhau.

6 Quang phổ

7 Sao lùn đèn

8 Thiên hà hình elip.

Chương 21

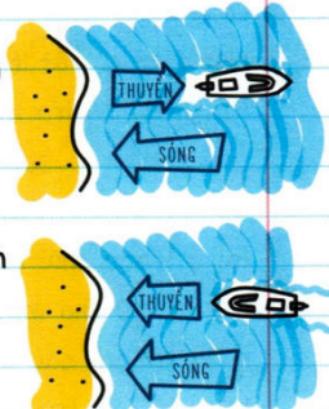
NGUỒN GỐC CỦA VŨ TRỤ VÀ HỆ MẶT TRỜI

NGUỒN GỐC CỦA VŨ TRỤ

Có nhiều lý thuyết trong nhiều thế kỷ qua về nguồn gốc của Vũ Trụ nhưng lại có rất ít bằng chứng ủng hộ chúng. Dưới đây là ba lý thuyết đã hỗ trợ trong các thời điểm khác nhau của thế kỷ trước:

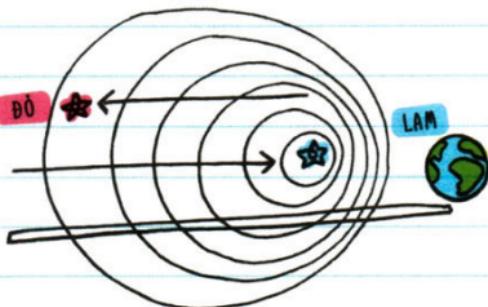
LÝ THUYẾT TRẠNG THÁI KHÔNG ĐỘI: Vũ Trụ luôn tồn tại ở trạng thái ổn định, khi nó mở rộng, vật chất mới được tạo ra giữ cho mật độ của Vũ Trụ luôn được nhất quán. Sự quan sát và các bằng chứng thu thập được từ những năm 1960 đã loại trừ khá nhiều khả năng này.

LÝ THUYẾT MÔ HÌNH DAO ĐỘNG: Vũ Trụ đang trong một chu kỳ mở rộng và co lại, giống như việc thời quả bóng bay, cho nó xì hơi và thời nó lên một lần nữa. Tuy nhiên chúng ta không có bằng chứng chỉ ra rằng Vũ Trụ sẽ co lại.


LÝ THUYẾT VŨ TRỤ LỚN (BIG BANG): Vũ Trụ của chúng ta bắt đầu khoảng 14 tỷ năm về trước từ một điểm nhỏ hon một nguyên tử. Nó trở nên rất nóng, dày đặc và bắt đầu mở rộng ra bên ngoài ("tiếng nổ"). Vật chất mới được làm lạnh để tạo ra các vật thể khác nhau, như các hành tinh, các mặt trăng và các ngôi sao. Nó vẫn đang tiếp tục mở rộng.

Đây là lý thuyết được chấp nhận và được hỗ trợ nhiều nhất. Nó liên tục được điều chỉnh khi phát hiện ra thêm bằng chứng mới.

BẰNG CHỨNG VŨ TRỤ ĐANG MỞ RỘNG


Chúng ta nhận thấy các sóng có tần số khác nhau tùy thuộc và chuyển động của chúng ta. Sự thay đổi tần số cảm nhận của sóng được gọi là SỰ DỊCH CHUYỂN DOPPLER. Hãy nghĩ về những chiếc tàu cao tốc ra xa bờ, nó sẽ nhanh chóng dội qua các đợt sóng đang đến. Nhưng khi chúng quay trở lại bờ, khi di chuyển cùng hướng với sóng bạn sẽ có cảm giác như bạn đi trên đỉnh của một con sóng có tần số ít hơn.

Trường hợp tương tự, khi xe cứu thương lái về phía bạn, âm thanh còi báo phát ra to hơn. Khi nó đi ra xa bạn,

tiếng còi nhỏ hơn. Sự thay đổi âm thanh gây ra bởi sự thay đổi tần số của sóng âm truyền vào tai bạn: Khi còi báo động lại gần về phía bạn, bạn nhận thấy các sóng âm gần nhau hơn, tạo ra âm thanh to hơn. Khi còi báo động di chuyển ra xa, bạn cảm nhận được sóng âm tần số thấp hơn, tạo ra âm thanh yếu hơn.

Các nhà khoa học sử dụng sự dịch chuyển Doppler của sóng ánh sáng để xác định các ngôi sao và các thiên hà đang dịch chuyển ra xa hay lại gần chúng ta.

Thay vì nghe, họ quan sát. Nếu ngôi sao di chuyển lại gần chúng ta, các bước sóng ánh sáng của nó bị nén lại và ta thấy nó xanh hơn. Và khi nó ra xa chúng ta, nó sẽ đỏ hơn.

Ánh sáng của các thiên hà bên ngoài Cụm thiên hà Địa phương xuất hiện màu đỏ cuối quang phổ (**"DỊCH CHUYỂN ĐỎ"**), nghĩa là chúng hỗ trợ lý thuyết rằng toàn bộ Vũ Trụ đang **MỞ RỘNG**.

Khi chúng ta nhìn thấy ánh sáng trên bầu trời đêm, chúng ta quan sát ánh sáng để lại từ những ngôi sao từ hàng triệu năm trước. Dù cho ánh sáng di chuyển nhanh đến đâu, thiên hà và các ngôi sao ở rất xa nhau. Phải mất hàng hiệu năm để các sóng ánh sáng đến được Trái Đất. Chúng ta có thể nhìn "ngược thời gian" về thời kỳ đầu của vũ trụ bằng cách nhìn vào các ngôi sao và thiên hà xa xôi!

SỰ HÌNH THÀNH HỆ MẶT TRỜI

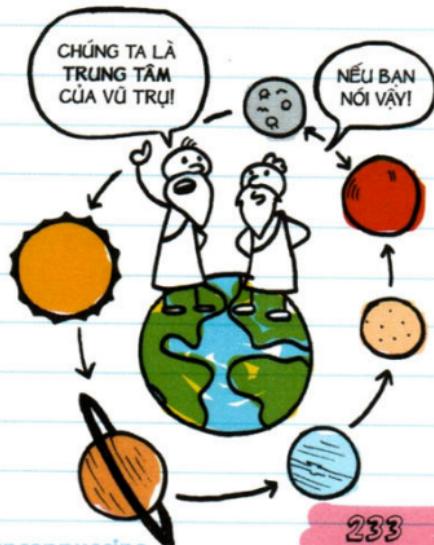
Hệ Mặt Trời của chúng ta bắt đầu hình thành từ khoảng 4.6 tỷ năm về trước dưới dạng một tinh vân - một đám mây trôi nổi tạo thành từ khí, băng và bụi.

Sóng xung kích có thể từ một ngôi sao phát nổ gần đó, đã khiến tinh vân bắt đầu quay và đông đặc. Khi nó quay, nó dẹt thành hình đĩa giống như một quả bóng bột nhão quay thành một đĩa bánh pizza trong không khí. Trọng lực kéo khí, bụi và băng thành các cụm lớn hơn quay tròn, và trọng lực đẩy vào thêm nhiều khí, bụi, băng. Nhiệt độ và áp suất của tất cả các vật chất ở vùng trung tâm trở nên cực kỳ nóng, từ đó bắt đầu sự tổng hợp, và một ngôi sao, Mặt Trời của chúng ta được sinh ra.

Phản khí, băng và bụi còn lại của tinh vân kéo chúng lại thành các cụm ngày càng lớn hơn, tạo thành các hành tinh, các mặt trăng và các vật thể không gian khác.

Vì năng lượng mặt trời rất mạnh, các yếu tố nhẹ hơn bị kéo vào từ vòng trong Hệ Mặt Trời.

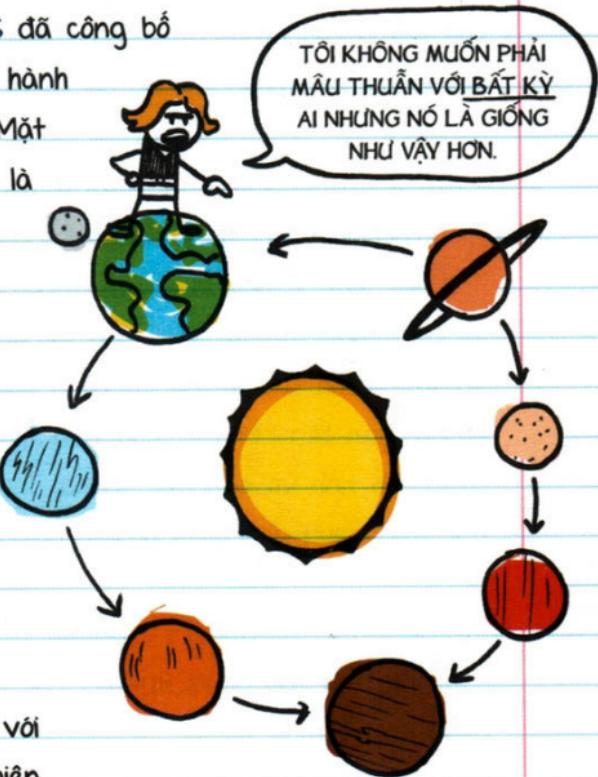
Kết quả, các hành tinh vòng trong gần Mặt Trời có thành phần chủ yếu là các nguyên tố nặng, trong khi các hành tinh vòng ngoài có thành phần chủ yếu là các nguyên tố nhẹ hơn và khí.


Tầm quan trọng của Trọng lực

Trọng lực là động lực sau nguồn gốc hình thành Hệ Mặt Trời (và một số yếu tố khác). Trọng lực kéo các tinh vân lại gần nhau, tạo ra nhiệt dẫn tới sự nóng chảy, hợp nhất và tạo thành sao. Trọng lực cũng khiến các vật liệu trong không gian liên kết với nhau, hình thành các thiên thể như các hành tinh và các mặt trăng. Trọng lực khiến các hành tinh trong quỹ đạo quay quanh Mặt Trời. **CẢM ƠN NHÀ TRỌNG LỰC!**

LÝ THUYẾT LỊCH SỬ của HỆ MẶT TRỜI

Các nhà triết học người Hy Lạp như Aristotle và Ptolemy tin rằng Trái Đất là trung tâm của Hệ Mặt Trời. Họ nghĩ rằng Mặt Trời, Mặt Trăng và năm hành tinh họ biết vào thời điểm đó đều xoay quanh Trái Đất.


MÔ HÌNH ĐỊA TÂM: Các nhà triết học người Hy Lạp như Aristotle và Ptolemy tin rằng Trái Đất là trung tâm của Hệ Mặt Trời. Họ nghĩ rằng Mặt Trời, Mặt Trăng và năm hành tinh họ biết vào thời điểm đó đều xoay quanh Trái Đất.

MÔ HÌNH NHẬT TÂM:

Vào năm 1543, NICOLAUS COPERNICUS đã công bố rằng Trái Đất và các hành tinh khác quay quanh Mặt Trời. Chỉ có Mặt Trăng là quay quanh Trái Đất.

Sau khi sử dụng quan sát của mình về Sao Kim, GALILEO GALILEI cũng đưa ra giả thuyết rằng Mặt Trời nằm ở trung tâm của Hệ Mặt Trời.

Các mô hình này gần với mô hình Hệ Mặt Trời hiện đại nhưng cả hai nhà khoa học Copernicus và Galileo đều bị chê gièu và bị bức hại chỉ vì công trình nghiên cứu của họ.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Trong ba lý thuyết về nguồn gốc Vũ Trụ, lý thuyết nào là đáng tin cậy nhất, tại sao?
- 2 Giải thích sự dịch chuyển Doppler.
- 3 Nếu bạn đứng yên trong một chiếc xe và còi tàu hỏa rú lên đi qua bạn, âm thanh sẽ thay đổi như thế nào trước và sau khi đi qua bạn?
- 4 Làm thế nào để chúng ta biết Vũ Trụ đang mở rộng?
- 5 Làm thế nào Hệ Mặt Trời của chúng ta được hình thành dựa trên lý thuyết Vụ Nổ Lớn?
- 6 Tại sao các hành tinh vòng trong bao gồm hầu hết các nguyên tố nặng hơn, trong khi các hành tinh vòng ngoài bao gồm hầu hết các nguyên tố nhẹ hơn?
- 7 Các nhà triết học Hy Lạp đã nhìn nhận về Hệ Mặt Trời của chúng ta như thế nào?
- 8 Các nghiên cứu của Galileo và Copernicus đã thay đổi mô hình của Hệ Mặt Trời như thế nào?

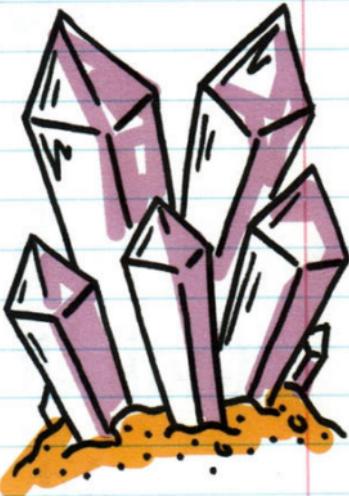
KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Trong lý thuyết trạng thái không đổi, mô hình dao động và lý thuyết Vũ Nổ Lớn thì lý thuyết Vũ Nổ Lớn là đáng tin cậy nhất vì chúng ta biết Vũ Trụ đã thay đổi đáng kể xuyên suốt lịch sử, chúng ta không có bằng chứng cho thấy Vũ Trụ sẽ co lại và chúng ta biết Vũ Trụ đang mở rộng.
- 2 Sự dịch chuyển Doppler là sự thay đổi được cảm nhận về tần số hoặc bước sóng của sóng âm hoặc sóng ánh sáng. Khi khoảng cách giữa nguồn sóng và người cảm nhận sóng giảm đi thì các bước sóng sẽ ngắn hơn, tần số cao hơn (và ngược lại).
- 3 Khi tàu di chuyển lại gần bạn, sóng bị nén và tiếng còi phát ra to hơn. Khi tàu ra xa bạn, sóng bị kéo dài khi khoảng cách của bạn với tàu tăng lên, do đó tiếng còi phát ra sẽ thấp hơn.
- 4 Bằng việc nghiên cứu sóng ánh sáng phát ra từ thiên hà, chúng ta có thể nhận ra sự dịch chuyển đó của ánh sáng, nghĩa là chúng ta cảm nhận ánh sáng có bước sóng dài hơn bình thường. Điều này có nghĩa là, các thiên hà đang di chuyển ra xa chúng ta.
- 5 Một sóng xung kích, có thể từ một ngôi sao đang phát nổ gần đó, đã khiến tinh vân bắt đầu quay và đông đặc. Khi tinh vân đông đặc mạnh hơn lực hấp dẫn, Mặt Trời được sinh ra, còn các phần còn lại tụm lại thành các hành tinh.
- 6 Năng lượng từ Mặt Trời trai dài các nguyên tố nhẹ hơn, vì vậy các hành tinh gần Mặt Trời mất đi hầu hết các nguyên tố nhẹ hơn của chúng.
- 7 Các nhà triết học người Hy Lạp nghĩ rằng Trái Đất nằm ở trung tâm Hệ Mặt Trời, mọi thứ quay xung quanh Trái Đất.
- 8 Họ đặt Mặt Trời ở trung tâm Hệ Mặt Trời.

PHẦN

Trái Đất,
thời tiết, khí quyển
và khí hậu

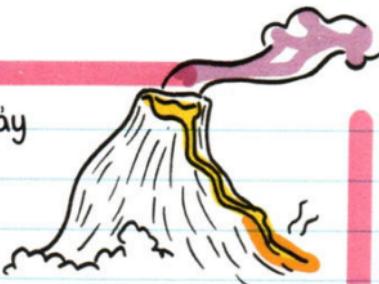
Chương 22



KHOÁNG SẢN, ĐÁ VÀ CẤU TRÚC TRÁI ĐẤT

KHOÁNG SẢN và
CÔNG DỤNG CỦA CHÚNG

KHOÁNG SẢN là một chất vô cơ
rắn được hình thành trong tự nhiên.
Khoáng sản có CẤU TRÚC TỊNH
THỂ nghĩa là các nguyên tử trong
khoáng chất được sắp xếp theo
một trật tự lặp đi lặp lại nhiều lần.


Các khoáng tinh thể được hình
thành theo một số cách khác nhau.
Hai cách phổ biến nhất đó là:

1. TỪ VIỆC LÀM NGUỘI MAGMA: Nấu chảy

(nung chảy) đá, được gọi là magma.

Chúng nguội đi khi chạm tới bề mặt của Trái Đất. Sau khi nguội đi, các nguyên tử của nó tạo thành các tinh thể, được tìm thấy trong **ĐÁ HÒA SINH**.

ĐÁ HÒA SINH

đá được hình thành từ magma nguội

2. HÌNH THÀNH TRONG DUNG DỊCH: Khi bạn làm bay hơi

nước và dung dịch, các ion còn lại có thể tạo thành

tinh thể. Kẹo cũng được làm ra dựa trên nguyên lý

nước bay hơi và các tinh thể đường còn lại kết tinh

ra các viên kẹo. Ngoài ra, đôi khi các hợp chất trong

dung dịch có thể KẾT TÙA, điều đó có nghĩa là chúng

tạo thành một vật thể rắn từ các ion trong dung dịch.

Khoáng sản có thể được xác định và phân loại dựa theo tinh chất vật lý của chúng:

MÀU SẮC

DƯỜNG SỌC: Các nhà khoa học cạo một ft khoáng chất trên viên gạch trắng để tạo ra một đường phấn hay đường sọc. Đường sọc này sẽ cho thấy dạng bột của khoáng chất đó và có màu khác với màu khoáng sản.

ĐỘ BÓNG: Sự sáng bóng của khoáng chất. Khoáng chất kim loại phản chiếu ánh sáng, trong khi khoáng phi kim loại có thể là màu trong, màu ngọc trai, màu xám...

SỰ CHIA TÁCH và **KHE NÚT**: Cấu trúc tinh thể của khoáng sản xác định cách thức chia tách của chúng. Sự chia tách là xu hướng một khoáng chất khi vỡ ra thành các miếng phẳng. Khe nứt là xu hướng một khoáng sản vỡ ra thành những mảnh lởm chởm, thô ráp. Một khoáng sản tạo thành các khe nứt càng cấp hơn khoáng sản chia tách.

SỰ CHIA TÁCH

KHE NÚT

ĐỘ CỨNG: Độ cứng của một khoáng sản cho biết mức độ dễ bị xước của khoáng sản. Kim cương là khoáng sản cứng nhất và chỉ có viên kim cương khác mới có thể làm xước chúng!

TRỌNG LƯỢNG RIÊNG: Khoáng sản chìm hay nổi? Trọng lượng riêng của mỗi loại khoáng sản hoặc của bất kỳ chất nào là tỷ trọng của nó so với tỷ trọng của nước, nếu một khoáng chất có tỷ trọng hơn nước 20 lần, nó sẽ có trọng lượng riêng là 20. Trọng lượng riêng bằng 1 có nghĩa là khoáng sản đó có cùng trọng lượng riêng với nước.

Công Dụng Của Khoáng Sản

Khoáng sản có giá trị nhất là **ĐÁ QUÝ** - chúng rất hiếm và đẹp. **QUẶNG** là khoáng sản có chứa nhiều thành phần hữu ích như sắt, chì, nhôm hoặc magiê. Quặng cần phải được xử lý các thành phần hữu ích đó. Nhiều loại khoáng sản có chứa silic và oxy, chúng được gọi là **SILICAT**. Hầu hết các khoáng chất trong lớp vỏ Trái Đất là silicat.

Chúng ta thường xuyên ăn các loại khoáng chất trong mỗi bữa ăn để giữ cơ thể luôn khỏe mạnh. Vitamin tổng hợp chứa một lượng lớn khoáng chất, như canxi.

ĐÁ và CHU TRÌNH HOẠT ĐỘNG

Đá là hỗn hợp từ các loại khoáng chất khác nhau, thùy tinh núi lửa, **CHẤT HỮU CƠ**, và/hoặc một số khoáng chất khác. Khi nhìn kỹ các tảng đá, bạn có thể nhìn thấy nhiều màu sắc khác nhau và đôi khi chúng trông khá lấp lánh, điều đó cho thấy các thành phần và khoáng chất khác nhau trong đá.

CHU TRÌNH HOẠT ĐỘNG CỦA ĐÁ cho thấy cách các viên đá được hình thành và cách thức biến đổi của chúng. Đá có thể trông giống nhau lúc ban đầu nhưng chúng thực sự rất khác biệt và phức tạp. Có ba loại đá chính, được phân loại dựa trên cách thức hình thành của chúng: đá **HÒA SINH**, đá **TRẦM TÍCH** và đá **BIẾN CHẤT**. Chu trình hoạt động sẽ cho thấy cách thức mỗi loại đá hình thành.

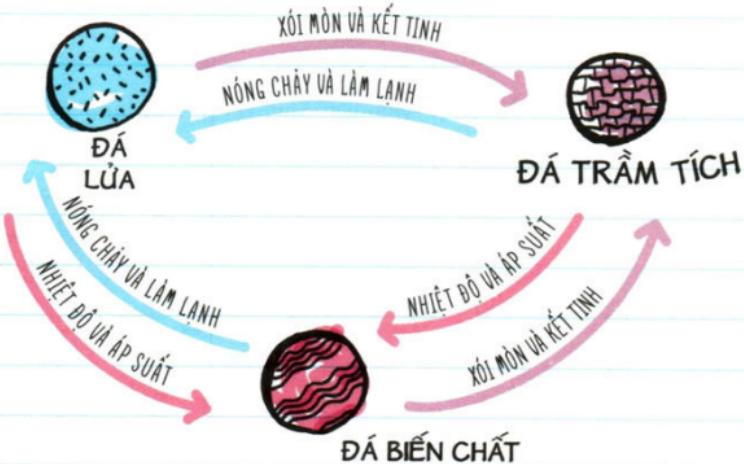
THỜI TIẾT

để đá ra ngoài không khí, nước và băng, để làm vỡ chúng theo cách cơ học hoặc hóa học.

Khi đó, đá hóa sinh sẽ trở thành **TRẦM TÍCH** (một phần của đá, khoáng chất và sinh vật sống) bằng các yếu tố **THỜI TIẾT** và sự xói mòn tạo nên.

Dưới một lượng lớn áp lực, trầm tích kết chặt với nhau và trở thành **ĐÁ TRẦM TÍCH**.

Nhiệt và áp suất từ Trái Đất ép và làm biến dạng đá trở thành **ĐÁ BIẾN CHẤT**.



Đá sau đó có thể bị tan chảy bởi nhiệt độ cao nằm sâu trong Trái Đất để tạo thành magma.

Magma phun lên trên bề mặt Trái Đất sau đó bị làm lạnh và cứng lại thành đá **HÒA SINH**. Chu trình này có thể tiếp diễn theo bất kỳ thứ tự nào.

CHU TRÌNH ĐÁ

Tất cả các quá trình này có thể xảy ra theo bất kỳ thứ tự nào. Ví dụ, đá hóa sinh có thể thành đá biến chất thông qua nhiệt độ và áp suất. Định luật bảo toàn năng lượng vẫn đúng trong chu trình đá - vật chất có thể thay đổi hình dạng, nhưng năng lượng không tự nhiên sinh ra và cũng không tự nhiên mất đi.

Đá Hoá Sinh

Sự làm lạnh của magma tạo nên đá hóa sinh. Khi magma nguội đi, các nguyên tử kết tinh và tạo thành các hạt khoáng chất. Đá từ magma hình thành chậm bên dưới bề mặt được gọi là đá hóa sinh XÂM NHẬP, ví dụ: đá granite. Đá hóa sinh xâm nhập có các hạt lớn hơn. (Hạt lớn hơn do tinh thể mài nhiều thời gian hơn để hình thành).

Nghĩ về đá xâm nhập như một "kẻ xâm nhập".
Đá xâm nhập phát triển chậm và thâm lặng dưới bề mặt như một kẻ xâm nhập vậy.

Đá hình thành từ quá trình làm lạnh nhanh dung nham trên bề mặt Trái Đất được gọi là đá hóa sinh **PHUN TRÀO**. Magma khi làm lạnh nhanh hơn sẽ tạo thành các hạt khoáng chất nhỏ hơn, do đó đá phun trào có các hạt khoáng chất nhỏ.

ĐÁ VỎ CHAI

được hình thành từ quá trình làm lạnh nhanh dung nham, hầu như không có hạt và trông giống thủy tinh.

NHƯNG NÓ KHÔNG TAN CHÁY.
NẾU TAN CHÁY NÓ SẼ THÀNH
ĐÁ HÓA SINH!

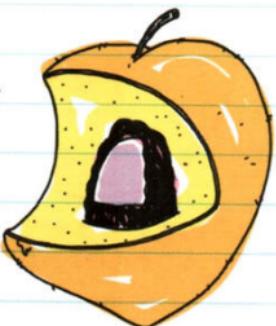
Đá Biển Chất

Trái Đất khi tạo áp suất và làm nóng đá sẽ tạo thành đá biển chất. Khi đá trở nên nóng và đủ mềm, chúng sẽ biến dạng dưới áp lực mạnh. Đá biển chất **PHÂN LÓP**, như các phiến đá, có cấu trúc phân lớp, trong khi đá **KHÔNG BIỂN CHẤT** như cát thạch lại không phân lớp.

Một lớp gọi là
LỚP ĐỊA TẦNG

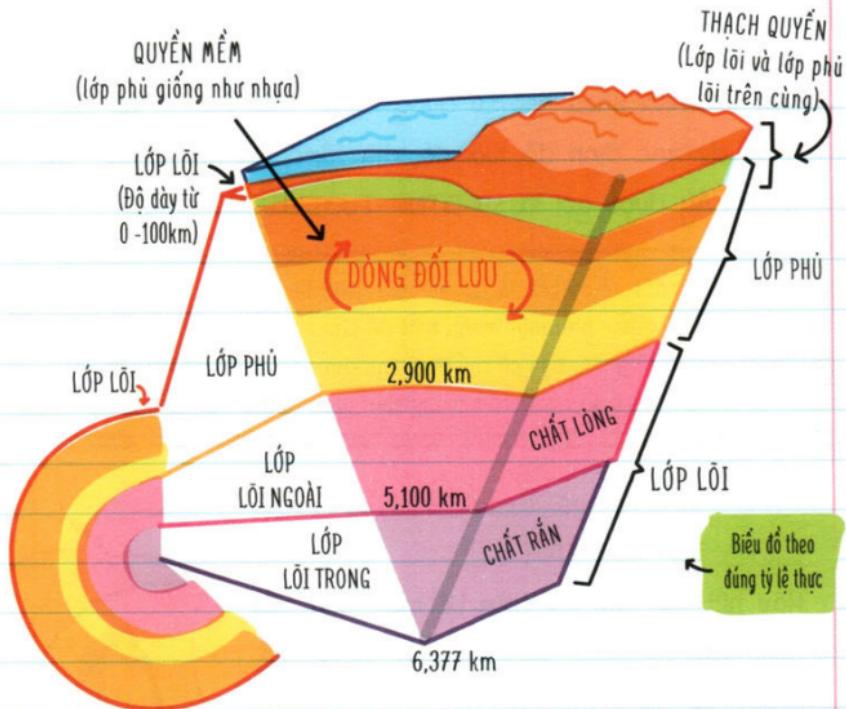
Đá Trầm Tích

Hầu hết các loại đá trên bề mặt Trái Đất gọi là đá trầm tích. Đá trầm tích được hình thành khi trầm tích được nén lại và kết lại với nhau. Thông thường đá trầm tích được hình thành từng lớp với nhau trong đó lớp lâu năm nhất nằm ở dưới cùng. Lớp đá này gọi là **ĐỊA TẦNG**.


NGUYỄN LÝ XẾP CHỒNG cho rằng trong khi các lớp tích tụ theo thời gian, lớp đá ở phía dưới cùng lâu năm hơn lớp đá phía trên cùng (nếu không có bất kỳ sự đảo lộn nào xảy

ra). Các nhà khoa học sử dụng vị trí của lớp so với lớp khác để xác định độ tuổi đá, địa tầng và hóa thạch. Chu trình này được gọi là **SỰ ĐỊNH TUỔI TƯƠNG ĐỐI**.

Định tuổi tương đối về cơ bản là tìm ra mối quan hệ tương quan về tuổi giữa các chất. Nó giống như một manh mối để tìm ra điều bí ẩn – nếu biết được tuổi của một lớp đá, bạn có thể ước tính được tuổi của cả khối đá đó và có được cái nhìn toàn cảnh về khoảng thời gian hình thành của chúng.


CẤU TRÚC và THÀNH PHẦN CỦA TRÁI ĐẤT

Hầu hết các loại đá trên bề mặt Trái Đất được làm từ silicon, oxy và một lượng nhỏ nhôm, sắt cùng một số nguyên tố vi lượng khác. Khi bạn đào sâu xuống lớp vỏ Trái Đất, các lớp sẽ khác nhau – thực tế, Trái Đất như một trái đào vậy:

LỚP VỎ: Lớp vỏ của trái đào giống như lớp ngoài cùng của Trái Đất. Lớp vỏ này chủ yếu là đất, đá và phần dày nhất là ở bên dưới phần đất và mỏng nhất là ở dưới đại dương. Lớp vỏ có thể sâu tới 70 km tại một số điểm nhưng thậm chí lớp vỏ của trái đào quá dày để đại diện chính xác cho lớp vỏ Trái Đất theo tỷ lệ.

LỚP PHỦ: Phần cùi của trái đào giống như lớp phủ của Trái Đất, là lớp lớn nhất của Trái Đất. Lớp này có đá magma cực kỳ nóng, dính và lưu chuyển rất chậm chạp trong **DÒNG ĐỔI LƯU** không lỗ, bao xung quanh phần vỏ.

LỚP LÕI NGOÀI: Vỏ bên ngoài của hạt đào giống như phần lõi ngoài của Trái Đất, phần lớn là sắt và nikén nóng chảy. Lõi ngoài lỏng này cung cấp cho Trái Đất từ trường.

LỚP LÕI TRONG: Lõi của hạt đào giống như phần lõi trong của Trái Đất, chủ yếu gồm kim loại và nikén rắn. Lõi bên trong ấm hơn lõi bên ngoài nhưng kim loại và nikén vẫn ở dạng rắn vì lõi bên trong chịu một áp lực đáng kinh ngạc từ lớp bên trên của nó.

Mật độ, áp suất và nhiệt độ đều tăng và khi bạn đến các tầng sâu hơn của Trái Đất. Hãy suy nghĩ bao nhiêu lượng đá và trọng lượng các vật khác đang ở trên đỉnh của lớp lõi trong của Trái Đất!

KIỂM TRA TRIẾT THỨC CỦA BẠN

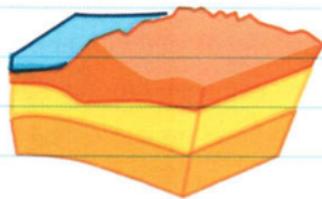
- 1 Khoáng chất có thể được hình thành dựa trên sự làm lạnh của _____
- 2 Khoáng chất có cấu trúc _____
- 3 Liệt kê các tính chất khác nhau được sử dụng để phân biệt khoáng sản.
- 4 Quặng là gì?
- 5 Làm lạnh magma hình thành đá _____
- 6 Đá biến chất được hình thành dưới _____ và _____
- 7 Địa tầng là gì?
- 8 Các lớp của Trái Đất từ lớp bên trong đến lớp bên ngoài là _____, _____, _____ và _____
- 9 Kim loại và niken có trong lớp lõi trong và lớp lõi ngoài _____ ở lớp lõi trong, nhưng _____ ở lớp lõi ngoài.
- 10 Làm cách nào để đá trầm tích trở thành đá biến chất?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Magma
- 2 Tinh thể
- 3 Màu sắc, đường vết, độ bóng, sự chia tách, khe nứt, độ cứng, trọng lượng riêng
- 4 Quặng là khoáng sản trong đó chứa các khoáng chất hữu dụng như sắt.
- 5 Hỏa sinh
- 6 Áp suất, sức nóng
- 7 Địa tầng là các lớp của đá trầm tích.
- 8 Lớp lõi trong, lớp lõi ngoài, lớp phủ, lớp vỏ
- 9 Chất lỏng, chất rắn
- 10 Dưới áp suất và sức nóng, đá trầm tích sẽ trở thành đá biến chất.

Chương 23

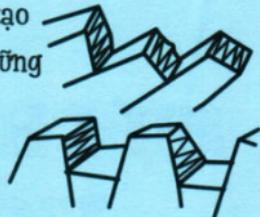


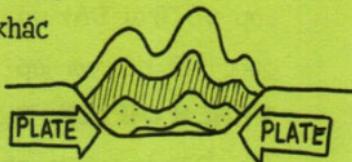
SỰ CHUYỂN ĐỘNG CỦA VỎ TRÁI ĐẤT

Lớp vỏ Trái Đất và lớp phủ cứng được kết nối với lớp vỏ, gọi là **THẠCH QUYỀN**. Thạch quyền của Trái Đất bị vỡ ra như vỏ trứng thành các mảng lớn gọi là các **ĐỊA TẦNG** (còn được gọi là **ĐỊA TẦNG KIẾN TẠO**). Các địa tầng này di chuyển xung quanh đỉnh của lớp giống như nhựa, gọi là **QUYỀN MỀM**.

Bề mặt Trái Đất và các đặc điểm địa chất của nó như núi, động đất và núi lửa, tất cả được tạo ra bởi hoạt động của các địa tầng thạch quyền (khi các địa tầng kiến tạo hoạt động không tron tru).

THẠCH QUYỀN
(lớp vỏ và lớp phủ cứng trên cùng)


THẠCH QUYỀN
lớp vỏ và lớp phủ cứng
liên kết với lớp vỏ


SỰ HÌNH THÀNH NÚI

Các hoạt động địa tầng khác nhau tạo ra các loại địa hình núi khác nhau như sau:

NÚI KHỐI ĐÚT GẤY: Các địa tầng di chuyển xa nhau tạo ra các **ĐÚT GẤY**, các lớp đá được kéo ra. Đôi khi điều này làm cho các khối đá lớn nghiêng và tách rời nhau, tạo thành các rặng núi và thung lũng song song. Những ngọn núi với các khối núi lởm chởm, sắc nhọn phía bên trên thung lũng rộng, bằng phẳng như dãy núi Teton và dãy Sierra Nevadal, thể hiện đặc trưng rõ rệt nhất của núi khối đứt gãy.

NÚI GẤP KHÚC: Các địa tầng di chuyển cùng nhau tạo ra một áp lực khổng lồ lên khối đá từ các phía khác nhau, khiến chúng phải gấp và ép lại với nhau. Bạn có thể thường xuyên nhìn thấy các lớp đá nếu bạn nhìn vào bề mặt lộ ra của các ngọn núi gấp khúc. Núi Appalachian ở bờ đông nước Mỹ là một ví dụ của những ngọn núi gấp khúc cổ xưa. Dãy Himalayas là một ví dụ về một dãy núi gấp khúc trẻ hơn nhiều và ít bị xói mòn.

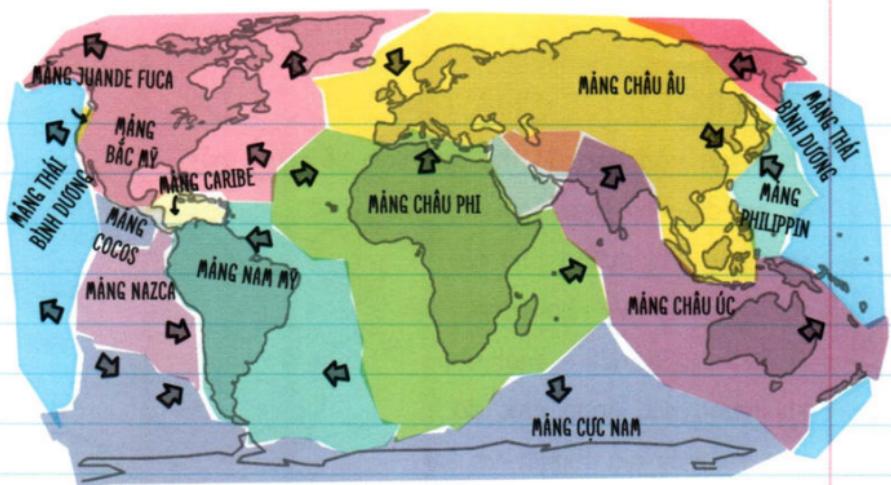
NÚI LỬA: Khi dung nham từ núi lửa nguội đi, nó tạo một lớp đá cứng. Các lớp dung nham cứng xếp chồng lên nhau có thể hình thành một ngọn núi hình nón, giống như ngọn Saint Helens và hàng chục các ngọn núi khác ở Cascades.

NÚI LỬA DƯỚI NƯỚC: Các vụ phun trào núi lửa dưới nước có thể hình thành các núi nhỏ dưới đáy biển. Vì dung nham xếp chồng lên nhau, cuối cùng ngọn núi chạm đến mặt nước, hình thành một hòn đảo núi lửa như Hawaii.

SỰ TRÔI DAT CỦA CÁC LỤC ĐỊA

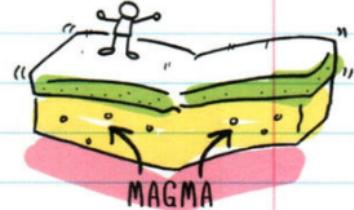
Nếu nhìn vào bản đồ thế giới, bạn sẽ thấy một số lục địa như Nam Mỹ và Châu Phi dường như có thể ghép lại với nhau được.

ALFRED WEGENER - một nhà khí tượng học người Đức đã đưa ra một giả thuyết về SỰ TRÔI DAT CỦA CÁC LỤC ĐỊA để giải thích cho điều này. Giả

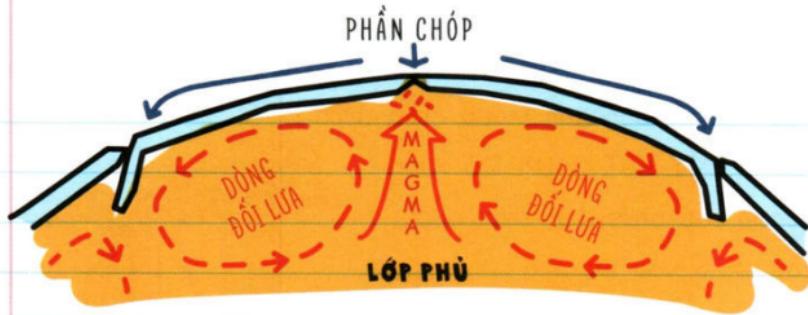


thuyết chỉ ra rằng ban đầu các lục địa được kết nối với nhau như một vùng đất rộng lớn mà Wegener gọi là SIÊU LỤC ĐỊA PANGAEA (phát âm là pan-jee-uh). Các nhà khoa học đã tìm thấy hóa thạch của các loại khủng long và thực vật cũng như đá tương tự ở bờ biển phía đông của Nam Mỹ và bờ biển phía tây của Châu Phi. Điều này đưa đến câu hỏi: khủng long có từng di qua các khu vực này không?

Các nhà khoa học đã tìm thấy hóa thạch của loài thủy long bò sát thời kỳ Triassic tại châu Phi, Ấn Độ và Nam Cực, nhờ vào giả thuyết của Wegener, ta có thể giải thích tại sao!


Mảng Kiến Tạo

Sự dịch chuyển và di chuyển của các mảng kiến tạo ảnh hưởng đến bề mặt và phần bên ngoài của Trái Đất. Tại ranh giới của các mảng kiến tạo (nơi rìa các mảng kiến tạo gặp nhau), các mảng này có thể di chuyển ra xa nhau, va chạm, chồng lên nhau hoặc cọ vào nhau. Sự nóng lên không đồng đều của lớp phủ gây ra các ĐỒNG ĐỒI LUU, hoặc sự luân chuyển nhiệt đã kéo các mảng kiến tạo lại với nhau.


Khi các mảng di chuyển xa nhau

Ranh giới giữa các mảng kiến tạo khi chúng di chuyển xa nhau gọi là **RẠNH GIỚI PHÂN KỲ**. Khi các mảng chuyển động tách ra, lớp magma từ lớp phủ đáy lên và hình thành lớp vỏ mới để lấp đầy lỗ hổng giữa các mảng. Lớp magma mới ít đặc hơn các lớp xung quanh, do đó nó thường nâng lên và tạo thành những đường nhấp nhô dưới đáy biển. Các mảng di chuyển xa nhau cũng có thể tạo thành các thung lũng rạn nứt, nơi mà Trái Đất bị chia tách.

TÁCH GIẢN ĐÁY ĐẠI DƯƠNG

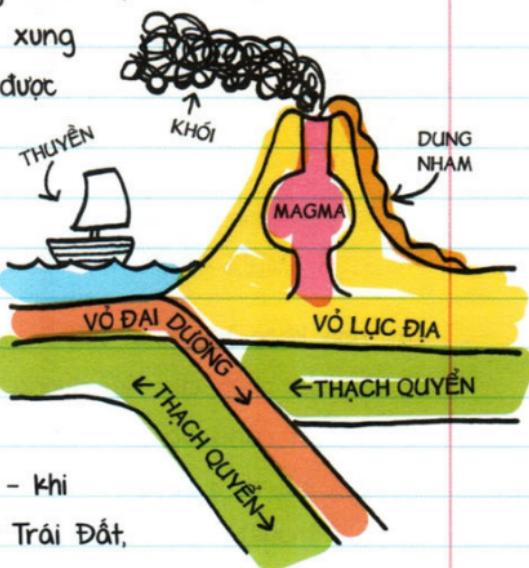
Bằng việc sử dụng sóng âm thanh, các nhà khoa học đã lập ra bản đồ dưới đáy biển và phát hiện ra một loạt các đường nhấp nhô dưới nước. Điều này dẫn đến một giả thuyết về sự **TÁCH GIẢN ĐÁY ĐẠI DƯƠNG**: Khi các mảng dưới đáy đại dương chia tách, lớp magma nóng bị đẩy lên và chảy qua các vết nứt, tạo thành những dải đá hóa sinh được gọi là **BAZAN**.

HÌNH TƯỢNG NÀY NGÀY NAY VẪN ĐANG ĐIỂM RA TẠI GIỮA ĐƯỜNG BIỂN CAO NHẤT ĐẠI TÂY DƯƠNG - SỰ CHIA TÁCH NÀY KHOẢNG 2,5 CM MỖI NĂM!

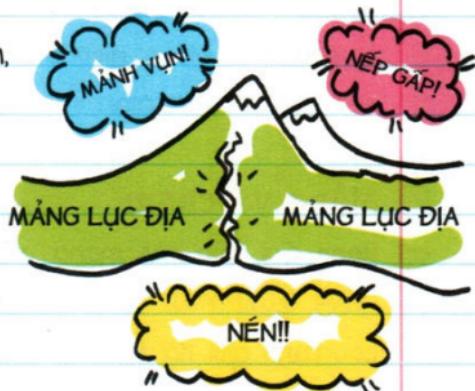
Các nhà khoa học phát hiện ra rằng những tảng đá cũ hơn ở xa phần chóp của đại dương hơn, điều này hỗ trợ cho giải thuyết rằng đá mới được hình thành ở phần chóp đại dương. Tinh tú trường của đá dưới đáy biển cũng hỗ trợ cho giả thuyết từ trường của Trái Đất sẽ biến đổi qua lại sau mỗi 200.000 đến 300.000 năm. Cũng như khi bạn đi xa hơn từ một sườn núi dưới đáy biển, các tảng đá sẽ có từ trường luân phiên, điều đó cho thấy nó được hình thành từ các khoảng thời gian khác nhau!

Mảng va chạm

Ranh giới giữa các mảng va chạm với nhau được gọi là RẠNH GIỚI HỘI TỤ. Các trận động đất lớn xảy ra dọc theo các ranh giới hội tụ này, thường sâu dưới lớp vỏ Trái Đất. Có hai loại mảng va chạm đó là: MẢNG ĐẠI DƯƠNG và MẢNG LỤC ĐỊA. Mảng đại dương nằm đặc hơn mảng lục địa vì vậy khi mảng đại dương và lục địa va chạm, mảng đại dương đặc hơn chìm vào lớp phủ, quá trình như vậy gọi là **SỰ HÚT CHÌM**.


SỰ HÚT CHÌM
khi một mảng chìm
sâu vào lớp phủ

NHỮNG THỦ ĐẬM ĐẶC HƠN
LUÔN CHÌM XUỐNG PHÍA DƯỚI
NHỮNG THỦ ÍT ĐẬM ĐẶC HƠN.


Khu vực xung quanh mảng chìm được gọi là ĐÓI HÚT CHÌM. Đá xung quanh các phiến hút chìm được tan chảy vào magma.

Magma, hoặc đá nóng chảy không đậm đặc như đá cứng của lớp vỏ hay thạch quyển. Vì vậy magma sẽ nổi lên trên bề mặt, tạo ra núi lửa.

Núi lửa phun trào magma - khi magma chạm đến bề mặt Trái Đất, nó được gọi là DUNG NHAM.

Khi hai mảng lục địa va chạm, do chúng có mật độ bằng nhau, một trong số chúng sẽ không bị hút chìm. Thay vào đó, các lớp vỏ bị nén lại với nhau, tạo thành các nếp gấp và các mảnh vụn chúng ta gọi đó là các ngọn núi.

Mảng đại dương xảy ra tại các chỏm giữa đại dương nơi đá nóng chảy đã nguội và đông cứng lại. Khi đá nóng chảy càng phun trào, nó đẩy các mảng đại dương xa khỏi chỏm. Khi càng ra xa, nó càng lạnh hơn và đặc

hon. Vì vậy khi hai mảng đại dương va vào nhau, mảng nào lâu đời hơn (đó chúng lạnh hơn và đặc hơn) sẽ nhấn chìm mảng trẻ hơn (chúng ẩm hơn và ít đậm đặc hơn). Một mảng đại dương luôn đặc hơn mảng còn lại.

Các mảng trượt qua nhau

Khi các mảng trượt qua nhau theo các hướng khác nhau, các cạnh của chúng có thể chạm vào nhau, gây ra ĐỘNG ĐẤT.

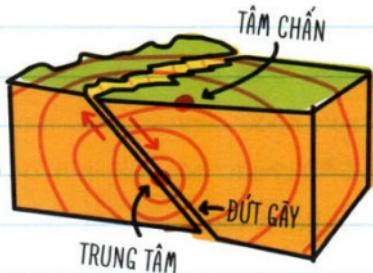
Những nơi thường xuyên xảy ra động đất như California nằm trên đỉnh của ranh giới của các mảng. Các mảng trượt qua nhau cũng có thể tạo thành **DỨT GÃY**

hoặc các vết nứt gãy không lồ. Ranh giới giữa các mảng trượt qua nhau được gọi là **RANH GIỚI BIỂN ĐỘI**.

ĐỘNG ĐẤT

Khi đá biến dạng do cọ sát với các địa tầng kiến tạo khác, chúng tạo ra thế năng lượng cho đến khi chúng phá vỡ và di chuyển, từ đó giải phóng tất cả thế năng lượng được lưu trữ từ trước đó. Sự di chuyển và phá vỡ này gây ra các rung động và di chuyển ra xa thành các đợt sóng gọi là động đất.

KHỐI BỊ MẮC KẾT
VỚI NHAU


Hãy nghĩ về những tảng đá được căng kéo như kéo một sợi dây cao su. Dây cao su sẽ tiếp tục giãn ra cho đến khi nó bị đứt và giải phóng tất cả thế năng lượng mà nó lưu trữ khi kéo căng.

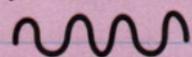
SÓNG ĐỊA CHẨN và CÁC DỮ LIỆU ĐỊA CHẨN

Năng lượng trong các trận động đất giải phóng ra các xung động gọi là **SÓNG ĐỊA CHẨN** và được truyền ra ngoài theo mọi hướng.

Nguồn gốc của sóng địa chấn, là nơi bắt nguồn của các chuyển động, gọi là **TRUNG TÂM**. Điểm gần nhất trên bề mặt Trái Đất đến trọng tâm được gọi là **TÂM CHẨN**. Các ánh hưởng của trận động đất được cảm nhận rõ nhất tại tâm chấn do rung động sẽ trở nên ít dữ dội hơn khi ở xa tâm chấn.

SÓNG ĐỊA CHẨN
Sóng năng lượng phát ra từ động đất

Sóng-P và Sóng-S


Có hai loại sóng địa chấn ngầm như sau:

1. **SÓNG SƠ CẤP**, gọi là **SÓNG-P**,

có độ rung cùng hướng với sóng đang truyền đi.

2. **SÓNG THỦ CẤP**, gọi là **SÓNG-S**, có độ

rung vuông góc với sóng truyền đi.

Khác biệt tốc độ giữa hai loại sóng địa chấn giúp xác định được tâm chấn của trận động đất.

Vì sóng-S và sóng-P truyền qua phía trong lòng Trái Đất nên chúng ta sẽ không bị ảnh hưởng nhiều. SÓNG BỀ MẶT là sóng địa chấn truyền trên bề mặt Trái Đất, di chuyển rất chậm nhưng lớn và do đó có thể có sức hủy hoại rất lớn.

Máy đo địa chấn và thang richter

Để đo mức độ hoặc

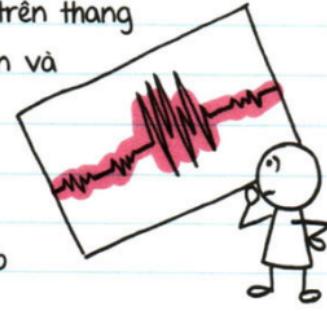
CƯỜNG ĐỘ của sóng địa chấn, các nhà khoa học sử dụng **MÁY ĐO ĐỊA CHÂN** để ghi lại sóng

địa chấn từ khắp mọi nơi trên thế giới. Sử dụng thông tin khoảng cách từ các trạm địa chấn khác nhau, họ có thể tìm ra tâm chấn của trận động đất.

CƯỜNG ĐỘ

đo lượng năng lượng mà một trận động đất đã giải phóng ra, được giải thích dựa trên chiều cao của sóng địa chấn và được ghi chép bởi máy đo địa chấn.

MÁY ĐO ĐỊA CHÂN


một thiết bị để ghi chép sóng địa chấn.

Cường độ của một trận động đất sử dụng đơn vị đo là **THANG RICHTER**. Độ lớn của richter dựa trên cường độ của sóng địa chấn. Hầu hết các trận động đất lớn nằm trong phạm vi từ 6 đến 9 trên thang Richter. Cứ tăng 1 điểm trên thang richter, mặt đất sẽ rung chuyển gấp 10 lần và mang nguồn năng lượng gấp 32 lần.

Sóng thần

Động đất khi xảy ra dưới nước có thể tạo nên sóng địa chấn dưới nước, được gọi là

SÓNG THẦN. Khi những con sóng thần này tiếp cận đất

liên, chúng có thể trở nên to lớn gấp nhiều lần. Đôi khi chúng có thể cao bằng một tòa nhà chín tầng và gây ra nhiều phá hủy lớn.

Năm 2004, tại Sumatra, Indonesia đã xảy ra một con sóng thần tồi tệ nhất trong lịch sử, làm hơn 230.000 người thiệt mạng. Vào năm 2011, một con sóng thần đã càn quét qua bờ biển Bắc Thái Bình Dương của Nhật Bản.

NÚI LỬA

Vì magma, hay đá nóng chảy, có kết cấu ít đậm đặc hơn so với đá rắn của lớp vỏ thạch quyển, nó liên tục có xu hướng muôn nồi lên trên bề mặt. Khi áp suất tăng lên, magma sẽ tìm ra một lỗ hổng trên bề mặt và chúng sẽ thoát ra từ đó. Núi lửa thường hình thành khi các địa tầng kiến tạo va chạm hoặc trôi ra xa nhau tạo thành một vết nứt dài, hoặc **NỨT RẠN**. Hoặc chúng có thể "đẩy lên" ở một **ĐIỂM NÓNG**, nơi chứa hàng tấn magma sôi sục đẩy lên trên bề mặt tại một điểm. ← **NHƯ TẠI HAWAII**

Khi tăng áp suất, magma sẽ tìm ra một khe hở, nó trào lên bề mặt, tạo ra **NÚI LỬA**. Một số magma chịu áp lực lớn đến mức một vụ phun trào núi lửa có thể đẩy dung nham, đá, tro và khí nóng xa đến hàng nghìn mét lên không khí.

← CÁC NHÀ KHOA HỌC CÓ THỂ DỰ ĐOÁN CÁC VỤ PHUN TRÀO NẾU THEO ĐỔI CÁC VỤ PHUN TRÀO TRONG QUÁ KHỨ CỦA NÚI LỬA VÀ SỬ DỤNG CÁC CÔNG CỤ GIÁM SÁT TRÊN NÚI LỬA.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Điểm nóng là gì?
- 2 Đá khi cách xa các chóp đại dương thì sẽ ____.
- 3 Vị trí của nguồn sóng địa chấn (ngay dưới tâm chấn) là gì?
- 4 Núi gấp khúc là gì?
- 5 Wegner gọi vùng đất bao gồm tất cả các lục địa là ____.
- 6 Sóng biển gây ra bởi động đất gọi là gì?
- 7 Tên của một giả thuyết giải thích các dãy nhấp nhô dưới nước và tuổi của đá dưới đáy biển là gì?
- 8 ____ bằng chứng từ khắp mọi nơi ủng hộ cho giả thuyết của Wegener Pangaea.
- 9 Cường độ của động đất được đo bằng thang ____.
- 10 Lớp vỏ và phần cứng của lớp phủ gắn với lớp vỏ được gọi là ____.
- 11 Khi các mảng đại dương và mảng lục địa va chạm, kết quả xảy ra là gì?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- Điểm nóng là nơi chứa một lượng lớn gồm hàng tấn magma được đẩy lên bề mặt Trái Đất để tạo ra núi lửa.
- Già hơn
- Trung tâm
- Núi gấp khúc là ngọn núi được hình thành do các mảng di chuyển cùng nhau tạo ra một áp lực khổng lồ lên khối đá khác theo các hướng khác nhau, khiến chúng phải gấp và ép lại với nhau.
- Siêu lục địa Pangea
- Sóng thần
- Đáy biển giãn nở
- Hóa thạch
- Richter
- Thạch quyển
- Mảng đại dương sẽ trượt phía dưới mảng lục địa vì mảng đại dương có độ đặc ít hơn. Nó được gọi là sự hút chìm. Magma được tạo thành bởi đói hút chìm xung quanh mảng chìm. Khi magma nổi lên bề mặt, nó tạo ra núi lửa.

Chương 24

PHONG HÓA VÀ XÓI MÒN

Bề mặt Trái Đất luôn thay đổi. Trong khi Trái Đất liên tục hình thành núi và đất liền, nó cũng liên tục bị thay đổi bởi phong hóa và xói mòn.

PHONG HÓA

Phong hóa là khi đá bị vỡ thành những mảnh nhỏ hơn, giống như nghiền một viên kẹo cứng thành nhiều miếng nhỏ. Các lực chính giúp phá vỡ đá chính là lực CƠ HỌC và **HÓA HỌC**.

SỰ PHONG HÓA CƠ HỌC khi các lực vật lý làm phá vỡ đá.

NÊM BĂNG: Nước trong các vết nứt của đá bị đóng băng và mở rộng ra làm các vết nứt mở rộng. Quá trình này lặp lại và đá được đẩy ra xa.

THỰC VẬT VÀ ĐỘNG VẬT: Rễ cây

có thể gây áp lực lên đá, làm vỡ chúng thành nhiều mảnh. Ngoài ra, động vật đào hố và hang sẽ làm vỡ đá.

MÀI MÒN: Nước và gió mang theo các hạt va vào đá, từ từ làm xuất bể mặt chúng - giống như chà giầy nhám lên đá.

GIẢI PHÓNG ÁP LỰC: Khi đá ngầm nồi lên trên bề mặt, chúng tạo ra ít áp lực hơn, do đó chúng có thể nở ra và vỡ ra thành từng miếng.

ỨNG SUẤT NHIỆT: Khi đá nóng lên, chúng nở ra và khi được làm lạnh, chúng co lại. Quá trình này liên tục gây áp lực lên đá cho đến khi đá nứt ra.

PHONG HÓA HÓA HỌC là khi đá bị phô vỡ bởi các tác nhân hóa học, như cách soda có thể bào mòn men răng của bạn vậy!

AXIT TỰ NHIÊN: Carbon dioxit trong không khí hoặc đất phản ứng với nước tạo ra cacbon axit, chúng có thể ăn mòn (bào mòn) một số loại đá, đặc biệt là đá vôi. "Mưa axit" sẽ giúp làm tăng tốc quá trình này.

AXIT THỰC VẬT: Rễ cây tạo ra axit hữu cơ có thể hòa tan các khoáng chất trong đá.

OXY: Oxy có thể phản ứng với đá và kim loại như sắt để phô vỡ chúng. Gi sắt được hình thành khi oxy phản ứng với sắt là một ví dụ của sự oxy hóa. Hầu hết các loại đá đỏ bạn nhìn thấy có màu đỏ bởi vì chúng có chứa rất nhiều sắt và màu đỏ đó chính là gi sắt!

ĐẤT

Đất là bụi bẩn bạn thấy trên mặt đất, hỗ trợ tất cả đời sống thực vật. **ĐẤT** là sự kết hợp của các loại đá phong hóa thành các miếng nhỏ, chất hữu cơ được hình thành từ sinh vật sống, nước và không khí. Các lớp đất được gọi là **TẦNG**. Đất phát triển trong hàng ngàn năm và đất trưởng thành hơn sẽ có nhiều tầng, hoặc lớp hơn.

Đất gần bề mặt Trái Đất nhất có chứa MÙN (không giống món khai vị bạn ăn đâu), trong đó có chứa nhiều chất hữu cơ từ xác động thực vật thối rữa. Mùn là một yếu tố cần thiết cho sự phát triển của cây trồng. Các chất dinh dưỡng từ sự phân hủy của xác động thực vật lại được tuần hoàn trở về với tự nhiên thông qua mùn trong đất.

XÓI MÒN

Khi bạn xây một lâu đài cát và sau đó sóng cuốn trôi, lúc này lâu đài cát của bạn bị xói mòn bởi những con sóng. XÓI MÒN là sự xóa bỏ nguyên liệu phong hóa. Có bốn lực xói mòn chính, đó là:

1. NƯỚC: Khi trời mưa, lực hấp dẫn kéo nước xuống Trái Đất.

RÃNH, SÔNG và SUỐI: Nước khi dịch chuyển được gọi là DÒNG CHÀY hay ĐƯỜNG PHÂN NƯỚC, nó hình thành các rãnh (như là máng nước, hoặc ống dẫn nước trên Trái Đất) nơi nó mang theo các trầm tích ra xa. Theo thời gian, những rãnh này có thể hình thành nên các con sông lớn. Nước càng di chuyển nhanh, vật chất chúng vận chuyển càng nặng.

DÒNG CHÀY TẦNG: Nước rơi xuống trên một bề mặt dốc như một ngọn đồi tạo thành một lớp nước mang theo nhiều trầm tích rời rạc gọi là SỰ XÓI MÒN BỀ MẶT. Nó giống như một đường trượt khổng lồ.

2. BĂNG: một lượng lớn băng được gọi là **SÔNG BĂNG**, chúng di chuyển trên bề mặt trái đất, mang theo các khối đá và bề mặt đá vụn và tạo thành rãnh. Sông băng cũng giống như dòng sông chứa băng và từ từ san phẳng đường xuống núi.

3. TRỌNG LỰC:

Dĩ nhiên, trọng lực là lực khiến nước và sông băng chảy hướng xuống phía dưới. Nó không chỉ khiến nước di chuyển mà còn có thể gây xói mòn đất thông qua

SỰ CHUYỂN ĐỘNG KHỐI hoặc sự xói mòn đất. Một số ví dụ có thể kể đến như **SỰ TRƯỢT LÒ ĐÁ** và **TRƯỢT BÙN**.

SỰ TRƯỢT LÒ ĐÁ

khi đá trở nên xốp rời, dần lại chảy từ trên đỉnh xuống chân đồi hoặc núi.

TRƯỢT BÙN

Như trượt lò đá nhưng kèm theo bùn: trầm tích nước thành bùn và nặng hơn. Trọng lượng có thêm nước kéo bùn trôi xuống dốc, tạo ra một trận lở bùn.

4. GIÓ: Gió thổi đá vụn và cát vào bề mặt của đá khác và chúng có thể vận chuyển các hạt này qua một khu vực rộng lớn.

SỰ BỒI ĐẮP

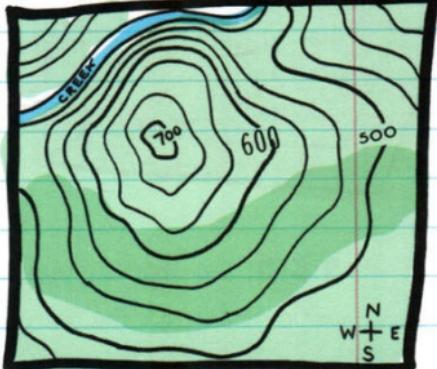
SỰ BỒI ĐẮP là quá trình do ngưng tụ nước hoặc gió, do rơi xuống hoặc do sự tràn tích. Một số ví dụ có thể kể đến như:

CHÂU THỒ: một khu vực hình tam giác có một lượng trầm tích giàu dinh dưỡng được bồi đắp bởi các con sông.

BÃI VEN SÔNG: một khu vực trầm tích được tạo ra do một dòng sông hoặc con suối gần đó chảy qua và bồi đắp trầm tích.

BĂNG TÍCH: đá vụn được bồi đắp bởi sông băng.

SƯỜN TÍCH hay **SƯỜN ĐÁ VỤN**: đá bị vỡ và rơi xuống vách đá gần đó.


CỒN CÁT: một ngọn đồi cát được tạo nên từ gió hoặc nước.

BẢN ĐỒ ĐỊA HÌNH

BẢN ĐỒ ĐỊA HÌNH có thể chứa các thông tin về vị trí các cao nguyên, dãy núi hay các vùng đất thấp như thung lũng. Độ cao của các vùng đất trên mực nước biển gọi là **ĐỘ CAO SO VỚI MỰC NƯỚC BIỂN**. Độ cao này thể hiện bằng các **ĐƯỜNG MỨC**, là các đường nối các điểm có cùng độ cao so với mực nước biển.

BẢN ĐỒ ĐỊA HÌNH

KIỂM TRA TRIẾT THỨC CỦA BẠN

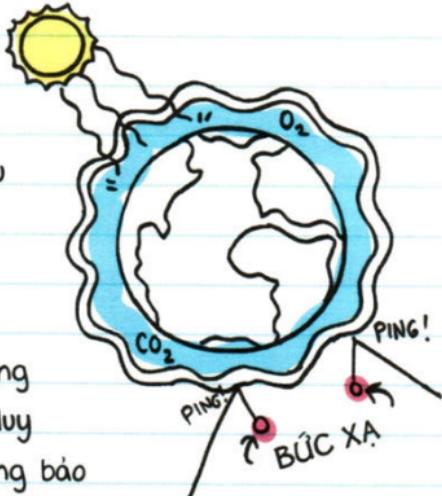
- 1 Giải thích sự khác biệt giữa phong hóa cơ học và phong hóa hóa học.
- 2 Lấy hai ví dụ về phong hóa cơ học.
- 3 Lấy hai ví dụ về phong hóa hóa học.
- 4 Định nghĩa "mùn".
- 5 Chỉ ra điểm khác biệt của việc nước làm xói mòn đất?
- 6 Giải thích cách ném băng hoạt động.
- 7 Lấy ví dụ thực tế về phong hóa hóa học.
- 8 Bản đồ địa hình cho ta biết điều gì?
- 9 Cách hình thành bãi ven sông?
- 10 Giải thích sự khác biệt của phong hóa, xói mòn và bồi đắp.
- 11 Sông băng vận chuyển trầm tích như thế nào?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Sự phong hóa cơ học là khi các lực vật lý làm phá vỡ đá. phong hóa hóa học là khi đá bị phá vỡ bởi các tác nhân hóa học.
- 2 Chọn hai trong số các ví dụ sau: ném băng, hoạt động của động thực vật, mài mòn, giải phóng áp lực và ứng suất nhiệt.
- 3 Chọn hai trong số các ví dụ sau: axit tự nhiên, axit thực vật hoặc oxy hóa.
- 4 Mùn là chất hữu cơ từ động thực vật bị phân hủy.
- 5 Nước chảy tạo ra sông, mương và suối, dòng chảy giúp làm xói mòn đất, và lớp xói mòn kéo đất từ trên xuống.
- 6 Nước trong vết nứt đóng băng, khi nước đóng băng nó sẽ mở rộng ra kéo theo vết nứt được mở rộng.
- 7 Gi sắt được hình thành trên đá giàu sắt.
- 8 Hình dạng của đất và đặc điểm địa chất của nó.
- 9 Bãi ven sông được tạo ra khi các con sông gần đó chảy và bồi đắp trầm tích.
- 10 Phong hóa là khi đá bị vỡ ra thành những mảnh nhỏ. Xói mòn là sự xóa bỏ những mảnh đá đã bị phong hóa. Cuối cùng, bồi đắp là sự ngưng tụ trầm tích.
- 11 Khi sông băng di chuyển, chúng cao trên bề mặt Trái Đất, mang theo các khối đá, trầm tích và các vật chất khác.

Câu số 7 có nhiều đáp án.


Chương 25

KHÍ QUYỀN CỦA TRÁI ĐẤT VÀ VÒNG TUẦN HOÀN NƯỚC

KHÍ QUYỀN CỦA TRÁI ĐẤT

KHÍ QUYỀN của Trái Đất là một lớp khí mỏng bao quanh hành tinh, giúp sự sống có thể tồn tại trên Trái Đất. Bầu khí quyển giống như chiếc áo khoác của Trái Đất vậy: nó hấp thụ và giữ một lượng nhiệt từ Mặt Trời để giúp chúng ta có nhiệt độ thích hợp để duy trì sự sống. Bầu khí quyển cũng bảo vệ chúng ta khỏi các bức xạ có hại và giúp giữ lại các chất khí bao gồm oxy và carbon dioxide để con người, động thực vật trên khắp hành tinh có thể tồn tại được.

Thành phần

Chúng ta thường gọi đơn giản là "không khí"

Khi quyển được tạo thành từ cả hai loại chất khí và SOL
KHÍ có cấu tạo là các hạt rắn. Chất khí bao gồm:

78% nitơ

21% oxy

1% các loại khí khác

như argon, carbon dioxide, hơi nước, **OZONE** (một loại khí độc, không màu), metan, carbon monoxide, hydro...

Mỗi loại khí đóng một vai trò quan trọng trong khí quyển.
HƠI NƯỚC giống như một màn sương mịn có thể tạo ra mây và thời tiết. Ozone hấp thụ tia tử ngoại (UV) từ Mặt Trời. Thực vật sử dụng carbon dioxide cho chu trình sống thiết yếu và nó còn được biết đến với tên gọi KHÍ NHÀ KÍNH - có nghĩa là nó giữ nhiệt từ Mặt Trời và làm ấm Trái Đất. Hiện nay, bầu khí quyển của Trái Đất có chứa quá nhiều carbon dioxide giữ nhiệt - nguyên nhân gây ra sự biến đổi khí hậu trên toàn cầu làm Trái Đất nóng lên. Hiện tượng này được gọi là BIẾN ĐỔI KHÍ HẬU TOÀN CẦU.

Cùng với các chất khí, có một lượng các hạt trong khí quyển gọi là Sol khí. Thành phần này bao gồm các hạt muối bắc hơi từ đại dương, bụi bẩn từ mặt đất, phấn hoa từ thực vật, tro bụi từ núi lửa, axit và các loại hạt ô nhiễm khác do con người gây ra. Sol khí có thể ảnh hưởng đến thời tiết và khí hậu bởi vì chúng phản xạ và hấp thụ ánh sáng mặt trời.

Các lớp khí quyển

Khí quyển bao gồm năm lớp (được sắp xếp theo thứ tự từ gần đến xa mặt đất)

ĐỘ DÀY CỦA CÁC LỚP RẤT ĐA DẠNG, DƯỚI ĐÂY CHỈ LÀ SỐ LIỀU TRUNG BÌNH

1. TẦNG ĐỐI LƯU: (Cách mặt đất từ 0 - 16 km)

- Là lớp gần Trái Đất nhất (tại những ngọn núi cao nhất chúng chỉ cao khoảng 8 km)
- Cây ra hầu hết các kiểu thời tiết
- Bao gồm hầu hết các phân tử không khí
- Được làm nóng bởi sức nóng của bề mặt Trái Đất, do đó khi càng lên cao hơn trong tầng đối lưu, không khí sẽ càng lạnh

2. TẦNG BÌNH LƯU: (Cách mặt đất từ 16 - 50 km)

- Là lớp phía trên tầng đối lưu
- Hầu hết các máy bay lớn sẽ bay ở tầng này
- Tầng ozone ở vị trí trên cao nhất của tầng bình lưu
- Nhờ tầng ozone nằm ở tầng bình lưu hấp thụ tia UV từ Mặt Trời, do đó khi càng lên cao hơn trong tầng bình lưu, không khí sẽ càng ấm

TẦNG OZONE

Là tầng khí ở trong tầng khí quyển giúp bảo vệ con người và động vật khỏi tia UV độc hại từ Mặt Trời.

3. TẦNG GIỮA: (Cách mặt đất từ 50 - 80 km)

- Nhiệt độ ở đây giảm mạnh vì nó chứa ít ozone - nhân tố giúp hấp thu nhiệt.
- Thiên thạch đi vào Hệ Mặt Trời thường bị đốt cháy ở tầng này (sao Băng là hiện tượng thiên thạch bị đốt cháy trong tầng giữa).

Tiền tố meso có nghĩa là "giữa". Tầng giữa nằm giữa các lớp của khí quyển.

4. TẦNG THƯỢNG: ((90 - 500 km))

- Là lớp nóng nhất trong khí quyển
- Lọc các tia Gamma và tia X từ Mặt Trời

5. TẦNG BÊN NGOÀI: (500 - 10.000 km)

- Là lớp phía trên tầng đối lưu
- Tầng ngoài cùng của khí quyển
- Hầu như không có vật chất, và cuối cùng mờ dần vào không gian
- Các vệ tinh quay quanh Trái Đất ở tầng này

Tầng bên ngoài là tầng ngoài cùng của khí quyển.

DANH MỤC BỔ SUNG: TẦNG ĐIỆN LY ↪

- Ion là một loại hạt tích điện - tầng điện ly là một lớp các hạt tích điện.
- Tầng này hấp thụ các sóng vô tuyến AM của Mặt Trời, vào ban đêm khi Mặt Trời lặn, tầng điện ly sẽ phản xạ sóng vô tuyến từ thành phố này đến thành phố khác.

MỘT LỚP KHÔNG CHÍNH THỨC, NÓ NẰM TRONG CÁC LỚP KHÁC.

VIỆC TIẾP NHẬN SÓNG VÔ TUYẾN SẼ TỐT HƠN VÀO BAN ĐÊM DO TẦNG ĐIỆN LY.

Tầng ozone

Oxy mà chúng ta thở được tạo ra từ hai nguyên tử oxy liên kết với nhau. Ozone được tạo ra từ ba nguyên tử oxy. Tầng ozone nằm trong tầng bình lưu giúp bảo vệ chúng ta khỏi tia UV - là loại tia gây ra cháy nắng và ung thư da.

THỦNG TẦNG OZONE KHÔNG GÂY RA BIẾN ĐỔI KHÍ HẬU TOÀN CẦU. Mặc dù nhiều NGƯỜI ĐANG RẤT QUAN NGẠI VẤN ĐỀ NÀY.

TẦNG BÊN NGOÀI

TẦNG THƯỢNG

TẦNG GIỮA

TẦNG BÌNH LƯU

TẦNG ĐỐI LƯU

TIA GAMMA

TIA X

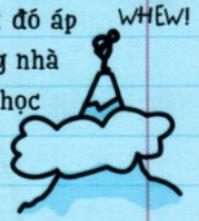
TẦNG ĐIỆN LY

Sử dụng các ký tự đầu của mỗi chữ cái
để nhớ được các lớp của khí quyển:

Test **SM**ake
Teachers **E**cited.

(**T**roposphere – Tầng đối lưu, **S**tratosphere – Tầng bình lưu, **M**esosphere –
Tầng giữa, **T**hermosphere – Tầng thượng, **E**xosphere – Tầng bên ngoài).

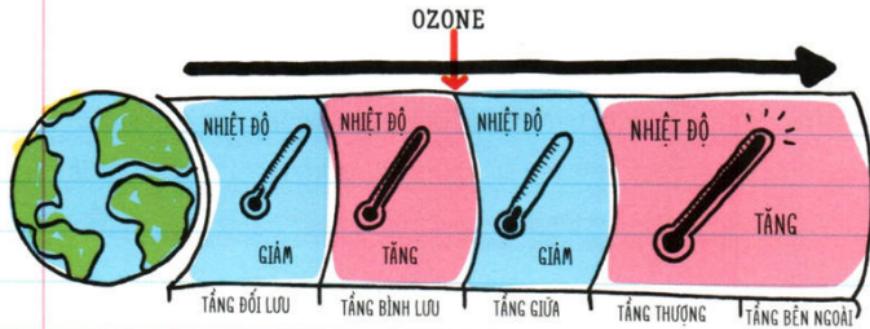
BẢO VỆ TẦNG OZONE


Chlorofluorocarbons (CFCs), hóa chất được sử dụng trong tủ lạnh và bình xịt sol khí (như bình xịt tóc) là nguyên nhân gây ra thủng tầng ozone. Việc chúng ta sử dụng chất CFCs là nguyên nhân gây ra thủng tầng ozone ở Nam Cực. Bạn có thể xem sự phát triển của tầng ozone tại trang ozonewatch.gsfc.nasa.gov.

Thay đổi áp suất

Do lực hấp dẫn kéo các phân tử lên bề mặt TRÁI ĐẤT, hầu hết các phân tử không khí đều tập trung gần bề mặt, vì vậy áp suất không khí sẽ lớn nhất khi ở tầng đối lưu. Áp suất không khí giảm khi bạn đi lên cao hơn trong tầng đối lưu.

Bạn sẽ cảm thấy khó thở khi bạn đi lên cao hơn vì khí đó áp suất không khí giảm, lượng oxy xuống thấp theo. Những nhà leo núi phải dành nhiều tháng tại các trại tầm cao để học cách thích nghi với sự khác biệt của điều kiện không khí, chuẩn bị cho việc leo lên các đỉnh núi cao.



Thay đổi nhiệt độ

Cũng giống như áp suất, nhiệt độ sẽ thay đổi theo độ cao. Bề mặt TRÁI ĐẤT được sưởi ấm bởi Mặt Trời trong khi tầng đối lưu lại nhận nhiệt từ bề mặt TRÁI ĐẤT. Vì vậy trong tầng đối lưu, nhiệt độ giảm khi bạn di chuyển xa khỏi mặt đất.

Tầng bình lưu được sưởi ấm bằng lớp ozone, nó hấp thụ rất nhiều bức xạ và nhiệt từ Mặt Trời. Vì tầng ozone nằm ở đỉnh của tầng bình lưu, nhiệt độ tại tầng này sẽ tăng khi bạn lên cao hơn.

Một phần của tầng giữa nằm gần lớp ozone nhất sẽ ấm nhất. Do lớp ozone nằm gần đáy tầng giữa, nhiệt độ sẽ giảm xuống khi bạn đi lên cao hơn.

Nhiệt độ trong tầng thượng và tầng bên ngoài cũng sẽ tăng khi bạn đi lên cao hơn so với mặt đất mặc dù có một số phân tử không cảm nhận được độ "nóng" đó.

CHU TRÌNH NƯỚC


Nước đi đến khắp các vùng đất và khí quyển thông qua CHU TRÌNH NƯỚC. Chu trình nước bao gồm sự bay hơi, thoát hơi nước, ngưng tụ, mưa, dòng chảy; các bước này được lặp đi lặp lại nhiều lần.

SỰ BAY HƠI là khi chất lỏng chuyển thành hơi nước bằng nhiệt. Ánh nắng mặt trời làm nóng nước ở các đại dương và trên mặt đất, biến nó thành hơi nước bốc lên khí quyển. Thực vật cũng giải phóng hơi nước vào không khí thông qua sự **THOÁT HƠI NƯỚC** hoặc sự **THOÁT-BỐC HƠI NƯỚC**.

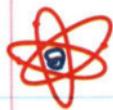
THOÁT HƠI NƯỚC hoặc **THOÁT-BỐC HƠI NƯỚC** là quá trình cây giải phóng hơi nước ra ngoài môi trường

NGUNG TỤ là khi một chất khí chuyển thành chất lỏng thông qua việc làm lạnh. Sau khi nước bốc hơi vào không khí, nó凝聚 dần và các phân tử nước liên kết lại với nhau tạo thành những giọt nước nhỏ li ti, tạo thành các đám mây.

MƯA là khi những giọt nước trong các đám mây lớn hơn và nặng hơn, chúng rơi thành giọt từ bầu khí quyển trở lại Trái Đất – gọi là mưa, tuyết, mưa đá, mưa tuyết.

Khi mưa rơi xuống mặt đất, nó bị hấp thụ và chảy vào các con suối, dòng sông rồi đổ vào đại dương. Nước chảy trên mặt đất gọi là **DÒNG CHÁY**, trong khi nước chảy dưới mặt đất gọi là **NƯỚC NGẦM**.

Không khí nóng đi qua các vùng đất và đại dương, làm nước bốc hơi trở lại bầu khí quyển, bắt đầu tất cả bước lại từ đầu! Nước không bao giờ thêm vào hay mất đi khỏi hệ sinh thái của chúng ta, chúng chỉ chuyển từ trạng thái này sang trạng thái khác.


KIỂM TRA TRIẾT THỨC CỦA BẠN

- 1 Hầu hết khí trên khí quyển là ___ và ___
- 2 Khi bạn đi lên cao hơn tầng đối lưu, nhiệt độ sẽ ___
- 3 Tầng nóng nhất trong khí quyển là tầng thượng mặc dù ta sẽ không cảm nhận được sức nóng của nó bởi vì ___ rất xa.
- 4 Mô tả tầng bình lưu.
- 5 Hầu hết thời tiết nằm ở ___
- 6 Lớp ozone bảo vệ chúng ta khỏi tác nhân nào?
- 7 Áp suất không khí ___ khi bạn đến gần bề mặt Trái Đất.
- 8 Mô tả tầng giữa.
- 9 Mô tả chu trình nước.

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Nitơ, oxy
- 2 Giảm xuống
- 3 Phân tử
- 4 Tầng bình lưu nằm trên tầng đối lưu. Hầu hết các máy bay lớn sẽ bay ở tầng này. Lớp ozone ở vị trí trên cao nhất của tầng bình lưu.
- 5 Tầng đối lưu
- 6 Tia cực tím hoặc tia UV
- 7 Tầng lén
- 8 Tầng giữa nằm ở phía trên tầng bình lưu. Nhiệt độ ở đây giảm mạnh. Đây là tầng giữa của bầu khí quyển.
- 9 Nếu chúng ta bắt đầu từ mặt đất, đầu tiên nước trên mặt đất bốc hơi. Điều này có nghĩa là nó đã chuyển từ dạng lỏng sang dạng khí và bay lên. Sau đó chúng ngưng tụ bởi làm lạnh và trở thành chất lỏng đậm đặc hơn. Đây là cách mà những đám mây hình thành và mưa xuất hiện. Mưa, tuyết, hay bất kỳ cách nào của nước quay trở lại Trái Đất được gọi là lượng mưa. Nước rơi xuống mặt đất và hấp thụ trở lại ánh dương, cây cối và sông suối. Quá trình này lặp đi lặp lại.

Chương 26

THỜI TIẾT

THỜI TIẾT xét đến các điều kiện của khí quyển tại địa điểm và thời gian nhất định. Thời tiết bao gồm các thông tin về:

NHIỆT ĐỘ KHÔNG KHÍ

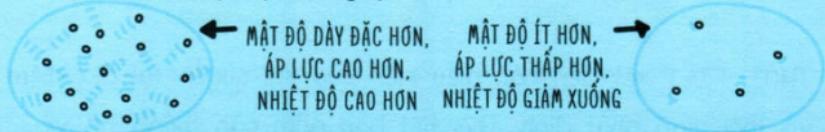
DỘ ẨM (lượng hơi ẩm trong không khí)

GIÓ

MÂY

LƯỢNG MƯA như mưa, tuyết hay mưa đá

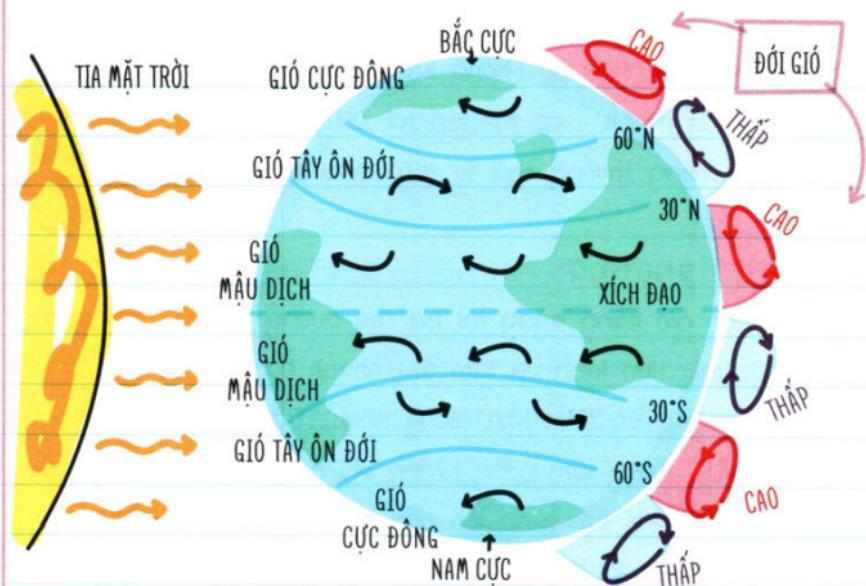
NHIỆT ĐỘ KHÔNG KHÍ


Không khí ở các nhiệt độ khác nhau gây ra chênh lệch áp suất và mật độ không khí, tạo ra gió và dòng đối lưu. Nhiệt độ không khí khác nhau cũng làm cho nước bốc hơi (khi trời ấm) và ngưng tụ thành mưa (khi trời lạnh).

Độ ẩm tương đối cũng bị ảnh hưởng bởi nhiệt độ không khí. Không khí nóng hơn có thể giữ nhiều nước hơn vì các phân tử di chuyển xung quanh nhanh hơn và không bị vón cục vào các phân tử nước. Vì vậy khi không khí lạnh chuyển thành không khí nóng, nước trong không khí thường ngưng tụ và gây ra mưa.

KHI CƠN ĐỒNG XUẤT HIỆN, THÔNG THƯỜNG BẠN CÓ THỂ CẢM NHẬN ĐƯỢC SỰ THAY ĐỔI NHIỆT ĐỘ TRONG KHÔNG KHÍ.

Áp suất không khí, nhiệt độ và độ ẩm không khí ảnh hưởng và kiểm soát hoạt động của không khí. Áp suất không khí là lực đẩy của mỗi phân tử va chạm với nhau và với môi trường xung quanh. Khi nhiệt độ tăng, các phân tử khí di chuyển nhanh hơn và làm tăng áp suất. Tương tự như vậy, khi nhiệt độ giảm, các phân tử không khí di chuyển chậm hơn và gây áp lực ít hơn. **MẬT ĐỘ KHÔNG KHÍ** là khối lượng phân tử không khí trong không gian nhất định. Không khí càng dày đặc càng xảy ra nhiều va chạm, do đó áp suất không khí càng lớn và nhiệt độ càng cao. Đây là lý do tại sao ở độ cao thấp nhiệt độ thường ấm hơn và ở độ cao lớn nhiệt độ thường lạnh hơn.


GIÓ TOÀN CẦU và GIÓ ĐỊA PHƯƠNG

Độ nóng không đồng đều của không khí trong khí quyển tạo ra nhiệt độ không khí khác nhau. Không khí nóng lên, do đó chúng ít đậm đặc hơn, áp suất giảm đi làm không khí lạnh. **GIÓ** là kết quả do sự chênh lệch giữa áp suất không khí và mật độ không khí gây ra bởi không khí nóng và không khí lạnh. Không khí thổi từ vùng cao áp đến vùng hạ áp từ đó tạo ra gió.

GIÓ
sự chuyển động
của không khí

Gió toàn cầu

Nhiệt độ khác nhau trên toàn thế giới gây ra gió trên khắp hành tinh. Các tia của Mặt Trời xâm nhập Trái Đất tại vùng xích đạo nhiều hơn vùng cực. Do đó, không khí tại vùng xích đạo sẽ nóng hơn tại vùng cực. Khi nóng từ xích đạo tăng lên và di chuyển về phía hai cực trong khi không khí lạnh từ hai cực sẽ thổi lại về phía xích đạo.

Sự quay của Trái Đất, kết hợp với các mức nhiệt độ không khí khác nhau là nguyên nhân gây ra sự chuyển động của các luồng không khí từ xích đạo và hai cực theo các hướng khác nhau. Điều này được gọi là **HỆU ỨNG CORIOLIS**. Hiệu ứng Coriolis làm cho gió đi về hướng đông hoặc tây, tạo ra các loại gió có thể dự đoán trước tại từng khu vực khác nhau trên Trái Đất.

Gió gần xích đạo được gọi là **GIÓ MÂU DỊCH**
vì các thủy thủ đầu tiên đã lợi dụng loại gió này để điều hướng các tuyến đường thương mại.

Gió xoáy

Một số loại gió thổi trên bề mặt Trái Đất nhưng cũng có một số loại gió thổi trên cao, nằm ở phía trên tầng đối lưu. Ở Nam Mỹ, GIÓ XOÁY toàn cầu được hình thành ở ranh giới giữa không khí lạnh và khô từ Bắc Cực và không khí nóng ẩm ở phía nam.

Sự chênh lệch nhiệt độ không khí khiến gió xoáy trở nên rất mạnh - có thể lên tới 250 dặm một giờ, chúng thường thổi từ tây sang đông.

Gió địa phương

Những con gió hằng ngày tại nơi đại dương và đất liền gặp nhau do đất làm lạnh và làm ấm nhanh hơn nước (nước có nhiệt độ ngày và đêm khá giống nhau). Đất được làm ấm hằng ngày, chúng làm nóng không khí ở phía trên thông qua sự dẫn nhiệt. Khi ấm tăng lên gây ra dòng đối lưu kết hợp với các khối khí lạnh hơn từ biển thổi vào. Vào ban ngày, không khí mát di chuyển vào bờ được gọi là **GIÓ BIỂN**. Vào buổi tối, không khí trên mặt nước biển ấm hơn không khí trên đất liền, vì vậy gió thổi ra đại dương. Kết quả hoạt động của dòng đối lưu tạo thành những con gió thổi ra đại dương từ đất liền được gọi là **GIÓ ĐẤT LIỀN**. Gió địa phương cũng chịu ảnh hưởng của địa hình như sự khác biệt về nhiệt độ tại thung lũng và gió thổi qua một hẻm núi.

ĐỘ ẨM

Độ ẩm là lượng hơi nước, hoặc hơi ẩm trong không khí. Thông thường, độ ẩm được xác định bởi **ĐỘ ẨM TƯƠNG ĐỐI**, là một lượng độ ẩm trong không khí so với lượng không khí có thể giữ được. Khi không khí có độ ẩm tương đối là 100%, các phân tử không khí hoàn toàn bão hòa. Điều đó có nghĩa là chúng không thể giữ thêm bất kỳ lượng hơi nước nào nữa.

KHÔNG KHÍ NÓNG CÓ THỂ GIỮ ĐƯỢC NHIỀU NƯỚC HƠN, VÌ VẬY HƠI NƯỚC TRONG 50% KHÔNG KHÍ NÓNG SẼ NHIỀU HƠN TRONG 50% HƠI NƯỚC TRONG KHÔNG KHÍ LẠNH

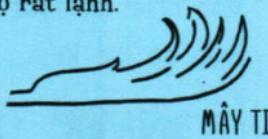
Điểm sương

Nước ngưng tụ được gọi là SƯƠNG, hình thành trên những ngọn cỏ vào mỗi buổi sáng sớm. Sương được hình thành khi nước ngưng tụ từ không khí. **ĐIỂM SƯƠNG** là nhiệt độ không khí mà sương hình thành trên bề mặt. Điểm sương phụ thuộc vào cả lượng hơi nước trong không khí và nhiệt độ không khí.

MÂY

Khi hơi nước trong không khí ngưng tụ, nó tạo thành mây.

Vì vậy một đám mây là dấu hiệu cho thấy hơi nước trong

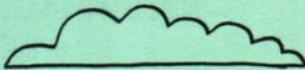

không khí đã đạt đến điểm sương. Mây hình thành khi không khí ẩm lạnh đi và hơi nước ngưng tụ thành các hạt muối hoặc bụi nhỏ trong không khí, hình thành các giọt nước nhỏ li ti hoặc các tinh thể băng.

Mây thường được xác định bởi hình dạng và độ cao của chúng trên bầu trời. Có ba hình dạng chính của mây đó là:

1. **MÂY TI** xuất hiện ở rất cao nơi nhiệt độ rất lạnh.

Nhiệt độ lạnh khiến nước ngưng tụ thành

những tinh thể băng trông như lông vũ.


2. MÂY TÍCH

trông phồng to và nằm ở độ cao từ trung

bình đến thấp hơn. Chúng thường xuyên

xuất hiện vào những ngày thời tiết đẹp

nhưng các đám mây cao và xám có thể gây ra dông bão.

MÂY TÍCH

3. MÂY TẦNG

hình thành trong các lớp lớn, thường xuất hiện

ở độ cao thấp. Sương mù thực chất là

một đám mây tầng ở gần mặt đất.

MÂY TẦNG

Các loại mây khác nhau có thể nằm ở các độ cao khác nhau.

Các tiền tố sẽ mô tả độ cao của các đám mây dựa trên:

CIRRO – mô tả một đám mây cao như mây ti.

ALTO – mô tả một đám mây ở độ cao trung bình, như mây tích.

STRATO – mô tả một đám mây ở độ cao thấp như mây tầng.

Mây tạo ra lượng mưa, giống như mưa hoặc tuyết, thường có tiền tố NIMBO – hoặc hậu tố – NIMBUS kèm theo. Ví dụ, một đám mây tích mưa là một đám mây tích có thể tạo bão.

MƯA

Khi các giọt nước trong một đám mây kết hợp lại, trở nên to và nặng, chúng rơi xuống dưới dạng mưa. Tùy thuộc vào nhiệt độ không khí và các điều kiện khác, các dạng mưa có thể là:

MƯA

TUYẾT

MƯA ĐÁ

MƯA BĂNG

MƯA BĂNG GIÁ

KHỐI KHÔNG KHÍ và FRÔNG THỜI TIẾT

KHỐI KHÔNG KHÍ là những khối không khí lớn di chuyển trên đất liền, mang đến các kiểu thời tiết. Thời tiết phụ thuộc và noi khói không khí phát triển. Ví dụ, nếu khói không khí phát triển trên vùng nước nóng, nó sẽ mang khí nóng ấm.

FRÔNG LẠNH có nghĩa là một khói không khí lạnh di chuyển để thay thế một khói không khí nóng. Ranh giới giữa các khói không khí ảnh hưởng chính đến thời tiết. Không khí lạnh và nóng có mật độ khác nhau, vì vậy chúng không thể hòa trộn vào nhau được. Thay vào đó, khói không khí nổi lên hoặc chìm xuống dưới khói không khí khác.

Khi xuất hiện frông tức là sẽ xuất hiện sự thay đổi thời tiết, chúng đóng một vai trò quan trọng trong bản đồ dự báo thời tiết. Frông có các biểu tượng khác nhau trên bản đồ thời tiết. Một số loại frông bao gồm:

KHI KHÔNG KHÍ LẠNH
VÀ NÓNG GẶP NHAU,
CHÚNG THƯỜNG GÂY RA
MÙA VÀ BÃO.

KHÔNG KHÍ
LẠNH

FRÔNG LẠNH: Khối không khí lạnh thay thế khói không khí nóng.

KHÔNG KHÍ
NÓNG

FRÔNG NÓNG: Khối không khí nóng di chuyển vào, thường gây mưa.

KHÔNG KHÍ
LẠNH

KHÔNG KHÍ
NÓNG

FRÔNG HẤP LƯU: Cả frông nóng và frông lạnh đều di chuyển vào, nhưng frông lạnh di chuyển nhanh hơn, đẩy frông ấm lên cao, tạo ra mưa.

FRÔNG TĨNH: Không khí lạnh và nóng gặp nhau và đứng yên. Khi một trong hai khối không khí bắt đầu di chuyển về phía trước, nó sẽ không còn là frông tĩnh.

KHÍ HẬU KHẮC NGHIỆT

Dông

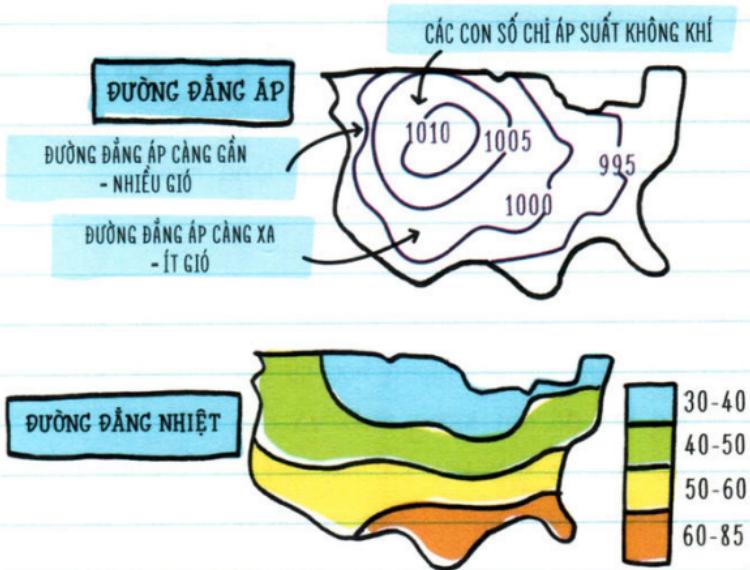
Khi không khí nóng ấm di chuyển nhanh vào không khí và lạnh đi, các diện tích hình thành trên các phân tử không khí, tạo thành diện tích âm ở dưới cùng của đám mây và một diện tích dương ở phía trên cùng của đám mây. Đám mây dông gây ra một diện tích dương lên mặt đất. Diện tích dương và diện tích âm lao về phía nhau, tạo ra một tia điện gọi là Sét. Sét cực kỳ nóng, giãn nở không khí gần đó. Không khí giãn nở nhanh hơn tốc độ âm thanh, tạo ra tiếng nổ âm thanh gọi là SÂM (vì vậy sấm thực chất là âm thanh của không khí giãn nở).

Lốc xoáy

Khi không khí nóng lên nhanh chóng trong các đám mây tích mưa (như khi có frông lạnh di chuyển đến), dòng vận động di lên của khối khí sẽ tạo ra các đám mây hình phễu. Nếu nó chạm tới mặt đất sẽ tạo ra một luồng gió xoáy gọi là LỐC XOÁY. Lốc xoáy gây ra sút phá hủy, nhưng chúng thường chỉ đi qua trong một thời gian ngắn và ảnh hưởng trong một khu vực nhỏ.

Bão áp thấp nhiệt đới

BÃO ÁP THẤP NHIỆT ĐÓI là loại bão mạnh nhất, được hình thành tại các vùng áp thấp trên mặt biển nhiệt đới. Khu vực áp suất thấp của không khí nóng ẩm là nguyên nhân gây ra gió mạnh. Vòng quay của Trái Đất khiến gió và mây xoáy theo hướng ngược chiều kim đồng hồ ở bán cầu Bắc. MẮT BÃO là vùng trung tâm của con bão và thật ngạc nhiên khi đây là vùng yên lặng nhất.


DỰ BÁO THỜI TIẾT

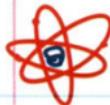
NHÀ KHÍ TƯỢNG HỌC là người nghiên cứu bầu khí quyển và dự báo thời tiết. Nhà khí tượng học sử dụng nhiệt độ, áp suất không khí, độ ẩm, lượng mưa và các thông tin khác từ vệ tinh để dự báo thời tiết. RADAR, viết tắt của "Hệ Thống Phát Hiện Sóng Vô Tuyến", được sử dụng để thu thập các thông tin về thời tiết. Radar phát ra các tín hiệu chênh hướng do mây bão và mưa, do đó chúng có thể hiện thị mức độ mưa trong một khu vực (bản đồ radar cho thấy mức độ mưa theo các màu sắc khác nhau). Bằng việc sử dụng thông tin từ nhiều nguồn, các nhà khí tượng học tạo ra bản đồ thời tiết để sử dụng cho mục đích dự báo.

Bản đồ thời tiết

Bản đồ thời tiết có các đường gọi là ĐƯỜNG ĐẲNG ÁP có mục đích kết nối các điểm có áp suất không khí bằng

nhau. Do chênh lệch áp suất không khí sẽ gây ra gió, khu vực có gió sẽ có nhiều đường đanding áp. Khi đường đanding áp càng xa, sự chênh lệch áp suất nhỏ và gió lặng. Các đường trên bản đồ thời tiết kết nối các khu vực có nhiệt độ tương tự nhau được gọi là **ĐƯỜNG ĐANDING NHIỆT**. Bản đồ thời tiết cũng cho thấy các khối không khí và frông.

Một số mối nguy hiểm tự nhiên như thời tiết khắc nghiệt có báo hiệu trước. Những mối nguy hiểm khác như động đất khó dự đoán hơn. Tuy nhiên các nhà khoa học có thể nghiên cứu vị trí, cường độ và tần suất của các hiện tượng để giúp dự báo các hiện tượng khắc nghiệt trong tương lai. Bằng cách sử dụng các vệ tinh để theo dõi lốc xoáy và bão áp thấp nhiệt đới, chúng ta có thể xác định chính xác khu vực có nguy cơ xảy ra từ đó có thể xây dựng các tầng hầm trú bão, đê điều bảo vệ hoặc sử dụng công nghệ để bảo vệ chính mình.



KIỂM TRA TRIẾN THỨC CỦA BẠN

- 1 Không khí lạnh và không khí nóng, cái nào có áp suất không khí lớn hơn? Tại sao?
- 2 Tại sao các đám mây thường hình thành trên các vùng không khí có áp suất thấp?
- 3 Những đám mây tích được tạo ra từ gì? Nơi chúng được tạo ra?
- 4 Ba dạng mưa khác nhau là gì?
- 5 Tiền tố cho đám mây thấp và tiền tố cho đám mây bão, hậu tố cho đám mây bão là gì?
- 6 Chúng ta sẽ thấy gì khi một đám mây chạm đất?
- 7 Những đám mây nào trông giống như kẹo bông và thường nằm ở độ cao trung bình?
- 8 Làm thế nào để bạn biết hơi nước trong không khí đã đạt đến điểm sương?
- 9 Giải thích cách gió biển và gió đất liên hoạt động?
- 10 Làm thế nào đồng bão phát triển?
- 11 Khi các đường đẳng áp gần nhau, chúng biểu thị điều gì?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- Không khí nóng có áp suất không khí cao hơn vì các phân tử không khí di chuyển xung quanh nhanh hơn và va chạm nhiều hơn so với ở không khí lạnh.
- Không khí có áp suất thấp nghĩa là không khí nóng. Không khí nóng này tăng lên, hơi nước trong không khí ngưng tụ và tạo thành những đám mây.
- Chúng được tạo thành từ các tinh thể băng và nằm trên cao bầu trời.
- Ba trong số các yếu tố sau: mưa băng, mưa băng giá, mưa, mưa đá, tuyết.
- Strato-, nimbo-, -nimbus
- Sương mù
- Mây tích
- Xuất hiện một đám mây.
- Vào ban ngày, khí nóng từ đất bốc lên, gió biển mang vào không khí lạnh. Vào ban đêm (khi đất lạnh hơn nước), khí nóng trên nước tăng lên và gió lạnh hơn từ đất liền di chuyển ra biển.
- Khi không khí nóng ẩm bị đẩy lên cao nhanh chóng, chúng tạo ra các điện tích trên phân tử không khí. Không khí nóng này ngưng tụ thành mây bão, mang theo mưa. Đám mây tích điện tạo thành một cơn bão sấm sét.
- Chúng cho thấy có rất nhiều sự thay đổi trong áp suất không khí, chuyển thành một luồng gió.

Chương 27

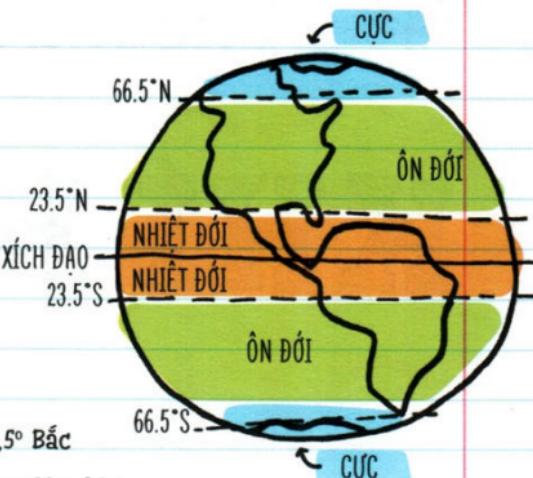
KHÍ HẬU

KHÍ HẬU là điều kiện thời tiết trung bình tại một khu vực trong một khoảng thời gian dài, về nhiệt độ và lượng mưa. Ví dụ, khí hậu ở ven biển Alaska lạnh và ẩm hơn khí hậu ở Mexico.

CÁC NHÂN TỐ KHÍ HẬU

VĨ ĐỘ

Đo bằng độ ($^{\circ}$)



VĨ ĐỘ đo khoảng cách của khu vực ở phía bắc và phía nam so với xích đạo. Các vĩ độ khác nhau nhận được lượng ánh sáng và nhiệt khác nhau từ Mặt Trời. Các tia mặt trời chiếu vào các khu vực gần xích đạo trực tiếp hơn, do đó tại xích đạo nhiệt độ sẽ nóng hơn. Các khu vực gần các cực nhận ánh sáng mặt trời theo góc nhỏ hơn, sẽ nhận được ít nhiệt từ Mặt Trời nên sẽ lạnh hơn. Các vùng vĩ độ khác nhau sẽ tương ứng với các kiểu khí hậu khác nhau.

CHÍ TUYỀN: nằm trong

khoảng vĩ độ $23,5^{\circ}$ Bắc đến $23,5^{\circ}$ Nam của xích đạo.

Nhiệt độ trong khu vực này nóng quanh năm, trừ khi chúng ở vĩ độ cao.

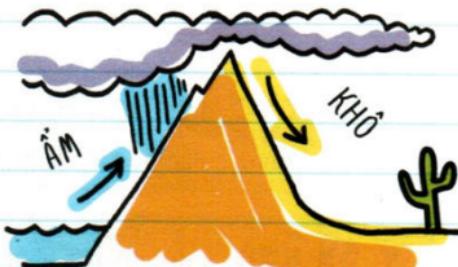
VÙNG ÔN ĐÓI: nằm giữa

khoảng vĩ độ $23,5^{\circ}$ Bắc đến $66,5^{\circ}$ Bắc và $23,5^{\circ}$ Nam đến $66,5^{\circ}$ Nam. Tại đây, khí hậu trở nên ÔN ĐÓI, thời tiết vừa phải. Hầu hết khu vực của nước Mỹ nằm ở vùng ôn đới.

VÙNG CỰC: nằm ở hai cực của Trái Đất đến phía bắc và phía nam của vĩ độ $66,5^{\circ}$. Vùng cực nhận được ít bức xạ mặt trời nhất nên khí hậu băng giá quanh năm.

Độ cao

Độ cao, hoặc cao độ so với mực nước biển cũng ảnh hưởng đến khí hậu. Không khí trong tầng đối lưu là tầng khí quyển gần mặt đất nhất được làm nóng bằng cách hấp thụ nhiệt từ mặt đất. Vì khi càng lên cao càng ít phân tử trong khí quyển, do đó sẽ ít phân tử hấp thụ nhiệt từ bề mặt trái đất, nhiệt độ lạnh hơn. Nhiệt độ thường giảm xuống $6,5^{\circ}\text{C}$ cho mỗi km độ cao tăng lên


TƯƠNG ỨNG VỚI $3,6^{\circ}\text{F}/1.000\text{ FEET TĂNG LÊN.}$

NƯỚC

Về cục bộ, vì nước mất nhiều thời gian hơn không khí để làm nóng và làm lạnh nên các khu vực ven biển có ít biến động về nhiệt độ. Trên toàn cầu, các dòng hải lưu cũng ảnh hưởng đến khí hậu ven biển. Nước nóng từ xích đạo tạo thành dòng chảy, làm nóng không khí và vùng đất nó đi qua. Sau khi di chuyển đến các cực, nước nguội đến xích đạo làm mát không khí và hạ nhiệt. DÒNG GULF là dòng nước nóng chảy khởi nguồn ở gần xích đạo, chảy từ Florida đến Iceland.

NÚI

Núi không chỉ tạo ra sự biến đổi về độ cao, tạo ra sự thay đổi khí hậu mà còn ảnh hưởng đến các kiểu mưa. Khi luồng không khí nóng ẩm va vào một ngọn núi, chúng bốc lên và lạnh đi. Khi nguội đi, nước ngưng tụ và tạo thành mưa. Sau khi không khí đã hết hơi ẩm lên núi, không khí còn lại sẽ khô, hình thành VÙNG KHÔNG MƯA (vùng có rất ít mưa rơi xuống).

Thành phố

Các thành phố có thể ảnh hưởng đến khí hậu địa phương. Các thành phố thường có rất nhiều tòa nhà và nhựa đường màu đen hấp thụ nhiệt từ Mặt Trời làm nóng không khí. Mặt

khác, tại khu vực nông thôn có thảm thực vật giúp làm mát không khí với sự thoát-bốc hơi nước. Nhiệt độ thành phố có thể nóng hơn 5°C so với các khu vực xung quanh, vì vậy một thành phố đôi khi còn được gọi là "đảo nhiệt".

CÁC LOẠI KHÍ HẬU

CÁC NHÀ KHÍ HẬU HỌC (các nhà khoa học nghiên cứu về khí hậu) sử dụng hệ thống phân loại để tính nhiệt độ trung bình và lượng mưa trung bình từ các khu vực khác nhau. Theo hệ thống này, có sáu nhóm khí hậu chính:

1. NHIỆT ĐỚI: thời tiết nóng - nóng ẩm nhiệt đới hoặc nóng ẩm nhiệt đới khô - đặc theo xích đạo. Ví dụ như rừng mưa nhiệt đới ở Nam Mỹ.

2. KHÔ: khô, điều kiện thời tiết giống như sa mạc. Ví dụ như sa mạc Sahara ở Bắc Phi.

3. ĐỊA CỰC: điều kiện lạnh giá - thường xuất hiện ở các vùng gần Cực Bắc và Cực Nam. Ví dụ: Nam Cực.

4. ÔN HÒA: nhiệt độ vừa phải - thường xuất hiện ở dọc bờ biển. Ví dụ: Địa Trung Hải.

5. LỤC ĐỊA: chênh lệch nhiệt độ lớn giữa mùa hè và mùa đông (không có nguồn nước ở gần đó để điều chỉnh nhiệt độ). Ví dụ như miền trung phía Tây của Mỹ và Canada.

6. ĐỘ CAO: khí hậu thay đổi theo độ cao. Ví dụ như vùng núi dãy Himalaya.

EL NINO và LA NINA

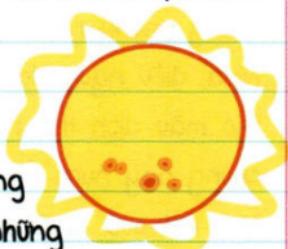
Thi thoảng nước biển ở Thái Bình Dương lạnh đi hoặc nóng lên hơn bình thường. Sự nóng lên bất thường này gọi là EL NINO và sự lạnh đi gọi là LA NINA. Trong những năm có El Nino, gió mậu dịch thổi nhẹ, nước ở Thái Bình Dương không di chuyển nhiều từ đông sang tây, rất ít nước lạnh có thể nổi lên từ dưới đáy biển. Điều này khiến nước dọc theo bờ biển phía tây của Bắc và Nam Mỹ ấm hơn bình thường. Sự thay đổi nhiệt độ ở đại dương mang tới mưa lớn gây lũ lụt ở một số vùng và hạn hán ở một số vùng khác.

Trong những năm có La Nina, điều ngược lại xảy ra. Gió mậu dịch thổi rất mạnh, chúng đẩy nước ấm từ tây Thái Bình Dương xa hơn về phía tây. Kết quả là có rất nhiều bê mặt nước biển sâu lạnh. Thời tiết ở Mỹ những năm có La Nina thường khô hơn.

BIỂN ĐỔI KHÍ HẬU

Có rất nhiều thứ chúng ta không biết về hệ thống khí hậu toàn cầu rất phức tạp này, nhưng các nhà khoa học đồng ý rằng các hạt khí quyển, sự thay đổi bức xạ mặt trời, chuyển động của Trái Đất, hiệu ứng khí nhà kính, đã ảnh

hưởng đến khí hậu trên phạm vi toàn cầu. Khí hậu đã thay đổi nhiều lần trong suốt lịch sử Trái Đất và nó sẽ tiếp tục như vậy. Cách chúng ta hiểu, phản ứng và thích nghi với sự biến đổi khí hậu sẽ quyết định khả năng sinh tồn của loài người trên Trái Đất.


Hạt khí quyển

Khi các hạt rắn và lỏng bay vào khí quyển, chúng sẽ làm tăng lượng mây che phủ và ngăn chặn bức xạ mặt trời làm Trái Đất nóng lên.

Ngoài việc con người đã thêm nhiều loại hạt vào môi trường thông qua việc làm ô nhiễm thì những quá trình tự nhiên khác cũng thêm các hạt vào khí quyển - như các vụ va chạm thiên thạch, cháy rừng, các vụ nổ núi lửa phun ra tro và bụi vào khí quyển.

Sự thay đổi bức xạ mặt trời

Mặt Trời không phải lúc nào bức xạ cùng lượng năng lượng. Đôi khi Mặt Trời có những đốm đen. Có mối tương quan giữa năng lượng mặt trời phát ra và nhiệt độ toàn cầu.

Chuyển động của Trái Đất

Hiện tại, Trái Đất nghiêng 23,5 độ trên trục của nó. Trước đây, nó bị nghiêng ít hoặc nhiều hơn. Độ nghiêng của Trái Đất có thể ảnh hưởng đến khí hậu bởi vì các tia mặt trời

chiều vào Trái Đất các góc khác nhau tùy thuộc vào độ nghiêng của nó. Cũng trong suốt lịch sử Trái Đất, các chuyển động của các lục địa, đại dương và núi đã gây ra sự thay đổi khí hậu ở các khu vực địa phương.

Khí nhà kính

Các loại khí nhất định như carbon dioxide, sulfur dioxide và một số loại khí khác, giữ nhiệt trong khí quyển. HIỆU ỨNG NHÀ KÍNH là sự nóng lên của khí quyển gây ra do các loại khí giữ nhiệt. Ở một khía cạnh tích cực khác, khí nhà kính cần thiết vì chúng giúp giữ nhiệt và giúp động thực vật tồn tại (chẳng hạn vào ban đêm, trời lạnh đi). CHU TRÌNH CARBON cũng giống như chu trình nước, đã giữ lượng carbon trong hệ sinh thái toàn cầu của chúng ta khá ổn định trong thời gian dài. Các quá trình như cháy rừng, phun trào núi lửa và hô hấp của các sinh vật đều thêm vào một lượng carbon nhất định trong khí quyển. Trong khi đó, sự hấp thụ bởi thực vật và đại dương đã lấy carbon ra khỏi nó.

Từ cuối thế kỉ 18, con người đã khai thác và đốt cháy đủ nhiên liệu hóa thạch (cho vận chuyển, điện năng,...), làm tăng mức CO_2 vượt quá mức bình thường của nó. Do các nguyên liệu hóa thạch phải mất cả trăm triệu năm để hình thành, carbon không được hấp thụ đủ nhanh để cân

bằng số lượng mà con người thả ra. Bằng cách sử dụng các bằng chứng, thí nghiệm và dữ liệu lịch sử hàng trăm nghìn năm về trước, các nhà khoa học đã xác định rằng khí thải nhà kính đang là nguyên nhân chính gây ra sự nóng lên toàn cầu, điều này gây ra sự gia tăng nhiệt độ chung của bầu khí quyển Trái Đất. Sự gia tăng khí nhà kính đang thay đổi nhiệt độ khí hậu của Trái Đất.

Khí hậu trung bình của Trái Đất đang ấm lên đến mức đáng sợ, từ đó kéo theo một số hậu quả như:

• BĂNG TAN

• NƯỚC BIỀN DÂNG

• CHÁY RỪNG

• BIẾN ĐỔI MÔI TRƯỜNG

• CÁC HIỆN TƯỢNG THỜI TIẾT KHẮC NGHIỆT

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Núi có thể ảnh hưởng đến khí hậu địa phương như thế nào?
- 2 Giải thích sự khác nhau giữa những năm có El Nino so với những năm bình thường.
- 3 Vĩ độ ảnh hưởng đến khí hậu địa phương như thế nào?
- 4 Tại sao các khu vực gần nước có ít biến động về nhiệt độ?
- 5 Nhiệt độ tại thành phố khác với vùng nông thôn lân cận như thế nào?
- 6 Định nghĩa "hiệu ứng nhà kính".
- 7 Giải thích chương trình carbon.
- 8 Điều gì đã gây ra sự mất cân bằng nồng độ CO₂ trong khí quyển?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Núi tạo ra các kiểu mưa - một bên mưa và một bên khô hoặc các vùng không mưa. Ngoài ra, đỉnh núi có thể lạnh hơn chân núi, tùy thuộc vào độ cao của nó.
- 2 Trong những năm có El Nino, gió mậu dịch thổi nhẹ làm nước không chuyển động nhiều, nước lạnh không thể nổi lên bề mặt, do đó nước nóng. El Nino cũng gây ra lũ lụt ở một số vùng và hạn hán ở một số vùng khác.
- 3 Các tia mặt trời chiếu vào vĩ độ cao hơn ở góc thấp hơn do độ nghiêng của Trái Đất. Do vậy vĩ độ cao hơn nhận được ít nhiệt từ Mặt Trời và lạnh hơn.
- 4 Nước lạnh và nóng cháy chậm hơn trên mặt đất. Do đó vào mùa đông nước làm nóng không khí và vào mùa hè nước làm mát không khí.
- 5 Nhiệt độ thành phố sẽ nóng hơn do nhựa đường màu đen hấp thu nhiệt, có ít cây cối và thực vật để làm mát khu vực bằng cách thoát-bốc hơi nước.
- 6 Hiệu ứng nhà kính là sự nóng lên của khí quyển do các khí giữ nhiệt.
- 7 Chu trình carbon là cách tự nhiên để cân bằng lượng carbon trong khí quyển. Các quá trình như cháy rừng, phun trào núi lửa và hô hấp của các sinh vật đều thải carbon vào trong khí quyển. Trong khi đó, sự hấp thụ bởi thực vật và đại dương nhận về carbon.
- 8 Việc đốt các nguyên liệu hóa thạch và thải ra nhiều lượng CO_2 vào khí quyển nhiều hơn sự cân bằng của chu trình carbon.

PHẦN



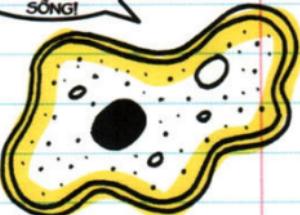
Sự sống:
phân loại và tể bào

Chương 28

SINH VẬT VÀ SỰ PHÂN LOẠI SINH HỌC

Điều gì tạo ra sinh vật sống? Một SINH VẬT là bất kỳ vật sống nào. Nhưng sống có nghĩa là gì? Sinh vật sống khi:

Được cấu trúc bởi một đơn vị sống cơ bản nhất là tế bào.

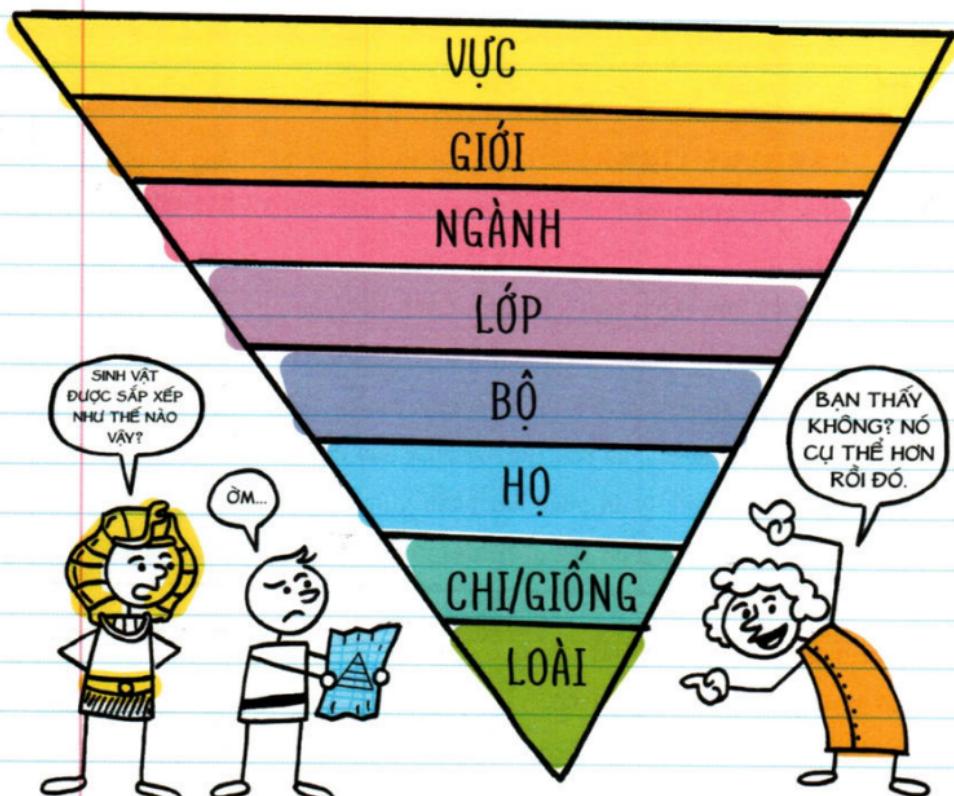

Tăng trưởng, thay đổi và phát triển.

Phản ứng với sự **KÍCH THÍCH** (bất kỳ điều gì gây ra phản ứng ở các sinh vật như ánh sáng mặt trời, nhiệt độ hoặc các yếu tố môi trường khác)

Tiêu tán năng lượng để sống

TÔI ĐANG
SỐNG!

Sinh sản



SỰ PHÂN LOẠI

Các nhà khoa học phân loại sinh vật theo cấu trúc và mức độ liên quan chặt chẽ của chúng. Họ sắp xếp sinh vật thành các nhóm và danh mục dựa trên đặc điểm chung.

Hệ thống phân loại

Các nhà khoa học đặt các sinh vật theo các danh mục từ khái quát đến chi tiết. Dưới đây là thứ tự từ nhóm chung nhất đến nhóm cụ thể nhất:

Để nhớ hệ thống phân
loại này, hãy ghi nhớ
cụm từ sau:

Dear King Philip Came Over For Great Spaghetti!
(Vua Philip Ăn Tượng Với Món Spaghetti Tuyệt Hảo)

(Domain - Vực, Kingdom - Giới, Phylum - Ngành, Class - Lớp, Order - Bộ, Family - Họ, Genus - Chi/Giống, Species - Loài)

DANH PHÁP KÉP

CAROLUS LINNAEUS đã phát triển một hệ thống để phân loại các sinh vật bằng cách sử dụng hệ thống **DANH PHÁP KÉP** từ tiếng Latin, có nghĩa là "một tên có hai thuật ngữ". Từ đầu tiên của thuật ngữ xác định **CHI**, là nhóm nhỏ nhất của các loài tương tự nhau, từ thứ hai xác định **LOÀI** của chúng. Danh pháp kép giống như tên và họ - một tên cụ thể hơn tên còn lại. Ví dụ: *Tyrannosaurus rex* (khủng long bạo chúa T-rex) hay *Canis Lupus* (sói xám). Danh pháp hai phần giúp các nhà khoa học ở bất kỳ quốc gia nào trên thế giới biết sinh vật nào có đặc điểm gì.

Danh mục càng chi tiết càng
có ít loài hơn - do vậy có
giới có nhiều loài hơn chi.

LOÀI

Nhóm sinh vật sống
có thể trao đổi gien
hoặc giao phối

Vực: Sinh vật nhân chuẩn
(sinh vật với các tế bào phức tạp)

Giới: Động vật

Ngành: Dây sống

Lớp: Cố vú

Bộ: Ăn thịt

Họ: Mèo

Chi/Giống: Mèo

Loài: Mèo

GIỚI

Các nhà khoa học phân loại sinh vật thành sáu giới nói chung. Dưới đây là đặc điểm chính của từng giới:

THỰC VẬT

- **Đa bào** (được tạo thành từ nhiều hơn một tế bào)
- **Tế bào** được bao quanh bởi các thành tế bào
- **SINH VẬT TỰ DƯỠNG** nghĩa là "tự cung cấp" vì chúng có thể tự tổng hợp chất dinh dưỡng nuôi chúng.
- Tạo ra thức ăn bằng **QUANG HỢP**

QUANG HỢP

tạo ra năng lượng bằng cách sử dụng ánh sáng, carbon dioxide, và nước

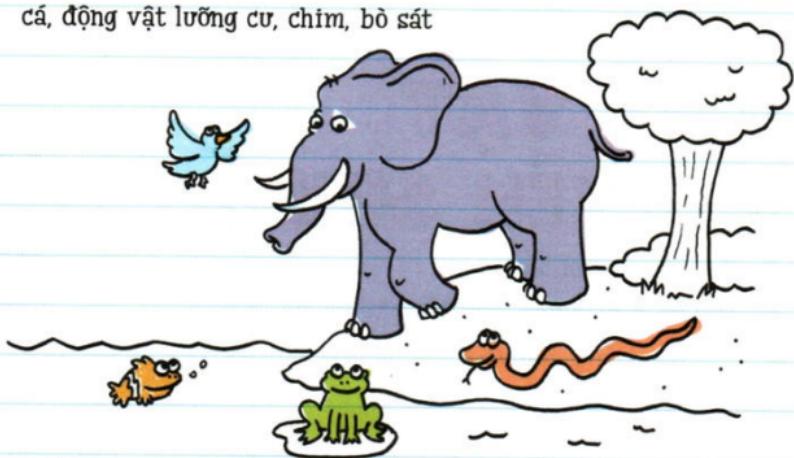
- Sinh sản bằng các cách sau:
 - Một số cây có hạt trong hoa
 - Cây có quả hình nón (một số loại cây, như cây thông)
 - Rêu và dương xỉ sử dụng **BÀO TỬ**

BÀO TỬ

tế bào thực vật giống như một hạt giống và có thể sinh ra cây mới

- Nhiều cây có thể sinh sản **VÔ TÍNH** bằng cách nhân bản cây mới từ rễ của chúng (như cây dương lá rung) hoặc từ thân cây (như cây dâu tây).

ĐỘNG VẬT


◦ Đa bào

◦ Như chất dinh dưỡng, ngọt ngào!

◦ **ĐI DƯỠNG**, nghĩa là "chất dinh dưỡng nhờ cái khác" vì chúng ăn các sinh vật khác (còn sống hoặc đã chết) để tổng hợp chất dinh dưỡng nuôi chúng

◦ Có thể chia thành động vật có xương sống và động vật không xương sống

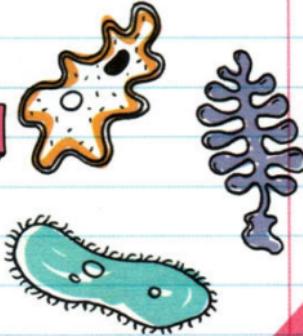
◦ **ĐỘNG VẬT CÓ XƯƠNG SỐNG**: động vật có xương sống và các xương khác giúp bảo vệ và di chuyển như động vật có vú, cá, động vật lưỡng cư, chim, bò sát



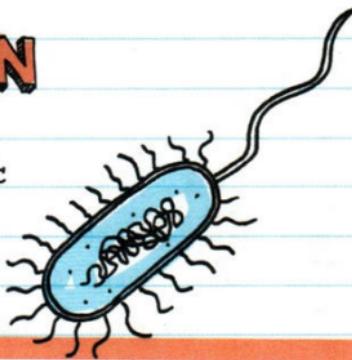
◦ **ĐỘNG VẬT KHÔNG XƯƠNG SỐNG**:

động vật không có xương sống như **ĐỘNG VẬT CHÂN ĐỐT** bao gồm tôm hùm, cua, côn trùng, nhện (nhóm động vật không xương sống lớn nhất). Chúng có các bộ phận cơ thể và bộ xương bên ngoài dưới dạng một lớp vỏ cứng. Các động vật không xương sống khác bao gồm động vật thân mềm, giun và nhiều nhóm khác.

NẤM

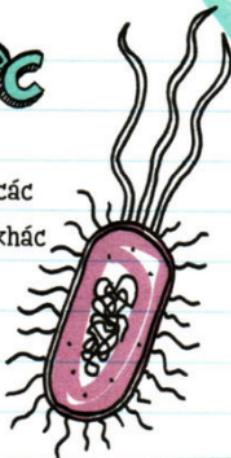

- Đơn bào hoặc đa bào
- Bao gồm nấm, men và mốc
- Dị dưỡng
- Sinh sản bằng bào tử
- Có thành bảo vệ

CHÚNG ĂN
MÔI THỰC CÓ
THỂ PHÁT TRIỂN!


SINH VẬT NGUYÊN SINH

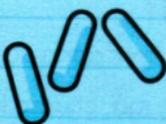
- Chủ yếu là đơn bào
- Một số là dị dưỡng, một số là tự dưỡng
- Bao gồm amip, tảo và trùng để giày

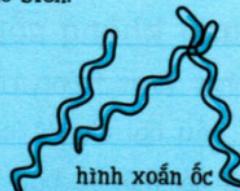
CỎ KHUẨN


- Đơn bào
- Sống trong môi trường khắc
nghiệt như suối nước nóng
hoặc nước rất mặn

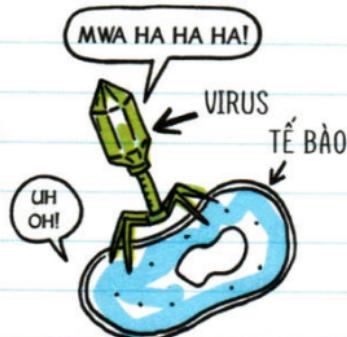
VI KHUẨN THỰC

- Đơn bào
- Bao gồm tất cả các loại vi khuẩn, giống như các loại trong đất, trong nước và các sinh vật sống khác
- Một số là dị dưỡng, số khác là tự dưỡng


Vi khuẩn thực sống trong miệng nhiều hơn trong cơ thể người trên Trái Đất, nhưng hầu hết là vô hại


Vi khuẩn có ba dạng phổ biến:

hình cầu


hình que

hình xoắn ốc

VIRUS

VIRUS là một dải thông tin di truyền (DNA) gây ra bởi virus, khép kín trong lớp bọc bằng protein. Một virus thâm nhập vào một tế bào virus khỏe mạnh và truyền thông tin di truyền của nó lên tế bào. Virus lợi dụng tế bào để nhân bản ra một virus giống hệt virus khỏe mạnh và khi đó chúng phá vỡ tế bào, giải phóng tất cả các virus được sao chép đó - quá trình này được gọi là CHU TRÌNH HOẠT ĐỘNG.

Mặt khác, một virus có thể duy trì trạng thái không hoạt động để cho thông tin di truyền của nó được sao chép cùng với thông tin di truyền của tế bào - được gọi là CHU TRÌNH KHÔNG HOẠT ĐỘNG. Virus có thể tồn tại trong chu trình không hoạt động một thời gian dài. Mặt khác, chúng có thể thực hiện chu trình hoạt động tại bất kỳ thời điểm nào.

Virus có thể lây nhiễm ở mọi loài sinh vật. Đối với con người, virus có thể gây ra cảm cúm, thủy đậu, HIV và một số loại bệnh khác. Virus ăn vi khuẩn được gọi là THỂ THỰC KHUẨN.

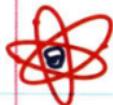
Sống hay không sống?

Thoạt nhìn, virus trông rất linh động. Chúng có thể sinh sản và gây hại cho tế bào mà chúng lây nhiễm. Tuy nhiên, virus đòi hỏi một tế bào chủ và chúng không thể tự tồn tại được. Chúng sử dụng tất cả các bộ máy của tế bào chủ để tiến hành sao chép.

↑
ĐẠI KHÁI GIỐNG NHƯ XÁC SỐNG!

Miễn dịch

Điều trị các bệnh do nhiễm virus rất khó khăn. Thông thường, cơ thể của bạn có thể chống lại nó một cách tự nhiên gọi là SỰ MIỄN DỊCH, hoặc có khả năng chống lại sự lây nhiễm. Khi bạn nhiễm virus, tế bào của bạn sẽ sản sinh ra protein được gọi là INTERFERON giúp bảo vệ các tế bào khỏi sự lây nhiễm. Khi bạn tiêm VACCINE, trong một thời gian ngắn bạn đã có được một lượng nhỏ virus bị vô hiệu hóa, từ đó cơ thể bạn sẽ có được khả năng miễn dịch.


KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Tất cả các sinh vật sống có đặc điểm gì?
- 2 Danh pháp kép sử dụng như thế nào?
- 3 Liệt kê trật tự phân loại từ khái quát đến chi tiết nhất
(Gợi ý: Phần này sẽ dễ nhớ nếu bạn học kèm với cụm từ ghi nhớ!)
- 4 Giải thích sự khác biệt giữa tự dưỡng và dị dưỡng. Lấy ví dụ cho mỗi loại.
- 5 Tên của sáu giới.
- 6 Mô tả virus.
- 7 Tại sao virus không thể được coi là vật sống?
- 8 Sự miễn dịch là gì?


ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Các sinh vật sống tiêu thụ năng lượng, được tạo ra từ các tế bào, phát triển và biến đổi, phản ứng với các kích thích từ bên ngoài và sinh sản.
- 2 Trong danh pháp kép, từ đầu tiên biểu thị chi/giống, từ thứ hai biểu thị loài.
- 3 Domain - Vực, Kingdom - Giới, Phylum - Ngành, Class - Lớp, Order - Bộ, Family - Họ, Genus - Chi/Giống, Species - Loài!
(Dear King Philip Came Over For Great Spaghetti! - Vua Philip Ăn Tượng Voi Món Spaghetti Tuyệt Hảo)
- 4 Tự dưỡng là quá trình sinh vật có thể tự tổng hợp chất dinh dưỡng để nuôi chúng, giống như thực vật thông qua quá trình quang hợp. Dị dưỡng là quá trình ăn các loại sinh vật khác để làm thức ăn, giống như nấm, các sinh vật ăn bất kỳ thứ gì giúp chúng phát triển.
- 5 Thực vật, động vật, nấm, sinh vật nguyên sinh, vi khuẩn có và vi khuẩn.
- 6 Virus là một dải thông tin di truyền được bao quanh bởi một lớp bọc bằng protein.
- 7 Virus không thể tự sống, chúng phải lợi dụng bộ máy và nguồn cung cấp của một tế bào sống để sinh sản.
- 8 Sự miễn dịch là khả năng chống lại bệnh tật. Sau khi nhiễm virus, cơ thể chúng ta sẽ sản sinh ra tế bào giúp chuẩn bị và chống lại sự lây nhiễm virus trong tương lai.

Chương 29

LÝ THUYẾT TẾ BÀO VÀ CẤU TRÚC TẾ BÀO

LÝ THUYẾT TẾ BÀO

Tế bào là đơn vị cấu tạo cơ bản nhất của sự sống. Mọi sự sống đều được tạo ra từ tế bào, sinh vật sống nhỏ nhất được tạo ra từ **TẾ BÀO ĐƠN**. Mặt khác, các tế bào khác nhau đóng các vai trò khác nhau. Ví dụ, tế bào cơ sẽ có chức năng khác với tế bào dạ dày.

Tế bào thực sự rất nhỏ, vì vậy chúng không thể nhìn được bằng mắt thường. Chúng được phát hiện đầu tiên cùng với việc phát minh ra kính hiển vi, ROBERT HOOKE đã quan sát những tế bào đầu tiên vào những năm 1660.

Cuối cùng, các nhà khoa học sử dụng các quan sát để đưa ra LÝ THUYẾT TẾ BÀO.

Tất cả các sinh vật đều được tạo ra từ các tế bào (một hoặc nhiều hơn).

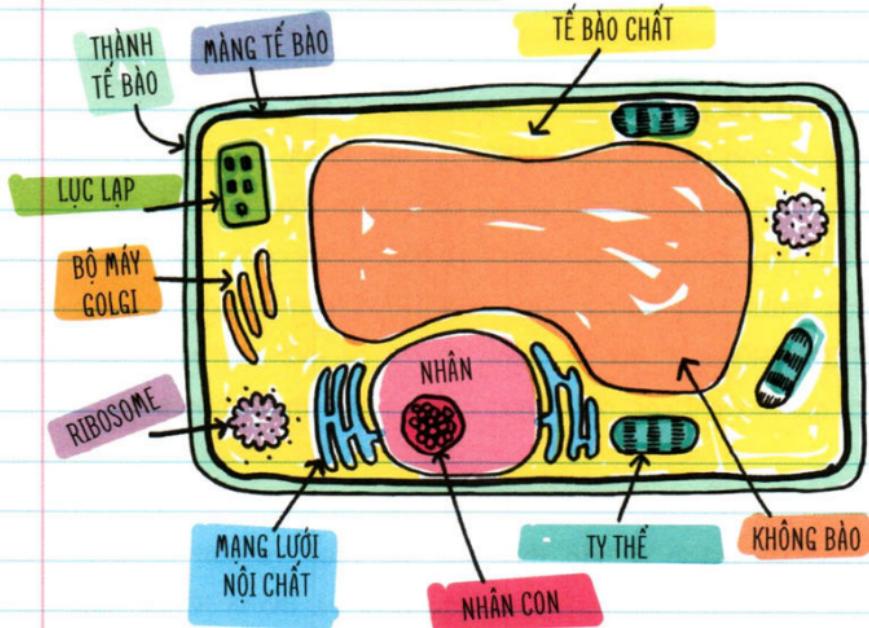
Tế bào là đơn vị cấu tạo cơ bản nhất của sự sống trong cấu trúc và chức năng.

Mỗi tế bào sinh ra từ tế bào đang tồn tại khác (tế bào phân chia thành các tế bào mới).

Vì sinh vật có thể được tạo ra từ một tế bào đơn lẻ, hãy nghĩ tới tất cả các chức năng mà một tế bào nhỏ bé đảm nhiệm: tiêu thụ, lưu trữ và sử dụng năng lượng, tự vệ và sinh sản. Các cấu trúc khác nhau trong tế bào giúp nó thực hiện được tất cả các chức năng cần thiết để tồn tại.

Hãy nghĩ về một tế bào như một nhà máy – mỗi cấu trúc giống như một bộ máy để thực hiện các chức năng khác nhau giúp nhà máy hoạt động.

CƠ QUAN TẾ BÀO


CƠ QUAN TẾ BÀO là các phần của một tế bào. Chúng sắp xếp các thứ, bao gồm:

Xử lý và giải phóng năng lượng

Phá hủy và tiêu hóa các đối tượng

Sao chép thông tin di truyền

MỘT TẾ BÀO THỰC VẬT ĐIỀN HÌNH

MỘT TẾ BÀO ĐỘNG VẬT ĐIỀN HÌNH

Cơ quan tế bào bao gồm (liệt kê từ ngoài vào trong):

Màng tế bào

Mỗi tế bào đều có một MÀNG TẾ BÀO, là lớp ngoài cùng của tế bào, bọc tế bào lại. Nó cũng kiểm soát sự trao đổi chất bên trong và bên ngoài tế bào - như cánh cổng của tòa thành vậy. Nó có TÍNH BẢN THẤM (hay còn gọi là TÍNH CHỌN LỌC) tức là chúng có thể để một chất nhất định đi qua và giữ các chất khác ở bên ngoài (hoặc bên trong).

Thành tế bào

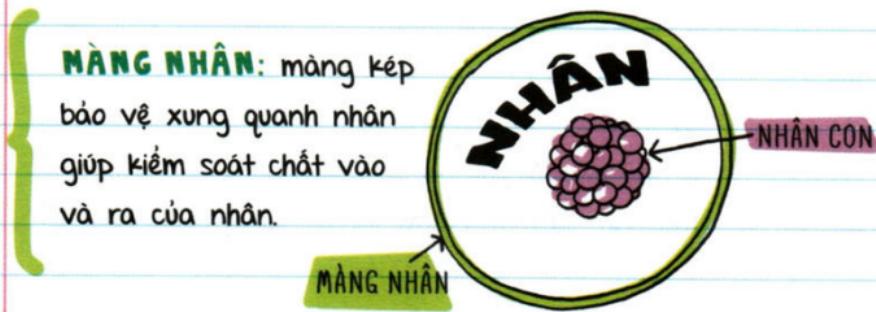
Cùng với màng tế bào, thực vật, tảo, nấm và một số sinh vật cũng có THÀNH TẾ BÀO. Hãy nghĩ về thành tế bào như tường thành cực kì kiên cố. Nó là một lớp bao ngoài dẻo dai và chắc chắn, giúp bảo vệ và tạo hình cho tế bào.

Nhiều thành tế bào (đặc biệt là ở thực vật) được tạo từ carbohydrate gọi là CHẤT XƠ, trong đó có các sợi chất xơ dài cho phép nước và các chất khác đi qua. Một số loài khác lại có thành tế bào được tạo ra từ các chất khác nhau (như chất chitin trong nấm, peptidoglycan trong vi khuẩn,...).

Tế bào chất

Chất có dạng keo được gọi là TẾ BÀO CHẤT nằm trong thành tế bào. Tất cả cấu trúc, cơ quan tế bào và các hoạt động được diễn ra trong tế bào chất. BỘ KHUNG TẾ BÀO được tạo từ các sợi protein

NHƯ HOA
QUẢ TRONG
SALAD JELLO


mánh và các ống protein rỗng, chứa cấu trúc và giúp mọi cơ quan có thể di chuyển trong tế bào.

Ribosome

RIBOSOME là các nhà máy sản xuất ra protein trong tế bào. Protein là thành phần thiết yếu cho tế bào: chúng tạo ra hầu hết các bộ phận và là một trong những yếu tố giúp các phản ứng được diễn ra trong tế bào. Ribosome nhận trực tiếp từ chất di truyền để tạo ra protein.

Nhân

NHÂN là vùng điều khiển trung tâm của tế bào. Nó chứa NHIỄM SẮC THỂ của tế bào - được tạo thành từ các chuỗi DNA (tên khoa học là DEOXYRIBONUCLEIC ACID) giúp mã hóa thông tin di truyền. Nhân bao gồm:

NHÂN CON: cấu trúc nhỏ được tìm thấy trong nhân tạo ribosome và vận chuyển chúng đến tế bào chất.

Không bào

KHÔNG BÀO là bong bóng lưu trữ tạm thời cho tế bào. Chúng trữ nước, thức ăn và chất thải.

Ở THÀNH THỰC
VẤT, CHÚNG CÓ
THỂ RẤT LỚN.

Tiêu thể

TIÊU THỂ giống như cơ sở tái chế và xử lý rác thải của tế bào. Nó có chất hóa học để làm vỡ thức ăn, chất thải của tế bào và các hạt lạ xâm nhập tế bào, chẳng hạn như vi khuẩn và virus. Nó tiêu hóa và phá hủy các tế bào chết hoặc các bộ phận của tế bào cũ, cũng như tái chế chất liệu để tạo tế bào mới.

Ty thể

TY THỂ là nhà máy năng lượng của tế bào. Nó giải phóng nguồn năng lượng từ thức ăn bằng cách tạo ra phản ứng với oxy. Các tế bào cần nhiều năng lượng hơn, như tế bào cơ, có một lượng lớn ty thể.

Lưới nội bào

LƯỚI NỘI BÀO (ER) là phương tiện vận chuyển cho các tế bào. Nó được làm từ màng gấp và nó xử lý cũng như di chuyển các chất.

Bộ máy golgi

BỘ MÁY GOLGI đóng gói, phân loại và phân phối các bộ phận. Chúng phân loại protein và các sản phẩm khác từ ER, sau đó đóng gói và phân phối chúng.

Lục lạp

LỤC LẠP (chỉ có trong tế bào thực vật) là các cấu trúc sản xuất thức ăn có chứa **DIỆP LỤC**, một sắc tố màu xanh lá cây giúp thực vật có màu xanh và chúng sử dụng năng lượng từ Mặt Trời để biến đổi nước, carbon dioxide thành glucose - một loại đường đơn.

Có hai loại tế bào chính:
TẾ BÀO NHÂN SƠ và **TẾ BÀO NHÂN THỰC**.

Sự khác biệt chính là tế bào nhân sơ không có nhân liên kết màng, ty thể hoặc các bào quan trong khi tế bào nhân thực lại có. Tế bào nhân sơ rất đơn giản và được tìm thấy ở các vi khuẩn đơn bào. Tế bào nhân thực có cấu trúc phức tạp hơn và được tìm thấy ở các sinh vật nguyên sinh, nấm, động vật và thực vật.

TẾ BÀO ĐỘNG VẬT và TẾ BÀO THỰC VẬT

Tế bào động và thực vật khá giống nhau, tuy nhiên chúng có một số điểm khác biệt sau:

Các tế bào thực vật đều có thành tế bào như một hàng rào vững chắc được tạo ra từ chất xơ và bao quanh màng tế bào.

↗ **NẾU ĐỘNG VẬT CÓ CHẤT XƠ, CHÚNG CÓ CỨNG VÀ GIÒN.**
THAY VÀO ĐÓ, ĐỘNG VẬT CÓ KHUNG XƯƠNG.

Tế bào thực vật có lục lạp để tạo ra thức ăn từ ánh sáng mặt trời.

↗ **NẾU ĐỘNG VẬT CÓ ĐIỀU NÀY, CHÚNG CHỈ CẦN**
NGÔI NGOÀI TRỜI LÀ ĐÙ BỮA TRƯA.

Tế bào thực vật thường có không bào trung tâm lớn cho việc dự trữ, chiếm một lượng lớn không gian.

NẾU ĐỘNG VẬT CÓ ĐIỀU NÀY, CHÚNG CÓ THỂ DI CHUYỂN LÂU HƠN MÀ KHÔNG CẦN THỨC ĂN, NƯỚC UỐNG.

SINH VẬT ĐA BÀO

Động thực vật đa bào chứa các tế bào khác nhau để thực hiện các chức năng khác nhau. Một loạt các tế bào khác nhau làm cùng một việc gọi là MÔ. Các mô hoạt động cùng nhau để tạo các CƠ QUAN như tim, dạ dày hoặc gan. Các cơ quan hoạt động cùng nhau để tạo ra các HỆ THỐNG CƠ QUAN như hệ tiêu hóa, hệ hô hấp.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Giải thích lý thuyết tế bào.
- 2 ___ là vùng trung tâm của tế bào.
- 3 Màng nhân làm nhiệm vụ gì?
- 4 Tế bào thực vật có thành tế bào để tạo ra ___ để hỗ trợ cho cấu trúc.
- 5 Ty thể làm nhiệm vụ gì?
- 6 Tế bào thực vật có ___, bộ phận chứa sắc tố màu xanh lá cây được gọi là ___, tạo ra thức ăn từ ánh sáng mặt trời.
- 7 Giải thích nhiệm vụ của tiêu thể.
- 8 Tế bào lưu trữ thức ăn và chất thải ở ___.
- 9 Ribosom nhận trực tiếp từ vật chất di truyền để tạo ___.
- 10 Một loạt các tế bào khác nhau làm một nhiệm vụ tương tự nhau gọi là gì?

KIỂM TRA ĐÁP ÁN CỦA BẠN

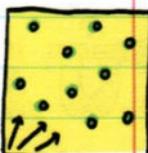
- 1 Lý thuyết tế bào nói rằng tất cả các sinh vật sống được tạo ra từ các tế bào và chúng là một đơn vị cấu tạo cơ bản nhất của sự sống. Ngoài ra, mỗi tế bào được tạo ra từ một tế bào đang tồn tại khác.
- 2 Nhân
- 3 Màng nhân là bức tường bảo vệ bao quanh nhân và kiểm soát dòng chảy của các vật chất vào và ra nhân.
- 4 Chất xơ
- 5 Chúng cung cấp năng lượng cho tế bào.
- 6 Lục lạp, diệp lục
- 7 Tiêu thè giống như cơ sở tái chế và xử lý rác thải và tế bào. Chúng có thể chứa chất hóa học để phá vỡ và tái chế các bộ phận tế bào khác.
- 8 Không bào
- 9 Protein
- 10 Mô

Chương 30

SỰ VẬN CHUYỂN CỦA TẾ BÀO VÀ SỰ TRAO ĐỔI CHẤT

SỰ VẬN CHUYỂN CỦA TẾ BÀO

Tế bào liên tục hấp thụ và giải phóng mọi thứ ra xung quanh. Tế bào rất giống cơ thể chúng ta - chúng ta liên tục uống, ăn và thải ra chất thải (mỗi khi chúng ta thở, cơ thể chúng ta giải phóng carbon dioxide). Tế bào cũng hoạt động theo cách tương tự: Nó liên tục lấy oxy, thức ăn và nước, thải ra chất thải.

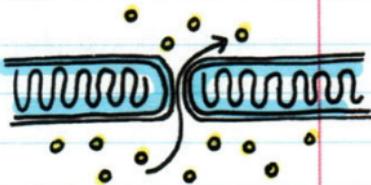

Màng tế bào là người gác cổng cho các hoạt động của tế bào. Lớp màng có chức năng thẩm thấu chọn lọc, tức là chúng chỉ cho phép một số thứ vào và ra khỏi tế bào chứ không phải tất cả mọi thứ (có tính chọn lọc). Mọi thứ đi vào và thoát khỏi màng tế bào thông qua quá trình vận chuyển thụ động và chủ động.

Vận chuyển thụ động

Là sự vận chuyển mọi thứ trong và ngoài tế bào mà không sử dụng năng lượng. Có ba loại:

1. SỰ KHUẾCH TÁN

Là sự vận chuyển động của các phân tử từ một khu vực có nồng độ cao đến khu vực thấp. Các phân tử đi vào tế bào khi chúng ở nồng độ thấp hơn trong tế bào. Các tế bào cố gắng tìm một sự CÂN BẰNG (trạng thái cân bằng). Ví dụ, các tế bào của bạn sử dụng oxy mọi lúc, do đó nồng độ oxy trong các tế bào của bạn thấp hơn nồng độ oxy trong không khí. Khi bạn thở, phân tử oxy từ không khí khuếch tán vào các tế bào của phổi.

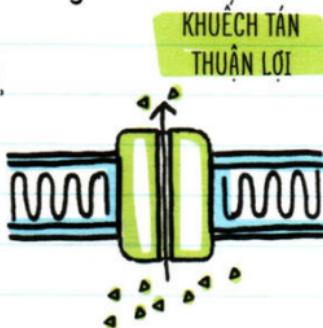


SỰ KHUẾCH TÁN

Khuếch tán cũng hoạt động theo cách khác - để xuất ra mọi thứ. Ví dụ, sau khi sử dụng oxy, các tế bào của bạn sản sinh ra carbon dioxide. Bạn thở ra carbon dioxide từ các tế bào của bạn vì nồng độ carbon dioxide trong tế bào lớn hơn trong không khí.

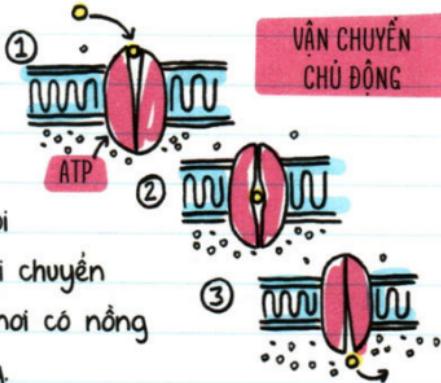
2. THẨM THẤU

Là một loại khuếch tán, chỉ đơn giản là quá trình các phân tử nước khuếch tán từ nơi có nồng độ cao đến nơi có nồng độ thấp. Khi bạn ngâm trái cây bị mất nước như nho khô vào

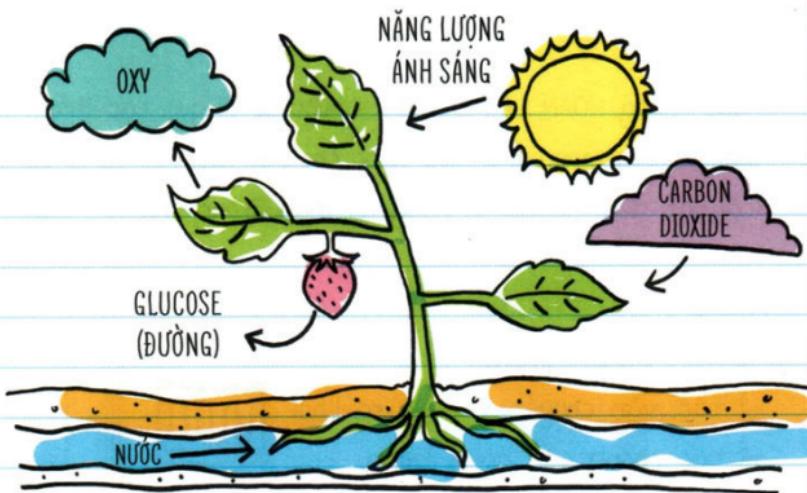


THẨM THẤU

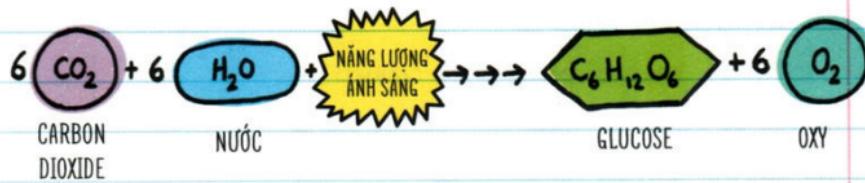
nước, chúng HOÀN LẠI ĐỘ ÂM - nước sẽ đi qua các thành tế bào để làm mọng trái cây. Nước chảy từ điểm có nồng độ cao (cái bát) đến mọi nơi có nồng độ thấp (trong trái nho khô).


3. Trong KHUẾCH TÁN THUẬN LỢI.

sự vận chuyển protein trên màng tế bào, vận chuyển vào và ra khỏi tế bào không cần năng lượng.


Vận chuyển chủ động

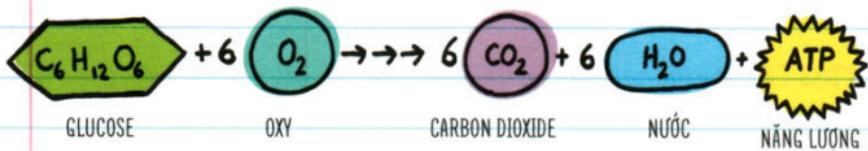
VẬN CHUYỂN CHỦ ĐỘNG cần năng lượng để chuyển một chất vào và ra khỏi tế bào. Sự vận chuyển protein được gọi là ADENOSINE TRIPHOSPHATE (ATP) liên kết với phân tử và vận chuyển nó vào trong tế bào bằng cách sử dụng năng lượng của tế bào. Khi một phân tử di chuyển ngược lại với gradient nồng độ - nói cách khác, khi một phân tử di chuyển từ nơi có nồng độ thấp đến nơi có nồng độ cao nó cần có năng lượng.


SỰ TRAO ĐỔI CHẤT CỦA TẾ BÀO

SỰ TRAO ĐỔI CHẤT của tế bào bao gồm tất cả các phản ứng hóa học để tế bào tồn tại. Sự trao đổi chất bao gồm các phản ứng hóa học được yêu cầu giải phóng hoặc tạo ra năng lượng, để sản sinh ra các hóa chất mà cơ thể cần như các protein và loại bỏ chất thải.

Quang hợp

Quang hợp là phản ứng hóa học, thực vật sản sinh ra năng lượng từ ánh sáng mặt trời. Trong quá trình quang hợp, sắc tố màu xanh lá cây gọi là diệp lục sẽ sử dụng năng lượng mặt trời để chuyển carbon dioxide và nước thành năng lượng dưới dạng glucose - một phân tử đường. Quang hợp giải phóng ra oxy như một sản phẩm loại thải. Quang hợp có thể được biểu diễn theo phương trình hóa học dưới đây:



Hô hấp tê bào

Trong HÔ HẤP TẾ BÀO, glucose trong thức ăn phản ứng với oxy, sản sinh ra carbon dioxide, nước và năng lượng trong ty thể, cộng thêm chất thải nước của phản ứng CO_2 và H_2O .

HÔ HẤP TẾ BÀO TƯƠNG TỰ HỆ THỐNG CHUYỂN HÓA VÀ HÔ HẤP VÀ TRAO ĐỔI CHẤT CỦA CƠ THỂ CHÚNG TA. CHÚNG TA ĂN THỨC ĂN VÀ HÚT VÀO OXY. SAU BÓ CÁC PHẢN ỨNG HÓA HỌC BÃ PHÁ VỠ CÁC PHẦN TỬ VÀ SẮP XẾP LẠI ĐỂ GIẢI PHÓNG RA NĂNG LƯỢNG CẦN THIẾT CHO CƠ THỂ.

Khi bạn hít thở, bạn đã đang hít vào một lượng oxy cần thiết cho hô hấp tế bào, khi thở ra là bạn đang thải ra carbon dioxide, nước và sản phẩm loại thải của quá trình hô hấp tế bào. (HÔ HẤP là một cách viết khác của hít thở, và hít thở cho phép chúng ta tiếp nhận oxy để cung cấp năng lượng cho hô hấp tế bào). Hô hấp tế bào sản sinh năng lượng dưới dạng ATP.

↑ SỰ QUANG HỢP VÀ HÔ HẤP LÀ HAI QUÁ TRÌNH ĐỐI NGHỊCH NHAU - SO SÁNH CÁC CÔNG THỨC.

Phản ứng lên men

PHẢN ỨNG LÊN MEN là một phản ứng hóa học khác để giải phóng năng lượng thông qua sự phân hủy thực phẩm. Phản ứng lên men giải phóng ít năng lượng hơn hô hấp tế bào, nó xảy ra khi không có oxy cho hô hấp tế bào. Phản ứng lên men cũng giống như hô hấp ngoại trừ việc nó không sử dụng oxy - nó cũng phá vỡ các phân tử glucose, giải phóng năng lượng dưới dạng ATP.

PHẢN ỨNG LÊN MEN

phá vỡ đường để giải phóng năng lượng trong đồ ăn mà không sử dụng oxy

Khi không có đủ lượng oxy cần thiết để cung cấp cho hô hấp tế bào, cơ bắp của bạn sử dụng phản ứng lên men để lấy năng lượng. Sản phẩm loại thải của quá trình lên men là ACID LACTIC. Bóng cơ và chuột rút là do sự tích tụ của acid lactic trong cơ do phản ứng lên men. **Ôi trời!**

Sản xuất các chất hóa học cần thiết

Sự trao đổi chất của một tế bào làm tạo ra tất cả các chất hóa học cần thiết cho sự tồn tại của tế bào. Các phân tử được sản xuất bởi tế bào là:

AXIT AMIN: các hợp chất có thể kết hợp với nhau để tạo ra protein

PROTEIN: phân tử lớn được tạo thành từ việc kết hợp các axit amin

ENZYME

ENZYME là các phân tử giúp phản ứng hóa học được diễn ra. Một lượng năng lượng nhất định cần thiết để phản ứng diễn ra, và các enzyme làm giảm lượng năng lượng đó. Hãy nghĩ về enzyme như một người mai mối - khi các phân tử phản ứng, chúng cần khớp với nhau một cách vật lý. Một enzyme mang các phân tử lại với nhau về mặt vật lý, giúp phản ứng được diễn ra. Vì enzyme được định hình để khớp với các phản ứng cụ thể, do đó ứng với mỗi phản ứng khác nhau cần một loại enzyme phù hợp. Ví dụ, một số enzyme trong cơ thể bạn phá vỡ thức ăn trở nên nhỏ hơn trong khi các enzyme khác giúp vận chuyển các phân tử nhỏ hơn này vào trong mạch máu.


KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Màng tế bào có sự thẩm thấu chọn lọc. Điều đó có nghĩa là gì?
- 2 Đưa ra ví dụ về một số thứ được màng tế bào thẩm thấu qua.
- 3 Xác định "vận chuyển thụ động" và liệt kê ba hình thức vận chuyển thụ động.
- 4 So sánh và phân biệt sự khuếch tán và sự thẩm thấu.
- 5 Giải thích sự khác nhau giữa vận chuyển thụ động và vận chuyển chủ động.
- 6 Enzyme làm nhiệm vụ gì?
- 7 Hô hấp tế bào và lên men khác nhau ở điểm nào?
- 8 Quá trình hô hấp tế bào diễn ra ở đâu?
- 9 Sản phẩm cuối cùng của hô hấp tế bào là gì?
- 10 Giải thích quá trình quang hợp.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 "Thảm thầu có chọn lọc" nghĩa là một số thứ có thể đi qua màng tế bào nhưng một số thứ khác thì không.
- 2 Oxy, carbon dioxide...
- 3 Vận chuyển thụ động là sự di chuyển vật chất ra và vào tế bào mà không cần sử dụng năng lượng. Vận chuyển thụ động có thể xảy ra thông qua khuếch tán, thẩm thấu hoặc khuếch tán thuận lợi.
- 4 Khuếch tán là sự di chuyển của các phân tử từ nơi có năng độ cao đến nơi có năng độ thấp, thẩm thấu là sự khuếch tán của các phân tử từ nơi có năng độ cao hơn đến nơi có năng độ thấp hơn thông qua màng tế bào.
- 5 Vận chuyển chủ động cần có năng lượng. Trong vận chuyển chủ động, protein vận chuyển liên kết với phân tử và sử dụng năng lượng tế bào để vận chuyển phân tử. Vận chuyển thụ động không cần năng lượng.
- 6 Enzyme giúp các phản ứng hóa học được tiến hành bằng cách tập hợp các chất phản ứng.
- 7 Hô hấp tế bào cần có oxy, trong khi lên men không cần. Ngoài ra, hô hấp tế bào giải phóng nhiều năng lượng hơn phản ứng lên men.
- 8 Quá trình hô hấp tế bào diễn ra trong ty thể.
- 9 Sản phẩm cuối của hô hấp tế bào là năng lượng, nước và carbon dioxide.
- 10 Trong quang hợp, diệp lục sử dụng năng lượng mặt trời để chuyển đổi carbon dioxide và nước thành glucose. Quang hợp giải phóng oxy như một sản phẩm副产品.

Câu số 2 có nhiều đáp án.

Chương 31

SỰ SINH SẢN CỦA TẾ BÀO VÀ TỔNG HỢP PROTEIN

SỰ PHÂN CHIA TẾ BÀO và SỰ PHÂN BÀO

Khi một sinh vật phát triển, tổng số tế bào trong sinh vật tăng lên. Ngay cả trong các sinh vật không còn phát triển, các tế bào liên tục chết đi và thay thế bằng tế bào khác. Vậy những tế bào mới đến từ đâu? **SỰ PHÂN CHIA TẾ BÀO**. Với sự phân chia tế bào, một tế bào chia thành hai tế bào. Hai tế bào có thể tạo ra bốn tế bào, bốn tế bào phân chia thành tám tế bào, cứ tiếp tục như vậy. Vì vậy một sinh vật hoàn toàn có thể phát triển từ một tế bào đơn lẻ.

Chu kỳ tế bào

Mỗi tế bào trải qua một vòng đời một cách tự nhiên. Chu kỳ tế bào có nhiều pha. Một trong các pha này là khi tế bào phân chia, quá trình đó gọi là **SỰ PHÂN BÀO**. Sự phân bào là sự phân chia tế bào thành những tế bào giống hệt

nhau. Trong quá trình phân bào, nhân phân chia. Mỗi TẾ BÀO CON giống hệt với tế bào mẹ ban đầu. (TẾ BÀO MẸ ban đầu sẽ không còn tồn tại khi kết thúc quá trình phân bào).

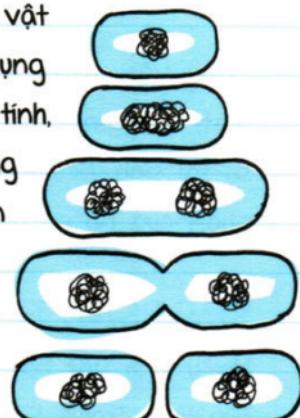
Các pha khác của một chu kỳ tế bào tạo nên thời kỳ các tế bào diễn hình dành hầu hết thời gian ở đó. Ba pha hợp lại với nhau được gọi là **KỶ NGUYÊN PHÂN**. Trong kỳ nguyên phân, một tế bào phát triển và nhân đôi nhiễm sắc thể của nó (cấu trúc chứa tất cả DNA của tế bào) và các bào quan để chuẩn bị cho quá trình phân bào. Nhân của các tế bào con sẽ có cùng số lượng và loại nhiễm sắc thể với tế bào mẹ.

Các nhà khoa học sử dụng từ "mẹ" để mô tả cho tế bào già hơn sẽ phân chia hoặc sinh sản và "con" để mô tả các tế bào sinh ra.

Một chu kỳ tế bào hoàn chỉnh là thời gian từ một tế bào phân chia ra các tế bào tiếp theo. Các tế bào khác nhau sẽ có thời gian chu kỳ tế bào khác nhau.

Bởi vì nguyên phân là sự phân chia nhân nên chỉ có các sinh vật có nhân mới có thể thực hiện quy trình này - chỉ các tế bào nhân thực mới có thể trải qua quá trình nguyên phân (không giống với các tế bào chưa có nhân như vi khuẩn - chúng không có nhân).

SINH SẢN VÔ TÍNH

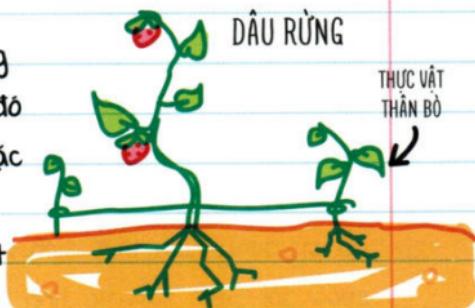

SINH SẢN VÔ TÍNH là khi một sinh vật bố mẹ sinh sản một mình, kết quả dẫn đến một sinh vật con mới giống hệt về mặt di truyền.

Phân chia tế bào

Nguyên phân không chỉ giúp tế bào phát triển mà còn giúp sinh sản vô tính. Sinh vật có thể sử dụng sinh sản vô tính để tạo nên một cá thể giống hệt với bố mẹ về mặt di truyền. Nhiều sinh vật như sữa và một số loại giun cùng nhiều loài thực vật đã sử dụng hình thức sinh sản vô tính ở một số giai đoạn của cuộc đời. Sinh sản vô tính là hình thức sinh sản chủ yếu của các sinh vật đơn bào như vi khuẩn và sinh vật nguyên sinh.

Nhị phân

Mặc dù chỉ tế bào nhân thực (các sinh vật có các nhân phức tạp) mới có thể sử dụng nguyên phân để thực hiện sinh sản vô tính, nhiều tế bào không nhân (vi khuẩn) cũng có thể sinh sản vô tính. Thay vì nguyên phân, các tế bào không nhân thực hiện chu trình gọi là **NHỊ PHÂN**. Trong nhị phân, tế bào nhân đôi vật chất di truyền của nó. Tế bào kéo giãn dài, làm cho vật liệu di truyền phân tách. Tế bào ngắt chính giữa, tạo ra hai tế bào con giống hệt với tế bào mẹ.



HÃY NGHĨ TÓI CHỒI TRÊN MỘT
CỦ KHOAI TÂY GIÀ - ĐÓ GỌI LÀ
SINH SẢN VÔ TÍNH.

Nảy chồi và tái sinh

Ở một số động vật đa bào, tế bào sử dụng nguyên phân và phân chia tế bào để sản sinh ra CHỒI của các tế bào giống hệt với tế bào mẹ. Khi chồi đủ lớn, nó có thể vỡ ra và tự sinh sống. Chồi là bản sao của mẹ.

Thực vật có thể sinh sản thông qua SINH SẢN SINH DƯỠNG, đó là khi cây tạo ra THÂN BỘ hoặc thân cây mọc ngang và cuối cùng hình thành rễ, tạo ra một cây mới. Thực vật cũng có thể sinh sản thông qua SỰ PHÂN MẠNH, điều này đơn giản là khi một phần của cây tách ra và bắt đầu phát triển một cây mới.

Động vật có thể TÀI SINH, hoặc tái phát triển phần đã mất, như con sao biển, có thể sinh sản vô tính thông qua sự tái sinh. Nếu một con sao biển bị đứt làm đôi thì một phần của nó có thể tạo thành một sinh vật mới.

SINH SẢN HỮU TÍNH

Nhiều sinh vật bao gồm hầu hết động thực vật sinh sản hữu tính. Trong SINH SẢN HỮU TÍNH, sinh vật đực và cái kết hợp vật chất di truyền để sinh con. Không giống như sinh sản vô tính, con trong sinh sản hữu tính là duy nhất và có những đặc điểm khác với bố, mẹ.

Trong suốt quá trình sinh sản hữu tính, TẾ BÀO ĐỰC được gọi là TÍNH TRÙNG và tế bào cái được gọi là TRÙNG, kết hợp lại. Sự kết hợp giữa một trứng và một tinh trùng gọi là **THỤ TINH**, tế bào được hình thành từ sự thụ tinh được gọi là **HỢP TỬ**. Cuối cùng, hợp tử sẽ lớn lên và phát triển thành một sinh vật thông qua nguyên phân và phân chia tế bào.

THỤ TINH

Khi tế bào đực và tế bào cái giao hợp **HỢP TỬ** là tế bào được sinh ra từ quá trình thụ tinh; có một bộ nhiễm sắc thể hoàn chỉnh

SINH SẢN VÔ TÍNH và HỮU TÍNH

Một số sinh vật sinh sản hữu tính, vô tính hoặc cả hai.

Vậy lợi ích của mỗi cách thức trên là gì?

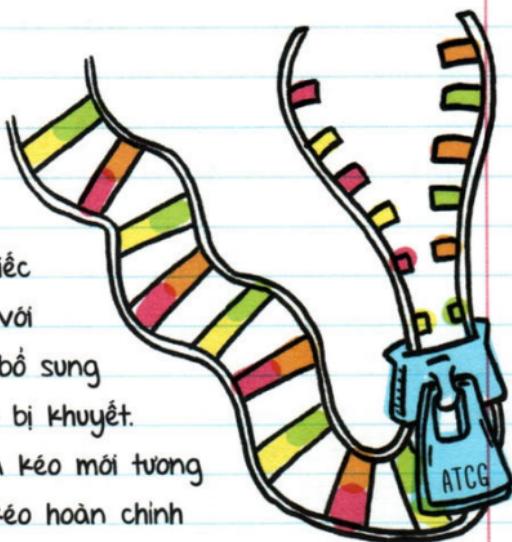
ƯU ĐIỂM

- Sinh sản hữu tính dẫn đến nhiều biến thể. Mỗi đứa con có một sự kết hợp độc nhất về vật chất di truyền. Biến đổi càng nhiều có nghĩa là đứa con sẽ có nhiều đặc điểm khác giúp chúng có thể tồn tại trong các môi trường khác nhau.

- Sinh sản vô tính cần ít năng lượng hơn. Sinh sản vô tính không cần bạn tình và có thể thực hiện một mình. Một quần thể có thể mở rộng nhanh chóng nhờ sinh sản vô tính.

NHƯỢC ĐIỂM

- Trong sinh sản vô tính, vì không có biến thể di truyền, quần thể có thể bị tiêu diệt nhanh chóng nếu điều kiện không thuận lợi. Nếu có một loại ký sinh trùng tấn công vào sinh vật, quần thể có thể diệt vong nhanh chóng vì mỗi sinh vật đều giống nhau.


- Sinh sản hữu tính đòi hỏi nhiều nỗ lực và năng lượng hơn vì sinh vật phải tìm bạn tình. Nếu một sinh vật không thể thành công trong việc tìm kiếm bạn tình, sinh vật đó sẽ không thể sinh sản.

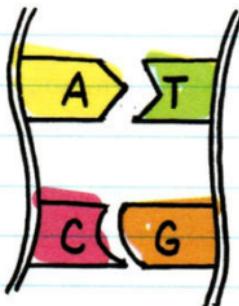
DNA

Các đặc điểm như tóc hoặc màu mắt được truyền từ bố mẹ sang con bằng DNA (các chuỗi vật chất di truyền lưu trữ thông tin di truyền). DNA được cuộn chặt quanh các phân tử protein để tạo thành nhiễm sắc thể.

Hãy nghĩ về DNA như một chiếc khóa kéo.

Trong quá trình sao chép tế bào, DNA được mở khóa. Mỗi bên của chiếc khóa kéo được ghép đôi với một nửa phần khóa kéo bổ sung giống hệt phần khóa kéo bị khuyết. Kết quả là hai chiếc khóa kéo mới tương tự nhau. Mỗi chiếc khóa kéo hoàn chỉnh chứa một nửa từ chiếc khóa cũ và một nửa từ chiếc khóa mới.

Các bazơ niơ bổ sung bao gồm các răng của khóa kéo. Bazơ niơ bổ sung khớp với nhau, vì vậy các cặp bazơ bổ sung luôn đi cùng nhau. Có bốn loại bazơ niơ: **ADENINE**, **THYMINE**, **CYTOSINE** và **GUANINE**, đại diện bởi các chữ cái đầu A, T, C và G. Thứ tự của các chữ cái này (bazơ niơ) là "ngôn ngữ" cho biết cách các tế bào xây dựng một sinh vật: **AGGCATCGAATCG...** với hàng tá các chữ cái!


A trên một dãy luôn ghép cặp với T ở dãy còn lại, C luôn ghép cặp với G, có nghĩa là luôn có một lượng A bằng T và lượng C bằng G.

Dưới đây là cách nhớ các cặp:

A Trait Could Grow

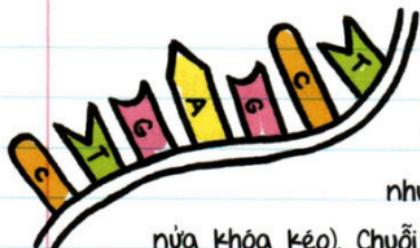
(Một Đặc Điểm Có Thể Phát Triển)

(Adenine + Thymine/Cytosine + Guanine)

Sự đột biến

Đôi khi có một số lỗi được tạo ra khi DNA sao chép. Các lỗi này được gọi là **SỰ ĐỘT BIẾN**, chúng có thể gây ra bởi tia UV, hóa chất, tia X và một số yếu tố khác. Một số đột biến có thể khiến sinh vật chết. Nhiều đột biến quá nhỏ để tạo ra sự sai khác trong sinh tồn. Trong khi một số đột biến có thể tạo ra các đặc điểm có thể giúp sinh vật sống sót. Đột biến gen là một trong những cách để giúp sinh vật tiến hóa.

Gen

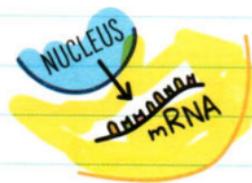

GEN là các đoạn của chuỗi DNA mã hóa cho một đặc điểm cụ thể. Một gen giống như một quy trình hướng dẫn và DNA là ngôn ngữ là hướng dẫn từng bước được liệt kê trong hướng dẫn đó.

Mỗi nhiễm sắc thể chứa hàng ngàn gen. Trong sinh sản hữu tính, các gen này được truyền từ đời cha sang đời con thông qua tế bào sinh sản (tế bào tinh trùng và tế bào trứng). Vì tế bào sinh sản của cha và mẹ tạo ra con cái nên con cái sẽ có gen và đặc điểm từ cha và mẹ.

Sự Tổng hợp protein

DNA thực hiện mã hóa để tạo ra protein. Protein xây dựng các tế bào và mô, tạo ra các đặc điểm di truyền khác nhau. Protein là các phân tử phức tạp được tạo ra bằng cách xâu chuỗi các axit amin. Ba cặp bazơ (ví dụ như CTG, AAC) mã hóa cho một axit amin. Nếu một protein là một chuỗi hạt dài thì mỗi hạt sẽ là một axit amin. Thứ tự, trình tự của các axit amin sẽ xác định loại protein.

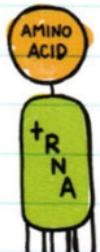
Mặc dù DNA được tìm thấy trong nhân tế bào nhưng các protein lại được tạo ra trên các ribosome trong tế bào chất. Để lấy thông tin từ các phân tử DNA đến ribosome, tế bào sử dụng thông điệp gọi là RNA là chữ viết tắt của RIBONUCLEIC ACIT.



RNA được tạo từ mẫu DNA, nhưng không giống DNA chứa hai chuỗi, RNA chỉ chứa một chuỗi như một nửa của chuỗi DNA (một nửa khóa kéo). Chuỗi RNA như một khuôn hay mẫu mà từ đó nhiều protein có thể được tạo ra.

Sự khác biệt giữa RNA và DNA dựa trên базơ mỗi loại sử dụng. Mặc dù RNA cũng sử dụng ghép cặp bazơ nhưng DNA sử dụng T (thymine), còn RNA sử dụng U (Uracil).

Có ba loại RNA khác nhau, mỗi loại có chức năng khác nhau:


mRNA: Được biết đến là **RNA THÔNG TIN**, chúng mang mã DNA ra khỏi nhân đến tế bào chất.

rRNA: Được biết đến là **RNA RIBOSOM**, đó là thành phần cấu tạo ribosom. Ribosom sẽ gắn vào phân tử mRNA để bắt đầu sự sản xuất protein.

tRNA: Được biết đến là **RNA VẬN CHUYỀN**. Các phân tử tRNA vận chuyển axit amin đến ribosom.

Bộ gen con người

Con người có hàng nghìn gen. Tất cả các gen đều nằm trên nhiễm sắc thể của chúng ta, tất cả các gen lập thành BỘ GEN con người. Các nhà khoa học đã làm việc trong một thời gian dài để lập bản đồ vị trí của từng gen trên nhiễm sắc thể của chúng ta. Dự án này được gọi là DỰ ÁN BỘ GEN CON NGƯỜI. Các nhà khoa học đang cố gắng lập bản đồ vị trí của các bệnh di truyền để phòng ngừa và hiểu rõ hơn về chúng.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Tế bào dành hầu hết thời gian trong giai đoạn nào của chu kỳ tế bào? Điều gì đã xảy ra trong giai đoạn này?
- 2 Các hình thức sinh sản vô tính là gì?
- 3 So sánh và phân biệt sinh sản vô tính và hữu tính.
- 4 Phân chia tế bào được sử dụng để làm gì?
- 5 Điều gì xảy ra khi có sự đột biến trong DNA?
- 6 Sự kết hợp của một ___ và một trứng được gọi là ___, một tế bào hình hành gọi là ___.
- 7 Bazơ nitơ của DNA là gì và chúng được ghép cặp như thế nào?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Ký nguyên phân. Trong ký nguyên phân, tế bào chuẩn bị cho sự phân chia bằng cách phát triển và sao chép nhiễm sắc thể và các bào quan.
- 2 Sinh sản vô tính có thể được thực hiện thông qua nguyên phân, nhị phân, chồi, và tái sinh.
- 3 Trong sinh sản vô tính, con cái giống hệt mẹ. Trong sinh sản hữu tính, con là duy nhất về mặt di truyền. Sinh sản hữu tính cần nhiều năng lượng và hai cặp bố mẹ trong khi sinh sản vô tính chỉ cần cha hoặc mẹ và ít năng lượng hơn.
- 4 Phân chia tế bào được sử dụng để thay thế các tế bào cũ và hư hỏng, và cũng cho cả sự phát triển. Nó cũng được sử dụng trong sinh sản hữu tính.
- 5 Một số đột biến có thể khiến sinh vật chết, đôi khi chúng có ích, nhưng thường chúng không tạo ra nhiều sự khác biệt trong sinh tồn.
- 6 Tinh trùng, thụ tinh, hợp tử
- 7 A (adenine), T (thymine), C (cytosine), G (guanine). A ghép với T, C ghép với G.

PHẦN

Thực vật và
động vật

Chương 32

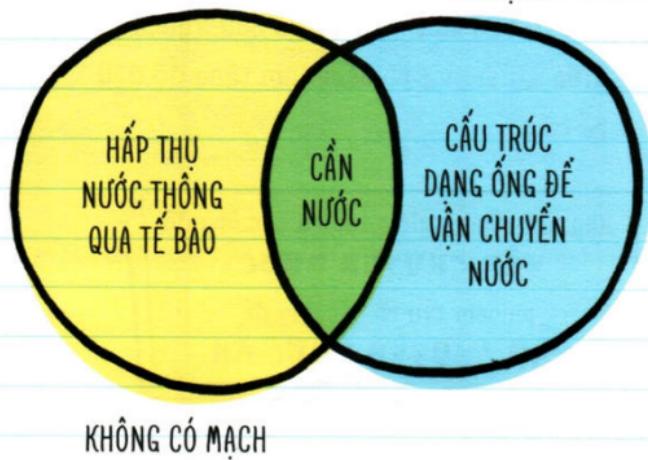
CÁU TRÚC VÀ SỰ SINH SẢN Ở THỰC VẬT

Một số loài thực vật có kích thước siêu nhỏ, trong khi một số khác có chiều cao như một tòa nhà ba mươi tầng, nhưng tất cả các loài thực vật đều được cấu tạo từ các tế bào có thành tế bào và sắc tố màu xanh lá cây gọi là diệp lục, cho phép chúng có thể tạo ra năng lượng từ Mặt Trời trong một chu trình gọi là quang hợp (sự sản xuất năng lượng). Thực vật cũng có các sắc tố đỏ, cam và vàng gọi là CAROTIN được sử dụng để quang hợp.

NÈ, LÀM
THẾ NÀO ĐỂ
LỚN VẬY?

Những loài thực vật đầu tiên có thể là tảo lục sống dưới nước. Sau đó là dương xỉ, cây lá kim và thực vật có hoa, phát triển trải qua hàng triệu năm đến khi các loài thích nghi với cuộc sống trên cạn. Thực vật đã trải qua từ quá trình sống dưới nước đến trên cạn bằng cách

phát triển các cấu trúc cho phép chúng sinh trưởng và trữ nước. Trên cạn, để trữ nước, thực vật phát triển các lớp màng bảo vệ bằng sáp gọi là CUTIN. Để hỗ trợ cho cấu trúc, thực vật phát triển thành tế bào cứng chứa đầy chất xơ - một loại sợi chắc chắn.

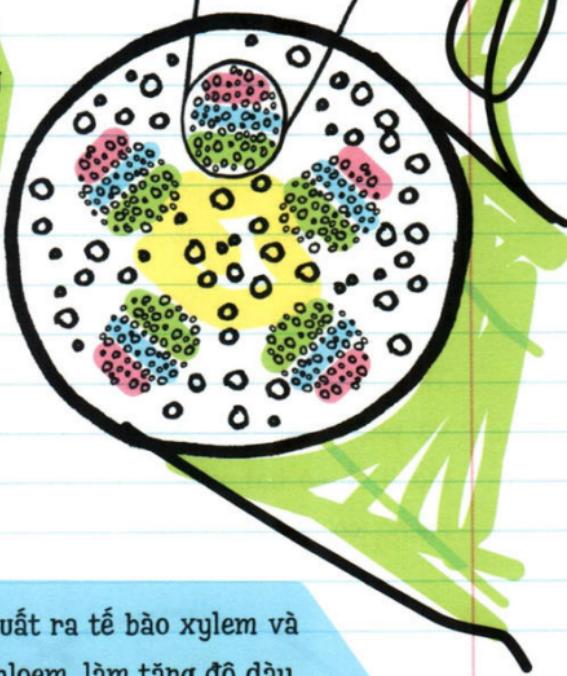
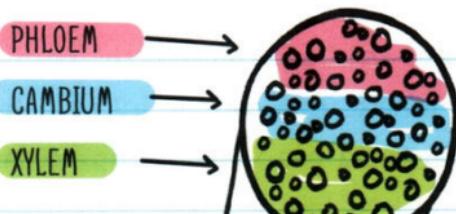

HẦU HẾT THỰC VẬT
ĐƠN GIẢN NHƯ RÈU

THỰC VẬT CÓ MẠCH và THỰC VẬT KHÔNG CÓ MẠCH

THỰC VẬT KHÔNG CÓ MẠCH không có cấu trúc để giúp chúng vận chuyển và phân phối nước hoặc các chất dinh dưỡng, vì vậy mỗi tế bào tự hấp thụ nước và các chất dinh dưỡng.

THỰC VẬT CÓ MẠCH có cấu trúc dạng ống để vận chuyển và phân phối các chất dinh dưỡng. Hầu hết thực vật có mạch sẽ có hạt, nhưng có một số thực vật có mạch nhưng không có hạt như dương xỉ.

CÓ MẠCH



Mô mạch

XYLEM: các tế bào dạng ống xếp chồng lên nhau tạo thành các mạch phân phối nước từ rễ đến các bộ phận trong cây. Chúng cũng cung cấp sự hỗ trợ cấu trúc.

PHLOEM: các tế bào dạng ống xếp chồng lên nhau để tạo thành các ống phân phối thức ăn cho hoạt động sống và dự trữ.

CAMBIUM: các tế bào sản xuất ra tế bào xylem và phloem mới, giữa xylem và phloem, làm tăng độ dày của thân và rễ cây.

Hãy nhớ rằng xylem tạo ra các ống để **VẬN CHUYỂN NƯỚC**,
phloem tạo ra các ống để **VẬN CHUYỂN THỨC ĂN**.

THỰC VẬT KHÔNG HẠT

Thực vật không hạt sinh sản bằng BÀO TỬ, một đơn vị sinh sản nhỏ. Thực vật không hạt có thể chia thành hai loại là không có mạch và có mạch.

Thực vật không hạt, không mạch

THỰC VẬT KHÔNG HẠT, KHÔNG MẠCH chỉ có một số ít các tế bào dày vì mỗi tế bào hấp thụ nước và các chất dinh dưỡng thông qua màng tế bào được hấp thụ trực tiếp ở môi trường xung quanh. Hầu hết

thực vật không hạt không mạch sống trong môi trường ẩm ướt. Thực vật không hạt, không mạch có RỄ GIÀ là những cấu trúc chuỗi nhỏ thay vì rễ. Rễ già bám chặt vào thực vật. Thực vật không hạt, không mạch bao gồm rêu, ngành rêu tản và rong nước.

Thực vật không hạt, không mạch thường là loài tiên phong trong một hệ sinh thái đang phát triển, đặc biệt là ở khí hậu ẩm ướt.

Thực vật không hạt, có mạch

THỰC VẬT KHÔNG HẠT CÓ MẠCH như dương xỉ, bạc hà Châu Âu, cỏ đuôi ngựa và rêu nhọn có thể phát triển lớn hơn vì chúng có cấu trúc để phân phối nước và các chất dinh dưỡng. Hầu hết các loại thực vật không hạt, có mạch - ngoài dương xỉ và cỏ đuôi ngựa ra - thì không còn tồn tại nữa, chúng ta chỉ có thể biết đến chúng qua các hóa thạch.

THỰC VẬT CÓ HẠT

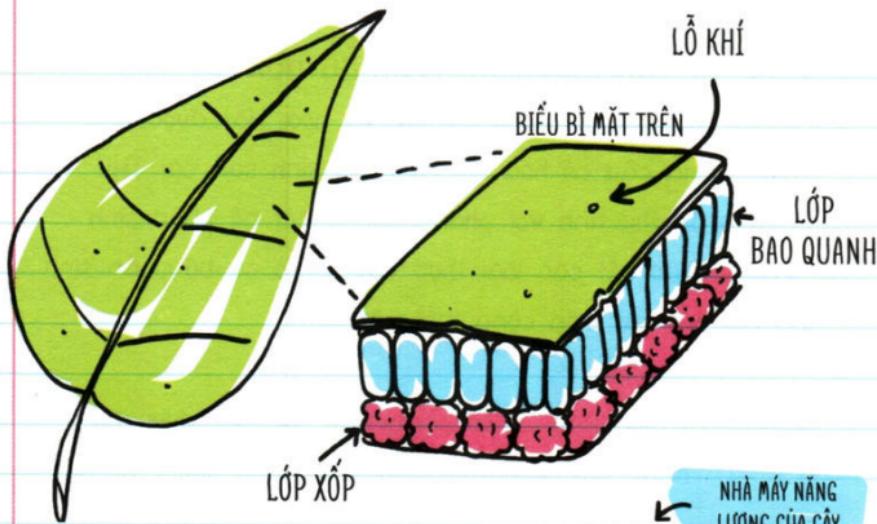
HẠT là đơn vị sinh sản thích nghi trên cạn. Không giống như bào tử, hạt có nguồn thức ăn dự trữ và có lớp vỏ hạt để bảo vệ. Giống như bố mẹ đưa cho trẻ một hộp cam trưa và áo khoác để chúng có thể sống tốt khi ở trường. Thực vật có hạt có thể chia thành CÂY HẠT TRẦN là những cây có hạt không ở trong quả và CÂY HẠT KÍN là những cây có hạt được chứa trong quả. Tất cả các loại quả chúng ta ăn đều là thực vật hạt kín.

Tất cả các thực vật có hạt là thực vật có mạch và hầu hết chúng đều có ba cấu trúc sau:

HÃY GHI NHỚ:

Thực vật hạt trần tạo ra các hạt KHÔNG được bảo vệ bởi quả (như các cây thông).

Thực vật hạt trần KHÔNG CÓ HOA. Thực vật hạt kín tạo ra các hạt được bảo vệ bởi quả. Thực vật kín có hoa.


I. **Lá:** cơ quan của cây, nơi xảy ra phản ứng quang hợp.

Một số loại lá phẳng, một số hình dạng kim và một số hình dạng khác.

BIỂU BÌ: là lớp ngoài cùng với cutin sáp giúp phòng chống sự mất nước và bảo vệ lá. Lá trao đổi các loại khí như oxy và carbon dioxide với môi trường thông qua các lỗ mở trong biểu bì được gọi là **LỖ KHÍ**.

TẾ BÀO BẢO VỆ mở và đóng những lỗ khí này. Lá có thể bị mất nước qua lỗ khí, do đó chúng thường đóng trong những ngày nóng.

NHƯ MÔI TRÊN
MIỀNG BẢN

LỚP BAO QUANH: là lớp bên dưới lớp biểu bì có chứa lục lạp để tạo năng lượng thông qua sự quang hợp.

LỚP XỐP: là lớp bên dưới lớp bao quanh, có tên gọi bắt nguồn từ sự sắp xếp của các tế bào, chúng tổ chức lỏng lẻo, cho phép các túi khí lưu trữ CO_2 và oxy, như bọt biển. Hầu hết mô mạch - phân phổi nước và thức ăn, được tìm thấy trong lớp xốp.

2. Thân: hỗ trợ cho lá, cành...

3. Rễ: cấu trúc thực vật hấp thụ nước, khí và các chất dinh dưỡng từ đất và dự trữ thức ăn. Về mặt cấu trúc, rễ cây hỗ trợ cây và ngăn cho cây không bị thổi hoặc cuộn trôi.

Sự sinh sản của thực vật có hoa

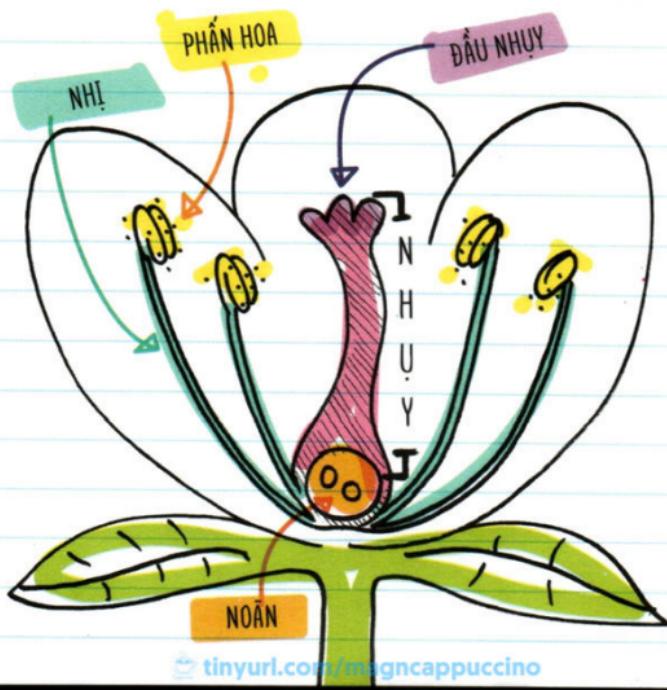
Tất cả các loài thực vật hạt kín ra hoa. Hạt được hình thành trong cây có hoa khi bộ phận sinh sản cái THỦ PHẦN hoặc thụ tinh với phần hoa từ một bộ phận sinh sản đực. Hầu hết các loại thực vật sẽ có cả bộ phận sinh sản đực và cái trên cùng một cây.

Bao tử cái phát triển ở bộ phận sinh sản cái, được gọi là NOãn. Noãn mở rộng một ống dài gọi là NHÚY. Xung quanh nhụy hoa là các bộ phận sinh sản đực được gọi là NHỊ. Nhị sản sinh ra PHẦN HOA, trông như các hạt "bụi" chứa các bào tử đực. ĐẦU NHÚY là bộ phận của cây nhận phần hoa.

Hạt được tạo ra khi bào tử cái từ noãn kết hợp với bào tử đực ở phần hoa, quá trình này gọi là SỰ THỦ PHẦN. Sự thụ phấn xảy ra khi phần hoa từ nhị hoa được chuyển đến nhụy hoa ở đầu nhụy. Hầu hết các loại thực vật đều thích nghi để giữ cho chúng không tự thụ phấn, chẳng hạn như thời gian trưởng thành khác nhau của bào tử cái và bào tử đực, hoặc một hoa hấp dẫn côn trùng nhờ đó côn trùng mang phần hoa đến cây khác. Bào tử đực ở phần hoa sau đó đến đầu nhụy rồi di tiếp xuống nhụy hoa gặp bào tử cái ở bầu nhụy.

Cây mẹ phải phân tán hạt ra xa để chúng không cạnh tranh ánh nắng mặt trời, nước và các chất dinh dưỡng

từ đất. Thực vật điều chỉnh các cách thức khác nhau để PHÂN TÁN HẠT như:


- **GIÓ:** Hạt nhẹ và có các tơ nhẹ để chúng có thể được phân tán bởi gió.

NHƯ KHI NHỮNG
CÁNH HOA BỒ CÔNG
ANH BAY XA

- **NƯỚC:** Hạt trôi trên sông suối.

- **ĐỘNG VẬT:** Hạt có thể bám vào lông mao, lông vũ hoặc da của động vật. Động vật cũng có thể ăn quả và sau đó phân tán hạt qua phân.

- **NÚT VỎ:** Quả của hạt khô đi và tách ra, phân tán hạt theo các hướng khác nhau.

Nếu hạt giống có nước và nhiệt độ thích hợp, nó sẽ NÀY MẦM hoặc lớn lên, sử dụng thức ăn dự trữ trong hạt.

Lớp vỏ bảo vệ của hạt tách ra, một lớp rễ đầu tiên mọc rộng vào đất. Hạt giống tiếp tục phát triển, mọc rễ, thân và lá hỗ trợ cây phát triển.

KIỂM TRA TRIẾT THỨC CỦA BẠN

- 1 Bộ phận của hoa chứa bào tử đực?
- 2 Giải thích chức năng của rễ.
- 3 Đưa ví dụ về thực vật không hạt, có mạch.
- 4 Thực vật không mạch có gì thay cho rễ?
- 5 Tại sao thực vật không hạt, không mạch chỉ có một số ít tế bào dày?
- 6 Loại cây nào ra hoa?
- 7 Các sắc tố màu xanh lá cây được sử dụng cho quang hợp là gì?
- 8 Bộ phận sinh sản đực của cây có hoa là gì?
- 9 Giải thích chức năng của lỗ khí.
- 10 Thực vật có hạt không được bao quanh bởi quả gọi là gì?
- 11 Xylem của cây là gì?
- 12 Cây không hạt dùng gì để sinh sản?


KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Phân hoa trên nhị hoa
- 2 Rễ giúp cây cố định, thu thập nước và dự trữ chất dinh dưỡng.
- 3 Dương xỉ
- 4 Rễ già
- 5 Bởi vì mỗi tế bào phải hấp thụ chất dinh dưỡng và nước trực tiếp từ môi trường.
- 6 Thực vật hạt kín
- 7 Diệp lục
- 8 Lỗ khí
- 9 Lỗ khí mở trên lá để trao đổi khí như oxy và carbon dioxide với môi trường.
- 10 Thực vật hạt trần.
- 11 Xylem phân phối nước từ rễ đến các bộ phận khác của cây.
- 12 Bảo tử

Câu số 3 có nhiều đáp án.

Chương 33

ĐỘNG VẬT KHÔNG XƯƠNG SÓNG

CÁC ĐẶC TRƯNG CỦA ĐỘNG VẬT

Hầu hết các loài động vật sẽ có các đặc trưng dưới đây:

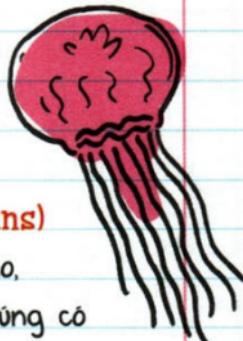
ĐA BÀO (tạo thành từ nhiều tế bào).

ĐI DƯỠNG (chúng ăn các sinh vật khác).

ĐI ĐỘNG (có thể di chuyển để tìm thức ăn, nơi trú ẩn và sự an toàn).

Hầu hết động vật đều có **TÍNH ĐỐI XỨNG**, tức là chúng trông cân xứng dọc qua một đường chia chúng. Loài người, chó và nhiều loại động vật khác có **TÍNH ĐỐI XỨNG HAI BÊN**, nghĩa là nếu bạn vẽ một đường dọc xuống cơ thể, hai bên sẽ giống hệt nhau. Các loài động vật khác có **ĐỐI XỨNG XUYÊN TÂM**, nghĩa là chúng có các phần giống nhau sắp xếp thành một vòng tròn, giống như sao biển. Nhưng có một vài loài động vật **KHÔNG ĐỐI XỨNG** - giống như kỳ lân biển sẽ có một ngà ở hàm trên bên trái của nó.

ĐỘNG VẬT KHÔNG XƯƠNG SỐNG


Động vật không có xương sống được gọi là ĐỘNG VẬT KHÔNG XƯƠNG SỐNG. Động vật không xương sống bao gồm nhiều loại động vật như giun, bọt biển, trai, sò, tôm hùm, châu chấu. Phần lớn các loại động vật là động vật không xương sống.

Bọt biển

Các nhà khoa học ban đầu nghĩ chúng là thực vật bởi vì chúng KHÔNG CUỐNG hoặc không di chuyển. Nhưng không giống như thực vật, hầu hết các loại BỌT BIỂN là sinh vật dị dưỡng. Bọt biển lọc các sinh vật cực nhỏ trong nước để làm thức ăn.

Trong sinh sản hữu tính, hầu hết bọt biển là ĐỘNG VẬT LUÔNG TÍNH, có nghĩa là mỗi bọt biển có cả bộ phận đực và cái. Bọt biển sinh sản cả VÔ TÍNH và HỮU TÍNH, tức là chúng kết hợp DNA đực và cái để tạo ra con có thông tin di truyền mới hoặc chúng sinh sản vô tính để tạo ra con cái giống hệt bố mẹ.

Sứa (Cnidarians - phát âm giống NiDArians)

SỨA là một loài động vật rỗng có hai lớp tế bào, lớp tế bào bên trong có khoang tiêu hóa kín. Chúng có những xúc tu xung quanh miệng.

CÙNG LÀ NƠI ĐỂ CHỦNG
BÀI TIẾT CHẤT THẢI!

Ngành sữa bao gồm sữa, hải quỳ, thủy tảo và san hô. Sữa bắn ra các tế bào có tính châm chích từ các xúc tu của nó để bắt mồi, điều đó giải thích tại sao sữa chích.

Sán

SÁN DẸP rất dài, có phần đồi xung hai bên. Hầu hết sán dẹp sống ký sinh, có nghĩa là chúng sống trong vật chủ như người hoặc động vật để kiếm thức ăn và làm chỗ trú ẩn. SÁN DÂY là một loại sán dẹp ký sinh, chúng sống trong ruột của vật chủ để lấy thức ăn.

Sán dây được tạo từ cơ thể vật chủ trong bộ phận sinh sản đực và cái. Khi sán dây phát triển, chúng thêm vào phân đoạn mới và ngày càng dài hơn.

MỘT SỐ CÓ THỂ DÀI HƠN 50 FEET

Sán dây lây lan tới các sinh vật thông qua trứng của nó. Một phân đoạn lắp đầy trứng được thụ tinh, sau đó vỡ ra. Những quả trứng này thoát ra khỏi vật chủ với chất thải của động vật, rơi lên cỏ hoặc thực vật khác. Khi các động vật khác ăn cỏ hoặc thực vật, trứng của sán dây sẽ xâm nhập vào vật chủ mới.

Giun đũa

Giun đũa giống như hai sợi ống dài xếp chồng lên nhau. Một khoang được chứa đầy chất lỏng ngăn cách các ống bên trong và bên ngoài. Giun đũa có cơ thể phức tạp hơn sán dẹp vì chúng có cả miệng và hậu môn, nơi chất thải thoát ra khỏi cơ thể.

Giun phân đoạn

Giun phân đoạn còn được gọi là GIUN ĐỐT, có cơ thể được tạo thành từ các vòng lặp hoặc phân đoạn (cấu trúc cơ thể rất dễ nhớ do tên của chúng). Giun đốt có hệ thống tuần hoàn kín, miệng để ăn và hậu môn để đào thải chất thải.

Giun đât và dia là hai ví dụ về giun phân đoạn. Giun đât sống trong đất và ăn chất hữu cơ từ đất để lấy năng lượng. Giun đât thực hiện trao đổi khí qua da. Để giúp khí đi qua da, chúng được bao phủ quanh một lớp chất nhầy mỏng (đó là lý do vì sao giun đât trông rất nhầy nhụa).

Động vật thân mềm

Động vật thân mềm là sinh vật thân mềm, thường có vỏ. Một lớp mỏng gọi là lớp phủ bao quanh cơ thể chúng. Ở động vật thân mềm có vỏ, lớp phủ kín vỏ. Ví dụ về động vật thân mềm bao gồm ốc sên, sò và bạch tuộc.

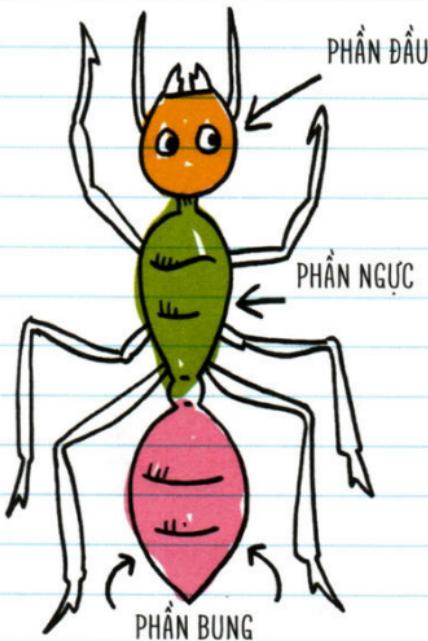
Động vật chân khớp

Động vật chân khớp nối các **PHẦN PHỤ** như móng vuốt, chân và râu. Động vật chân khớp có lớp phủ ngoài cùng cơ thể cùng, gọi là **BỘ XƯƠNG NGOÀI**. Bộ xương ngoài không

PHẦN PHỤ

có cấu trúc là chúng được đi kèm với một thứ gì đó lớn hơn. Ví dụ, vai là phần phụ vì chúng được đi kèm cùng cơ thể.

phát triển cùng động vật, vì vậy khi động vật chân đốt phát triển, chúng lột bộ xương ngoài của mình tạo nên một bộ mới, quá trình này được gọi là **LỘT XÁC**. Hầu hết các loại động vật chân đốt là côn trùng, nhưng cũng có nhiều loại khác như nhện, bọ cạp, rết và các loài giáp xác. Động vật chân khớp là nhóm động vật lớn nhất với hơn một triệu loài.


CÔN TRÙNG

Côn trùng là một nhóm sinh vật rất đa dạng, chiếm số lượng lớn, như kiến, chúng có cơ thể chia làm ba phần:

1. PHẦN ĐẦU: có mắt và râu gắn vào đầu

2. PHẦN NGỰC: có cánh và chân gắn vào ngực

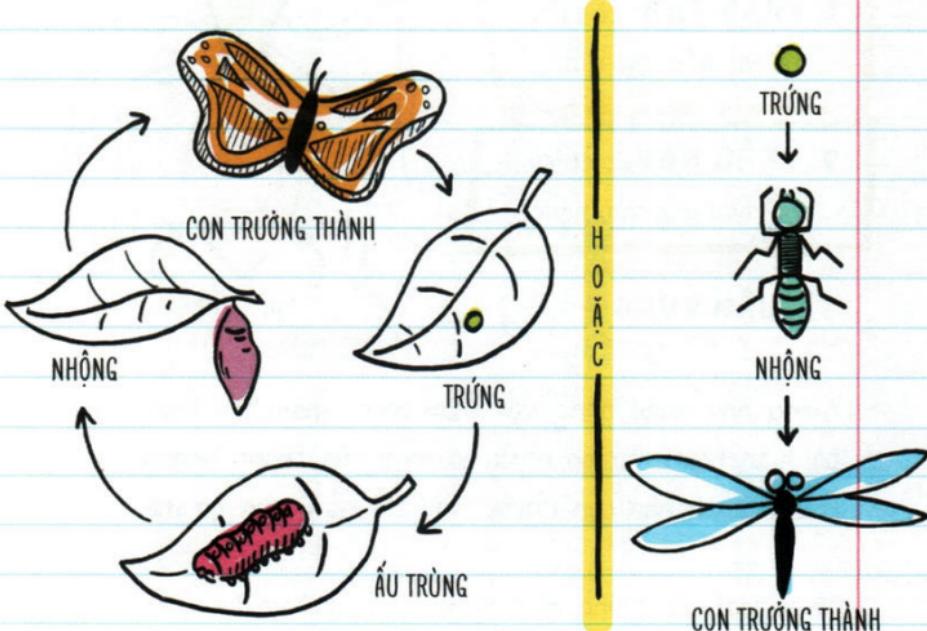
3. PHẦN BỤNG

Giống như nhiều động vật thân mềm khác, côn trùng có hệ tuần hoàn mở; có nghĩa là máu của chúng không chứa trong mạch như con người. Máu chỉ chảy qua cơ thể.

Nhiều loài côn trùng như bướm, kiến, ong và bọ cánh cứng có sự thay đổi mạnh mẽ từ khi mới sinh đến lúc trưởng

thành. Sự biến đổi vật lý mà
côn trùng trải qua, gọi là
SỰ BIẾN HÌNH.

SỰ BIẾN HÌNH


sự biến đổi cơ thể

Sự biến hình có thể có
bốn bước sau:

TRÚNG
ẤU TRÙNG
NHỘNG
CON TRƯỞNG THÀNH

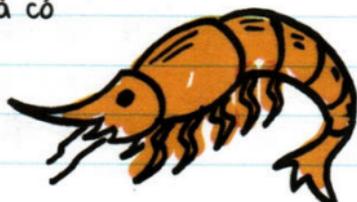
Hoặc ba bước:

TRÚNG
NHỘNG
CON TRƯỞNG THÀNH

Giai đoạn ấu trùng hoặc nhộng là phát triển về hệ tiêu hóa (một con sâu bướm có một cái miệng và dạ dày phía sau). Giai đoạn con trưởng thành là về sinh sản. Có nhiều côn trùng trưởng thành thậm chí không ăn gì cả. ← CHÚNG QUÊN LUÔN!

LỐP NHỆN

Nhện, bọ cạp và ve thuộc lớp nhện. Nhện chỉ có hai bộ phận cơ thể. Một **PHẦN ĐẦU NGỰC** là khu vực đầu và ngực bị dính lại với nhau. Và phần bụng. Chúng cũng có bốn phần chân.


RẾT VÀ CUỐN CHIỀU

Rết và cuốn chiếu có cơ thể dài và phân đoạn. Rết có một cặp chân trên mỗi phân đoạn, và cuốn chiếu có hai cặp chân trên mỗi phân đoạn.

LOÀI GIÁP XÁC

Loài giáp xác sống trong nước và có nhiều kích thước khác nhau. Hầu hết loài giáp xác có râu, phần phụ để nhai và năm cặp chân. Loài giáp xác gồm cua, tôm hùm, bọ chét nước, tôm và hàu.

Động vật da gai

Động vật da gai có lớp da đầy gai và có dạng đối xứng xuyên tâm (các bộ phận cơ thể sắp xếp cân đối xung quanh điểm trung tâm nằm giữa cơ thể). Động vật da gai không có đầu và não. Chúng bao gồm nhím biển, sao biển, sao mặt trời, và sand-dollar.

KIỂM TRA KIẾN THỨC CỦA BẠN

Kết hợp thuật ngữ với định nghĩa đúng:

1. Dị dưỡng
2. Ngành nhện
3. Giun đốt
4. Phần đầu ngực
5. Động vật chân đốt
6. Bọt biển
7. Giun đũa
8. Sữa
9. Đối xứng hai bên
10. Phần phụ

- A. Giun đốt phân đoạn có hệ tuần hoàn kín
- B. Giun có một miệng và một hậu môn
- C. Một sinh vật lấy thức ăn bằng cách ăn các sinh vật khác
- D. Động vật không xương sống có bộ xương ngoài và phần khớp phụ
- E. Động vật rỗng có hai lớp tế bào như sữa, hải quỳ, thủy tảo, và san hô
- F. Vùng đầu và ngực của một con nhện
- G. Động vật không xương sống
- H. Động vật chân đốt chỉ có hai bộ phận cơ thể
- I. Hình ảnh phản chiếu qua một đường
- J. Cấu trúc được gắn vào một cái gì đó lớn hơn

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 C

2 H

3 A

4 F

5 D

6 G

7 B

8 E

9 I

10 J

Chương 34

ĐỘNG VẬT CÓ XƯƠNG SỐNG

ĐỘNG VẬT CÓ XƯƠNG SỐNG

ĐỘNG VẬT CÓ XƯƠNG SỐNG ở các giai đoạn phát triển, bao gồm:

DÂY SỐNG

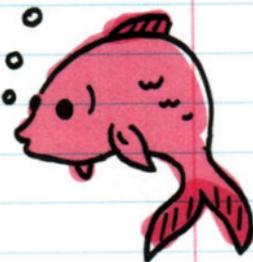
là một thanh (như xương sống) kéo dài theo chiều dài cơ thể để hỗ trợ cơ thể

DÂY THẦN KINH

dây thần kinh chạy dọc theo chiều dài cơ thể của cơ thể động vật và trở thành hệ thần kinh của động vật

KHE HẦU

là một lỗ giữa khoang trong và ngoài cơ thể, thường chỉ xuất hiện trong giai đoạn đầu phát triển

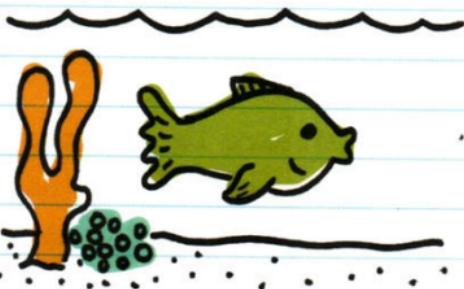

Động vật có xương sống là nhóm lớn nhất của động vật có cột sống. Động vật có xương sống có một sọ và một BỘ XƯƠNG TRONG - là bộ xương bên trong nâng đỡ cơ thể, cung cấp các điểm định kèm cho cơ bắp và bảo vệ các cơ quan. Một bộ xương trong bao gồm nhiều phần như lồng ngực, hộp sọ, xương chân.

Động vật có xương sống có thể là động vật có máu lạnh hoặc động vật có máu nóng. Động vật có máu lạnh gọi là **ĐỘNG VẬT MÁU LẠNH** và nhiệt độ cơ thể chúng thay đổi theo nhiệt độ bên ngoài. Nếu thời tiết lạnh, nhiệt độ trong cơ thể chúng cũng lạnh theo và chúng sẽ ít hoạt động hơn. **ĐỘNG VẬT MÁU NÓNG** là động vật có máu nóng, chúng có nhiệt độ bên trong cơ thể không dao động quá nhiều. Con người là một ví dụ của động vật máu nóng và thằn lằn là ví dụ của động vật máu lạnh.

CÁ

Cá (nhóm lớn nhất của động vật có xương sống) thở dưới nước bằng **MẠNG** - một cấu trúc thực hiện việc trao đổi không khí với nước. Cá có vây ở các bên để giúp chúng di chuyển trong nước cũng như điều khiển phần trên và dưới cơ thể ổn định.

Cá có bộ xương trong được tạo thành từ cá xương và **SỤN** - một mô vừa cứng vừa mềm (tai và mũi của bạn cũng được

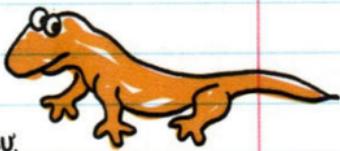

tạo từ sụn, đó là lý do tại sao chúng ta có thể nắn xung quanh mũi và tai bằng tay). Hầu hết cá có nhiều xương.

Cá nhiều xương

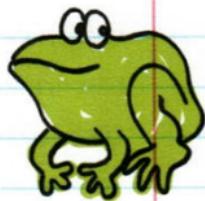
CÁ NHIỀU XƯƠNG có vảy và được bao quanh bởi một lớp chất nhầy giúp chúng lướt qua nước. Cá có cấu trúc xương bên trong giống như quả bóng bay gọi là BONG BÓNG. Cũng giống như quả bóng bay, bong bóng phồng lên hoặc xếp xuồng để giúp cho cá nổi hoặc chìm.

Cá sinh sản bằng cách

THỦ TINH BÊN NGOÀI với quá trình phun trứng ra bên ngoài cơ thể. Cá cái phun trứng vào nước và cá đực bơi vượt qua đám trứng đó, phun tinh trùng để thụ tinh cho trứng.


Cá có sụn

CÁ CÓ SUN có bộ xương được làm chủ yếu từ sụn. Chúng thường có một cái miệng giống như cá voi mồi đẻ, với những hàm răng sắc nhọn để cắn vào những con cá mục tiêu. Thông thường, cá hút máu của những con cá khác giống như cá ma cà rồng. Cá mập và cá đuôi là các loại cá sụn khác.

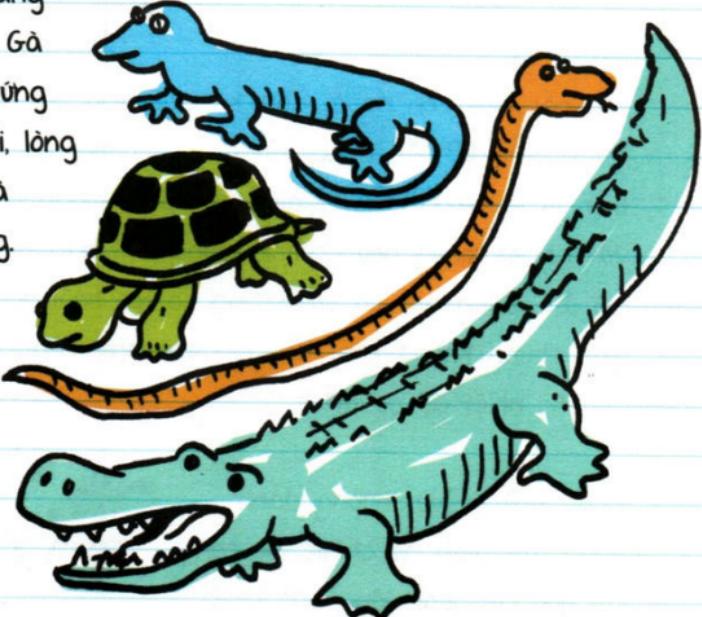


ĐỘNG VẬT LUÔNG CỨ

ĐỘNG VẬT LUÔNG CỨ sống một phần trong nước và một phần trên cạn. Éch, cóc và kỳ nhông đều là động vật luồng cư.

Giống như cá, động vật luồng cư là động vật máu lạnh. Khi thời tiết lạnh, động vật máu lạnh NGỦ ĐÔNG (không hoạt động) để bảo toàn năng lượng. Trong điều kiện khô nóng, động vật máu lạnh di chuyển xuống dưới lòng đất để tìm chỗ ẩn và mát - nơi chúng duy trì trạng thái ngủ đông tối tần khi nhiệt độ bên ngoài dễ dàng cho chúng thích nghi.

Động vật luồng cư sử dụng cả phổi và da của chúng để thực hiện trao đổi khí. Bạn đã bao giờ chú ý éch nhốt thế nào chưa? Động vật luồng cư phải luôn giữ ẩm để thực hiện trao đổi khí qua da.


Hầu hết động vật luồng cư sử dụng thụ tinh bên ngoài, giống như cá vây. Động vật luồng cư con trông hoàn toàn khác với động vật luồng cư trưởng thành. Động vật luồng cư trải qua sự biến đổi - một biến đổi cơ thể khi chúng lớn lên. Động vật luồng cư lúc nhỏ, như nòng nọc, sống hoàn toàn trong nước. Chúng có mang và không có chân, và tuổi luồng cư trẻ, nó phát triển chân và phổi, và cơ thể thường có thể sinh tồn ở nơi có ít nước. Tuy nhiên, nó sẽ trở lại nước vào thời kỳ sinh sản.

BÒ SÁT

← XUẤT HIỆN SAU ĐỘNG VẬT LUÔNG CỨ TRONG GHI CHÉP HÓA THẠCH

BÒ SÁT là động vật có xương sống sống trên cạn. Cũng như cá và động vật luồng cư, bò sát là động vật máu lạnh. Khi một con thằn lằn bị lạnh, nó sẽ ngồi trên đá tự sưởi ấm cơ thể. Ngược lại, khi một con thằn lằn cảm thấy nóng, nó sẽ tìm nơi trú ẩn mát mẻ như dưới các tảng đá. Vào mùa đông, nhiều loài bò sát trải qua một quá trình gọi là NGỦ ĐÔNG. Rùa, thằn lằn, cá sấu MỸ, rắn là các ví dụ về bò sát.

Loài bò sát thụ tinh bên trong, có nghĩa là trứng và tinh trùng được thụ tinh bên trong cơ thể con cái. Bò sát đẻ trứng có vỏ mềm, đây là một sự thích nghi cho phép chúng đẻ trứng trên đất mà không bị vỡ. Trứng đó cũng có MÀNG ỐI. Trong màng ối trứng, noãn hoàng cung cấp thức ăn cho phôi đang phát triển. Gà cũng đẻ trứng có màng ối, lòng đỏ trứng là noãn hoàng.

CHIM

CHIM là động vật có xương sống có cánh, chân, mỏ và lông vũ (trên thực tế, chim là loài động vật duy nhất có lông vũ). Chim là ĐỘNG VẬT HẤP THU NHIỆT, chúng sử dụng năng lượng để làm ấm bên trong cơ thể, trái ngược với việc lấy từ môi trường. Chúng cũng để những quả trứng khá cứng và áp để giữ ấm đến khi quả trứng nở ra chim non. Hầu hết các loài chim, tuy không phải tất cả, đều có thể bay. Chim cánh cụt và đà điểu Châu Phi không thể bay mặc dù cánh cụt có thể bơi và đà điểu có thể chạy rất nhanh.

ĐỘNG VẬT CÓ VÚ

XUẤT HIỆN MUÔN HƠN CÁC NHÓM KHÁC
THEO NHƯ GHI CHÉP HÓA THẠCH

Chó, các heo, con người, gấu, kangaroo là các ví dụ về ĐỘNG VẬT CÓ VÚ. Động vật có vú có tên gọi được đặt từ thực tế là có TUYẾN VÚ giúp sản sinh sữa nuôi con. Động vật có vú giống như chim là động vật hấp thụ nhiệt. Để giữ ấm, động vật có vú thường có tóc hoặc lông giữ nhiệt, giúp chúng không phải tiêu tốn quá nhiều năng lượng để duy trì nhiệt độ cơ thể.

Động vật có vú thường dành
nhiều thời gian để chăm sóc con
cải hon các loài động vật khác.

Động vật có vú nuôi con trong nhiều tuần hoặc thậm chí nhiều tháng bằng sữa từ tuyến vú. Động vật có vú thụ tinh bên trong.

Có ba dạng chính của động vật có vú:

1. THÚ ĐƠN HUYỆT:

động vật có vú đẻ trứng trong lớp vỏ hoặc mai da. Chỉ có năm loài động vật đơn huyệt đang sống là: một loài thú mỏ vịt và bốn loài thú lông nhím (trong giống như một loài thú ăn kiến đầy gai). Các loài động vật đơn huyệt sinh sống ở Úc, Tasmania hoặc New Guinea.

2. THÚ CÓ TÚI:

thú có túi sinh con, sau đó cho chúng lớn lên trong một chiếc túi trên người như kangaroo, thú có túi ôpôt, gấu túi.

3. THÚ CÓ NHAU THAI:

động vật có vú phát triển đầy đủ với một quan giống như cái túi gọi là NHAU THAI để nuôi bào thai trong tử cung. Nhau thai có DÂY RỐN, là một sợi dây mang thức ăn, nước và oxy đến phôi và trả lại chất thải vào cơ thể mẹ. Rốn của bạn là nơi mà dây rốn kết nối bạn với mẹ bạn đó!

90% ĐỘNG VẬT CÓ VÚ CÓ NHAU THAI.

Động vật có vú có thể là **ĐỘNG VẬT**

ĂN CỎ, ĐỘNG VẬT ĂN TẠP hoặc

ĐỘNG VẬT ĂN THỊT. Động vật ăn

cỏ như bò là loài ăn thực vật, động

vật ăn tạp như con người có thể ăn

cá thực vật và thịt, động vật ăn

thịt như sư tử núi là loài ăn thịt.

ĐỘNG VẬT ĂN CỎ

ăn thực vật

ĐỘNG VẬT ĂN TẠP

ăn thực vật và động vật

ĐỘNG VẬT ĂN THỊT

ăn động vật

Động vật có vú thường có khả năng học hỏi và ghi nhớ nhiều hơn động vật khác. Chúng có hệ thần kinh phức tạp với bộ não rất phát triển.

Động vật có vú tồn tại trong suốt thời kỳ khủng long nhưng chúng sống chủ yếu sống dưới lòng đất như những loại gặm nhấm nhỏ. Sau khi khủng long tuyệt chủng (khoảng 65 triệu năm trước), có ít sự cạnh tranh hơn và động vật có vú có thể thích nghi và tiến hóa lắp đầy tất cả chỗ trống hệ sinh thái mà khủng long để lại. Hiện nay có rất nhiều loài động vật có vú sống trong môi trường đa dạng trên toàn cầu.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Động vật có xương sống là động vật có ____.
- 2 Động vật có xương sống là tất cả _____, là động vật có một số điểm khác biệt như xương sống, hệ thần kinh và khe hầu họng.
- 3 Động vật có vú nào đẻ trứng?
- 4 Động vật không xương sống biến nhiệt là _____, ____ và _____.
Cá có thể ____ và ____ xương. Cá mập có ____ xương.
- 5 Làm thế nào để động vật có vú cái nuôi con?
- 6 Động vật lưỡng cư thực hiện trao đổi chất bằng cách sử dụng ____ và _____.
Làm thế nào để cá điều khiển được việc chìm hay nổi trong nước?
- 7 Làm thế nào để bò sát sống sót trong thời tiết lạnh?
- 8 Kể tên và giải thích ba tập quán nuôi dưỡng của động vật có vú.
- 9 Mô tả một số cách mà động vật máu lạnh duy trì nhiệt độ cơ thể thích hợp.

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Bộ xương trong
- 2 Có cột sống
- 3 Thú đơn nhiệt
- 4 Cá, động vật lưỡng cư, bò sát
- 5 Xương, sụn, sụn
- 6 Có tuyến vú tạo ra sữa.
- 7 Phổi, da
- 8 Cá có bong bóng giúp chúng phồng lên hoặc xẹp đi, nhờ đó chúng nổi hoặc chìm dưới nước.
- 9 Nếu thời tiết lạnh, bò sát tồn tại bằng cách ngừng hoạt động gọi là ngủ đông.
- 10 Động vật có vú ăn thịt được gọi là động vật ăn thịt.
Động vật có vú chỉ ăn thực vật gọi là động vật ăn cỏ.
Động vật có vú ăn cả thịt và thực vật gọi là động vật ăn tạp.
- 11 Do các loài động vật máu lạnh dựa vào môi trường để kiểm soát nhiệt độ cơ thể nên nếu trời nóng, động vật máu lạnh cơ thể chui xuống lòng đất, nhưng mình trong nước hoặc tìm một nơi râm mát để tránh nắng. Nếu trời lạnh, chúng có thể tìm điểm có nắng hoặc nằm trên đá để sưởi ấm cơ thể.

Câu số 11 có nhiều đáp án.

Chương 35

CÂN BẰNG NỘI MÔI VÀ HÀNH VI CỦA ĐỘNG VẬT VÀ THỰC VẬT

CÂN BẰNG NỘI MÔI

CÂN BẰNG NỘI MÔI là hành vi cho phép sinh vật duy trì cân bằng bên trong cho dù thời tiết bên ngoài như thế nào. Ví dụ như khi thời tiết bên ngoài rất nóng, con người sẽ đổ mồ hôi. Việc đổ mồ hôi là một phản ứng cân bằng nhiệt cho phép chúng ta giữ nhiệt độ cơ thể không đổi. Ở động vật, cân bằng nội môi bao gồm tất cả các loại phản ứng duy trì nhiệt độ cơ thể, lượng đường trong máu và lượng oxy trong máu. Thực vật cũng duy trì cân bằng nội môi, cho phép chúng giữ cân bằng nước và chất dinh dưỡng. Cân bằng nội môi là cách mà động thực vật phản hồi lại sự thay đổi của môi trường, được gọi là **SỰ KÍCH THÍCH**.

CÂN BẰNG NỘI MÔI

hành vi cho phép sự cân bằng phù hợp bên trong cơ thể dù cho các điều kiện bên ngoài có sự thay đổi

SỰ KÍCH THÍCH

sự thay đổi của môi trường

CÂN BẰNG NỘI MÔI Ở THỰC VẬT và HÀNH VI

Tính hướng kích thích

TÍNH HƯỚNG KÍCH THÍCH là khi thực vật phát triển để phản hồi lại sự kích thích. **TÍNH HƯỚNG SÁNG** là sự tăng trưởng của thực vật tương ứng với một kích thích ánh sáng, do đó thực vật sẽ phát triển về phía cửa sổ. Có nhiều loại tính hướng kích thích - thực vật có thể phản ứng với trọng lực (rẽ phát triển xuống, thân hướng lên trên) và chạm vào (dây leo bám tường).

TÍNH HƯỚNG KÍCH THÍCH

thực vật phát triển để phản hồi sự kích thích

Thoát hơi nước

THOÁT HƠI NƯỚC là khi thực vật giải phóng hơi nước vào môi trường. Sự thoát hơi nước là một cách để thực vật kiểm soát sự cân bằng nước và nhiệt độ. Nó cũng là một hình thức bốc hơi. Lá có nhiều lỗ nhỏ li ti gọi là lỗ khí, dùng để trao đổi khí. Khi lỗ khí được mở, một lượng nước thoát và bay hơi vào môi trường. Lỗ khí càng mở thường xuyên, cây càng thoát nhiều nước. Thực vật sống ở sa mạc và cây lá kim đã co lại lỗ khí để nước ít có thể thoát ra, khi đó chúng có thể bảo toàn nước.

Thoát hơi nước cũng đảm nhiệm cơ chế làm mát (giống như đổ mồ hôi) và giúp kéo nước giàu chất dinh dưỡng từ rễ lên lá.

Ngủ đông

Nhiều cây không có lá vào mùa đông phản ứng với thời tiết lạnh bằng cách bước vào trạng thái **NGỦ ĐÔNG**.

ĐÔNG. Đó là giai đoạn ngừng tăng trưởng và hoạt động của cây. Thực vật trở nên im lìm để bảo toàn năng lượng.

Khi điều kiện lạnh hoặc khô hạn, không thuận lợi cho sự phát triển, cây ngừng phát triển để sinh tồn trong điều kiện khắc nghiệt. Vào mùa xuân, chúng lấy năng lượng dự trữ trong rễ quay trở lại các nhánh cây, từ đó chúng sẽ phát triển lá và bắt đầu lại chu trình quang hợp.

NGỦ ĐÔNG

trạng thái ngừng hoạt động

CÂN BẰNG NỘI MÔI Ở ĐỘNG VẬT và HÀNH VI

Hành vi của động vật

Hành vi của động vật là để thích nghi với môi trường và đáp lại một kích thích hoặc sự thay đổi trong môi trường.

Các hành vi có thể là BẦM SINH hoặc ĐƯỢC HỌC. Hành vi bầm sinh là các hành vi được lập trình di truyền vào động vật, chúng không cần phải học. Ví dụ bơi lội là hành vi bầm sinh của cá voi, không ai phải dạy cho cá voi cách bơi lội; nó đã được lập trình vào DNA của chúng qua hàng triệu năm tiến hóa. Chúng ta thường gọi các hành vi này là BẢN NĂNG. Một số hành vi khác là được học. Ví dụ, sư tử học cách săn mồi bằng cách theo dõi mẹ chúng hành động.

Kiểm soát nhiệt độ

Động vật có các cơ chế để kiểm soát nhiệt độ bên trong cơ thể. Khi động vật nóng, các mạch máu giãn nở, gửi máu đến bề mặt da để bốc hơi nhiệt. Sau khi bạn tập thể dục, mặt bạn sẽ đỏ ửng do máu dẫn lên da.

Động vật sử dụng tất cả hành vi và phản ứng để đảm bảo nhiệt độ cơ thể được duy trì ở trạng thái tốt nhất. Khi chạy một lúc, bạn sẽ đổ mồ hôi. Đồ mồ hôi là một phản ứng giúp kiểm soát nhiệt độ trong cơ thể. Chó làm mát cơ thể bằng cách thở hồn hồn.

Động vật hấp nhiệt không dựa vào môi trường để duy trì nhiệt độ cơ thể. Một số động vật có vú có lớp lông dày để giữ nhiệt độ cơ thể vào mùa đông nhưng sẽ rụng đi vào mùa xuân khi không cần giữ ấm.

Thích ứng với khí hậu

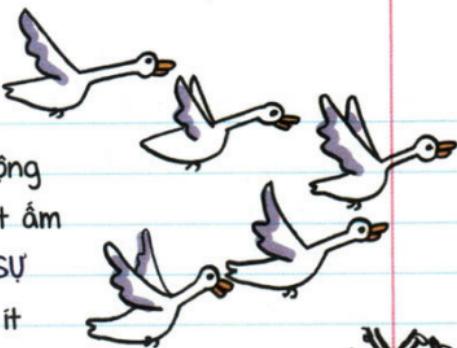
Động vật và thực vật thích ứng với khí hậu địa phương.

SỰ THÍCH ỨNG là bất kỳ hành vi hoặc cấu trúc cho phép sinh vật tồn tại. Ví dụ, xương rồng thích ứng với cuộc sống trên sa mạc bằng cách có thân dày để giữ nước và lớp da sáp giúp phòng ngăn mất hơi nước.

Khi trời trở lạnh, một số động vật như loài gấu đi vào trạng thái ngừng hoạt động gọi là **NGỦ ĐÔNG**. Khi động vật ngủ đông, nhịp tim và nhịp thở chậm lại và nhiệt độ trong cơ thể giảm xuống. Trong kỳ ngủ đông, động vật tìm một hang động hoặc hang dưới lòng đất và chui sâu vào giấc ngủ. Khi nhiệt độ bên ngoài ấm hơn, nó sẽ tỉnh dậy và đi ra ngoài.

SỰ NGỦ ĐÔNG

Thời kỳ không hoạt động hoặc trao đổi chất chậm khi thời tiết lạnh


SỰ NGỦ HÈ giống như ngủ đông ở thời tiết nóng. Nhiều loài lưỡng cư chui xuống dưới lòng đất và ngủ hè để sống sót trong những ngày thời tiết nóng.

SỰ NGỦ HÈ

Thời kỳ không hoạt động hoặc trao đổi chất chậm khi thời tiết nóng hoặc khô

Sự di cư

Khi trời trở lạnh, một số loài động vật sẽ di chuyển đến vùng đất ấm áp hơn. Giai đoạn này gọi là SỰ DI CƯ. Khi trời lạnh và đồ ăn ít dần, chim sẽ di cư đến vùng đất ấm hơn, có khi xa tới 44.000 dặm trên một chuyến khứ hồi ngoằn ngoèo.

Hành vi hợp tác

Một số loài động vật làm việc cùng nhau để hoàn thành một việc gì đó. Ví dụ, ong và kiến cùng nhau xây các khu vực sống phức tạp. Một số loài vật như khỉ đột sống cùng nhau theo cấp bậc xã hội đặc biệt.

Hành vi giao phối

Nhiều hành vi của động vật có ý nghĩa thu hút bạn tình. Nhiều loại chim có tiếng kêu và điệu nhảy giao phối. Chim công đực sẽ cố gắng hết sức để gây ấn tượng với chim cái bằng bộ lông sắc sỡ và điệu nhảy cuốn hút.

CON NGƯỜI KHÔNG PHẢI LOÀI
DUY NHẤT CỐ GẮNG HẾT SỨC
ĐỂ CÓ MỘT CUỘC HẸN!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Miêu tả một số cách động vật duy trì nhiệt độ cơ thể thích hợp.
- 2 Tinh hưởng sáng là gì?
- 3 Khi nào thực vật và động vật có trạng thái không hoạt động?
- 4 Nếu một số loài động và thực vật không hoạt động?
- 5 Giải thích và nêu ví dụ về hành vi hợp tác.
- 6 Giải thích sự thoát hơi nước của cây?
- 7 Hành vi của động vật có thể là bẩm sinh hoặc được học.
Giải thích sự khác biệt.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Một số động vật mọc lông khi chúng lạnh và rụng lông khi nóng.
- 2 Tính hướng kích thích là sự phát triển của thực vật để phản hồi lại sự kích thích.
- 3 Thực vật và động vật bước vào giai đoạn không hoạt động khi điều kiện bên ngoài không tốt cho sự phát triển và sinh tồn.
- 4 Để tồn tại, thực vật bước vào giai đoạn ngủ đông, chúng ngừng phát triển để bảo toàn năng lượng. Vào mùa đông, một số động vật ngủ đông, có nghĩa là chúng tìm hang động hoặc hang ở dưới lòng đất để ngủ qua mùa đông. Khi trời rất nóng, một số loại động vật ngủ hè - một trạng thái ngủ đông khi thời tiết nóng bức. Một số loài động vật như chim di di cư để tìm nơi có nhiệt độ phù hợp.
- 5 Hành vi hợp tác là khi động vật làm việc cùng nhau để hoàn thành việc gì đó như một nhóm sư tử di săn cùng nhau để có nhiều cơ hội bắt mồi.
- 6 Sự thoát hơi nước là cách thực vật giải phóng nước ra môi trường. Khi lỗ khí mở rộng, một lượng nước sẽ thoát ra.
- 7 Hành vi được học là hành vi mà động vật học từ kinh nghiệm hoặc quan sát các động vật khác. Hành vi bẩm sinh (hành vi bản năng) là hành vi được lập trình di truyền và không phải học.

Câu số 1, 4 và 5 có nhiều đáp án.

PHẦN

Cơ thể người và
hệ cơ quan trên
cơ thể người

Chương 36

HỆ XƯƠNG VÀ HỆ CƠ

HỆ CẤU TẠO CƠ THỂ NGƯỜI

Cơ thể người giống như một nhà máy: Nó có một hệ thống phân cấp có tổ chức và các hệ thống cơ quan khác nhau thực hiện các nhiệm vụ khác nhau:

Đơn vị cơ bản nhất tạo nên cơ thể người là **tế bào**.

NHƯ LÀ MỘT NGƯỜI
LÀM VIỆC ĐỘC LẬP
TRONG NHÀ MÁY

Một tập hợp tế bào cùng thực hiện một chức năng, chúng gọi là **mô**. Có đủ các loại mô trong cơ thể người như da, cơ, và thần kinh.

NHƯ LÀ MỘT
NHÓM LÀM VIỆC
VỚI NHAU TRONG
NHÀ MÁY

Khi các mô liên kết với nhau để thực hiện nhiệm vụ lớn hơn, chúng gọi là **các cơ quan**.
Thận, tim, gan và ruột đều là các cơ quan.

NHƯ LÀ MỘT
PHÒNG BAN ĐƯỢC
TẠO NÊN BỞI
CÁC NHÓM

Các cơ quan thậm chí có thể liên kết với nhau để tạo thành các hệ cơ quan. Các hệ cơ quan này được tạo bởi các cơ quan khác nhau cùng thực hiện một nhiệm vụ. Ví dụ, hệ tuần hoàn là một hệ cơ quan thực hiện nhiệm vụ tuần hoàn máu, oxy, và các chất dinh dưỡng trong cơ thể người.

CÁC LOẠI MÔ

Cơ thể chúng ta được hình thành từ bốn loại mô chính:

TẤT CẢ CÁC PHÒNG BAN
PHỐI HỢP VỚI NHAU

1. MÔ BIỂU BÌ: là lớp mô ngoài cùng trên cơ thể (nói cách khác, đó là DA CỦA BẠN) và cũng là lớp mô làm đầy một số bể mặt bên trong của cơ thể.

2. MÔ LIÊN KẾT: Liên kết các mô lại với nhau. Đây chẳng là một mô liên kết giúp kết nối xương lại với nhau (xương cũng là một loại mô liên kết khác). Mô liên kết cũng ở khắp nơi trong cơ thể. Sụn ở tai và mũi của bạn cũng chính là mô liên kết.

3. MÔ CƠ: là loại mô có thể co, giãn, tạo nên sự vận động.

4. MÔ THẦN KINH: là mô giúp truyền tải thông tin bên trong cơ thể.

DA

Da là lớp ngoài cùng trên cơ thể và cũng là cơ quan lớn nhất. Da phục vụ cho nhiều mục đích như:

Bảo vệ cơ thể khỏi chấn thương

Hình thành hàng rào ngăn chặn các vi khuẩn và sinh vật xâm nhập vào bên trong cơ thể

Ngăn mất nước

Điều hòa nhiệt độ cơ thể

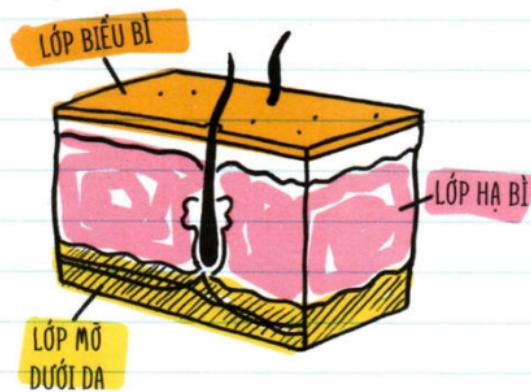
Các mút thần kinh giúp chuyển tiếp thông tin về nhiệt độ, cảm giác, và sự đau đớn lên não.

Sản xuất vitamin D có mặt trong tia cực tím từ Mặt Trời.
(Vitamin D giúp cơ thể hấp thụ canxi).

Bài tiết chất thải ra khỏi cơ thể.

(Các tuyến mồ hôi cũng bài tiết sản phẩm loại thải ra khỏi cơ thể.)

Khi cơ thể nóng, các mạch máu giãn ra và tăng lưu lượng máu đến bề mặt da, giải phóng năng lượng nhiệt. (Đây là lý do tại sao mặt bạn đỏ khi tập thể dục.) Da chúng ta có hàng triệu tuyến mồ hôi. Khi nóng bạn sẽ đổ mồ hôi. Mồ hôi bốc hơi, làm dịu cơ thể.


Khi cơ thể lạnh, mạch máu co lại, hạn chế lưu lượng máu đến da, ngăn ngừa mất nhiệt.

Cấu tạo da gồm 3 lớp:

LỚP BIỂU BÌ là lớp ngoài cùng;

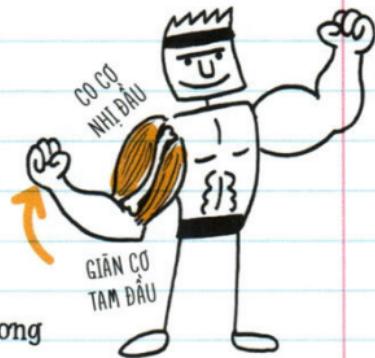
LỚP HẠ BÌ là lớp dưới
biểu bì, trong đó có mạch
máu, các mút dây thần
kính, nang lông, tuyến mồ
hôi và tuyến dầu;

LỚP MỠ DƯỚI DA là lớp
dưới cùng, nơi cơ thể lưu
trữ chất béo giữ nhiệt và
là lớp đệm của cơ thể.

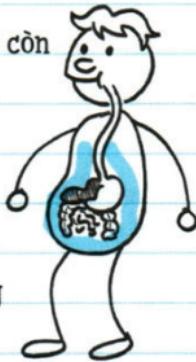
HỆ CƠ

HỆ CƠ điều khiển chuyển động, bao gồm loại chuyển động
kiểm soát được đi và chạy, và loại chuyển động mà không
kiểm soát được như tim đập và đau bụng.

Các cơ bắp con người có thể kiểm soát được gọi là CƠ VẬN
ĐỘNG CÓ Ý THỨC, và các cơ bắp bạn không thể kiểm soát
được gọi là CƠ VẬN ĐỘNG VÔ THỨC. Cơ bắp tay và chân
là cơ vận động có ý thức, cơ bụng và cơ tim là cơ vận
động vô thức.


Cơ bắp tạo ra sự chuyển động bằng cách co rút và giãn
ra. Cơ bắp sử dụng năng lượng để co lại, và chúng tạo
ra năng lượng cơ học (hoặc chuyển động) và nhiệt năng
(hoặc nhiệt).

Kích thước cơ bắp thay đổi tùy thuộc vào mức độ chúng được sử dụng. Nếu bạn chống đẩy mỗi ngày, cơ tay và cơ ngực sẽ khỏe và lớn hơn.


Các loại mô cơ

Cơ thể chúng ta có ba loại mô cơ:

1. CƠ XƯƠNG: là cơ vận động có ý thức, để di chuyển xương, như là cơ tay và cơ chân. Các mô liên kết gắn cơ xương với xương được gọi là **GÂN**. Cơ xương thường làm việc theo cặp xung quanh xương - khi một cơ co, các cơ còn lại giãn.

2. CƠ TRƠN: là cơ vận động vô thức, hoạt động trong các cơ quan nội tạng như là **DƯỜNG TIÊU HÓA**.

3. CƠ TIM: là cơ vận động vô thức, giúp tim đập. Cơ tim chỉ xuất hiện trong trái tim của bạn.

HỆ XƯƠNG

Hệ xương có rất nhiều chức năng:

Hỗ trợ nâng đỡ cơ thể và tạo khung hình dạng

Giúp bảo vệ cơ quan nội tạng bên trong cơ thể như phổi và não

Chứng chứa canxi và các khoáng chất khác.

Hệ xương và hệ cơ phổi hợp với nhau để tạo ra chuyển động.

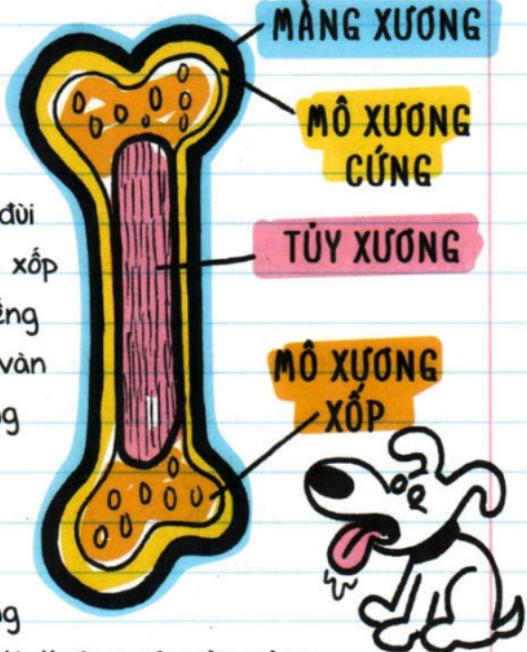
Sụn

Bộ xương được tạo thành bởi các đốt xương cứng và các mô cứng linh hoạt (gọi là sụn).

Sụn là một loại mô trơn, chắc chắn và linh hoạt, nằm giữa hai đầu xương. Sụn đóng vai trò như lớp đệm và giúp giảm ma sát trong khớp xương.

Sụn cũng được tìm thấy trong tai và mũi.

LƯU Ý RẰNG TAI VÀ MŨI KHÔNG THUỘC CẤU TẠO CỦA BỘ XƯƠNG



Xương

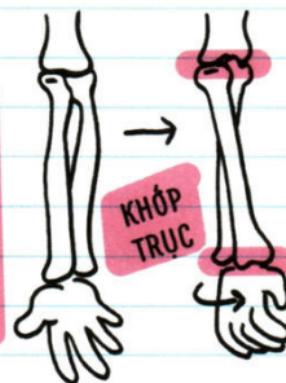
Mặc dù XƯƠNG trông giống như những cây gậy cứng trong cơ thể, nhưng thật ra chúng lại là những cơ quan phức tạp được tạo thành từ các loại mô khác nhau. Có một lớp màng cứng bên ngoài được gọi là MÀNG XƯƠNG bao phủ bên ngoài xương. Màng cứng này có các mạch máu và các mút thần kinh báo hiệu con đau.

XƯƠNG ĐẶC nằm phía trong màng xương. Đây là nơi can-xi, phốt-pho được lắng đọng và lưu trữ để làm chắc xương.

XƯƠNG XỐP nằm phía trong mô xương cứng, chẳng hạn như ở xương đùi và xương cánh tay. Chất xốp xương giống như một miếng bọt biển cứng, nó có vòi vàn túi khí nhỏ giúp cho xương nhẹ hơn.

TÚY XƯƠNG dùng để lắp dây hốc xương và khoáng trắng trong xương xốp. Nó thường có màu vàng hoặc màu đỏ. Tủy vàng được làm từ chất béo, còn tủy đỏ được tạo bởi một loại chất sản sinh ra tế bào máu.

Khớp


KHỚP là nơi các đốt xương giao nhau, ví dụ như tại đầu gối và khuỷu tay. DÂY CHẮNG là một loại mô liên kết, giữ các xương lại với nhau tại các khớp. Thường thì các khớp cho phép chuyển động, nhưng một số khớp như khớp tại hộp sọ được cố định và không thể di chuyển.

Cơ thể di chuyển xung quanh các khớp. Có bốn loại khớp chính và mỗi loại có những loại chuyển động khác nhau.

1. KHỚP TRỰC: Xương xoay

quanh một điểm trung tâm.

↔ KHỚP NÀY CÓ TẠI CỔ TAY, CỔ, VÀ KHUỶU TAY

2. KHỚP TRƯỢT: Xương

trượt qua nhau.

↔ KHỚP NÀY CÓ Ở CỔ TAY, MẮT CÁ CHÂN, ĐỐT SỔNG

3. KHỚP BẢN LỀ: Khớp này nối xương tại điểm trung tâm, hoạt động như một chiếc bản lề của cánh cửa.

→ KHỚP NÀY CÓ TẠI ĐẦU GỐI, KHUỶU TAY, NGÓN TAY VÀ NGÓN CHÂN

4. KHỚP CẦU: Đầu xương có một hõm tròn, nên nó có thể xoay linh hoạt theo hình tròn.

→ KHỚP CẦU CÓ TRONG VAI VÀ HÔNG

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Liệt kê ba chức năng của da.
- 2 Loại khớp nào có tại cánh tay, từ vai tới ngón tay của bạn?
- 3 Có thể tìm thấy cơ tim ở đâu?
- 4 Loại cơ nào mà bạn có thể kiểm soát?
- 5 Những khoáng chất nào giúp xương cứng chắc?
- 6 Sự khác nhau giữa dây chằng và gân?
- 7 Da phản ứng như thế nào khi gặp lạnh?
- 8 Hệ xương có những chức năng gì?

ĐÁP ÁN

tinyurl.com/magnicappuccino

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Có thể là ba đáp án bất kỳ trong số những đáp án sau: hoạt động như hàng rào vật lý, điều hòa nhiệt độ cơ thể, sản xuất vitamin D, loại bỏ chất thải khỏi cơ thể, có các mút thần kinh.
- 2 Vai là khớp cầu, khuỷu tay là khớp trực và khớp bán lề, cổ tay là khớp trực và khớp trượt, ngón tay là khớp bán lề.
- 3 Chỉ duy nhất ở tim
- 4 Cơ vận động có ý thức
- 5 Can-xi và phốt-pho
- 6 Trong khi dây chằng nối các xương với nhau thì gân lại nối cơ với xương.
- 7 Khi gặp lạnh, các mạch máu dưới da co lại, hạn chế lưu lượng máu chảy qua da, ngăn mất nhiệt
- 8 Hệ xương giúp nâng đỡ cơ thể, tạo khung hình dạng, bảo vệ các cơ quan nội tạng, và lưu trữ can-xi và các khoáng chất khác.

Chương 37

HỆ THẦN KINH VÀ HỆ NỘI TIẾT

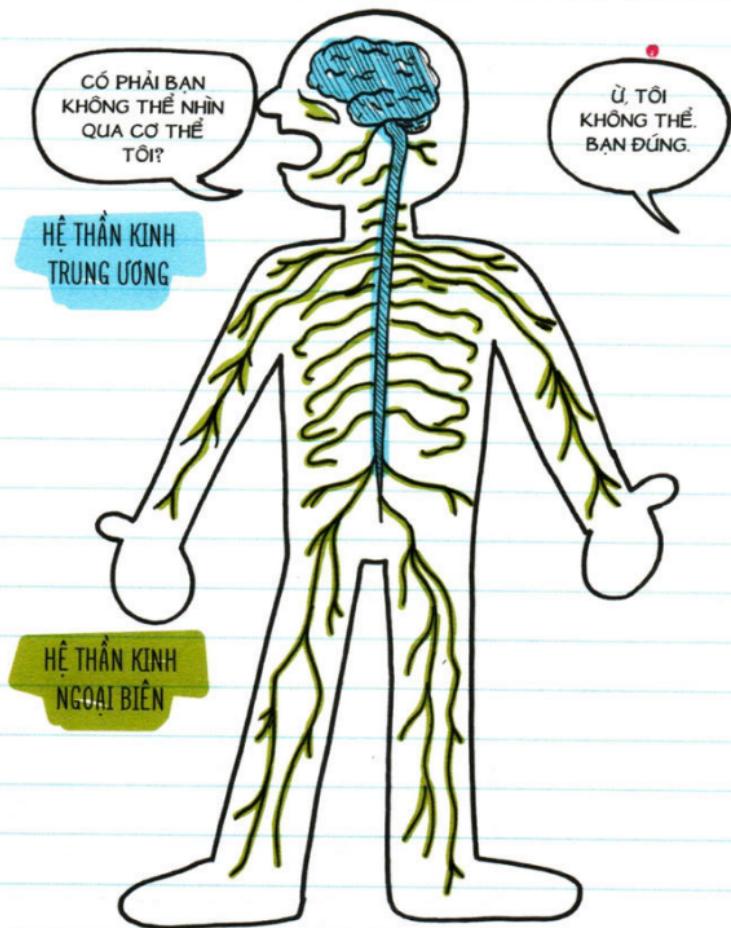
HỆ THẦN KINH

HỆ THẦN KINH giống như dịch vụ điện thoại di động và email trên cơ thể người. Nó tập hợp và chuyển tiếp thông tin xung quanh về não. Hệ thần kinh phản ứng với các kích thích từ môi trường bên ngoài (xảy ra phản ứng khi có sự thay đổi trong môi trường).

BỘ NÃO, TÙY SỐNG, DÂY THẦN KINH, VÀ CÁC CƠ QUAN CẢM GIÁC như là mắt, tai, mũi, lưỡi, và da đều là một phần của hệ thần kinh.

Các nhóm

Hệ thần kinh được chia thành hai hệ thống chính:


1. HỆ THẦN KINH TRUNG ƯƠNG (CNS) bao gồm não và tủy sống. Chúng được gọi là hệ thần kinh trung ương vì não là trung tâm điều khiển cơ thể, và tủy sống phụ trách chuyên tiếp thông tin giữa não và các bộ phận khác trong cơ thể.

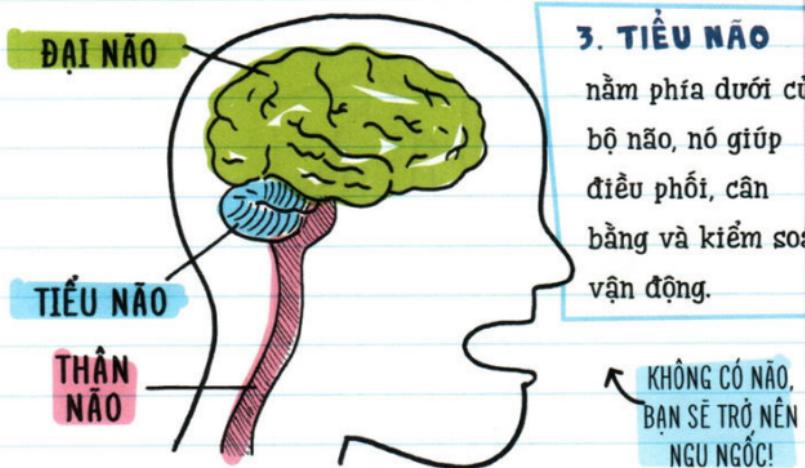
2. HỆ THẦN KINH NGOẠI BIÊN (PNS) bao gồm tất cả các dây thần kinh bên ngoài hệ thần kinh trung ương. Từ "ngoại biên" có nghĩa là xung quanh rìa, và hệ thần kinh ngoại biên nằm ở 2 bên cơ thể. Hệ thần kinh ngoại biên có hai loại tế bào thần kinh: **TẾ BÀO THẦN KINH CẢM GIÁC** và **TẾ BÀO THẦN KINH VẬN ĐỘNG**. Tế bào thần kinh cảm giác chuyên thông tin từ các giác quan (như nhiệt độ bên ngoài hay cảm giác đau) đến não bộ. Tế bào thần kinh vận động chuyên thông tin từ não đến các cơ, khiến cơ thể di chuyển, nói cách khác là vận động. Hệ thống thần kinh ngoại biên lần lượt được chia thành:

• HỆ THẦN KINH VẬN ĐỘNG điều khiển các chuyển động có ý thức (có thể kiểm soát) như chạy, đi bộ và nhai.

• HỆ THẦN KINH TỰ TRỊ điều khiển chuyển động không có ý thức hay chuyển động cơ thể một cách tự động, ví dụ như thở và tiêu hóa thức ăn. Hệ thống thần kinh tự trị cũng kiểm soát phản xạ.

Hệ Thần Kinh

Não


Não là trung tâm điều khiển của hệ thần kinh. Não có ba phần chính là **ĐẠI NÃO**, **THÂN NÃO** và **TIỀU NÃO**.

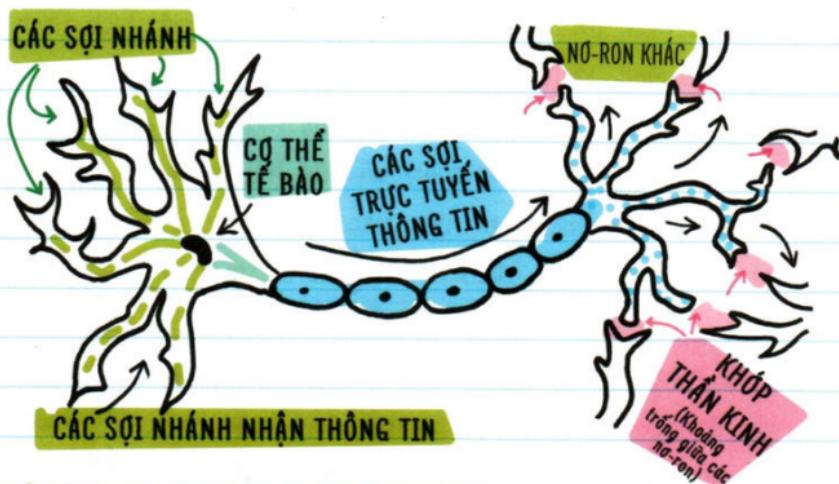
1. **ĐẠI NÃO** kiểm soát suy nghĩ và hành động của cơ thể.

Nó kiểm soát nhận thức về vị giác, thị giác, xúc giác, thính giác và khứu giác. Về cơ bản, bất cứ khi nào bạn sử dụng bộ não một cách có ý thức, tức là bạn đang sử dụng đại não. Đại não có thể chia thành bán cầu não trái và bán cầu não phải.

2. **THÂN NÃO** kiểm soát các quy trình sống không có ý thức, như là việc thở, tiêu hóa và tim đập. Thân não liên kết trực tiếp với tuy sống.

3. **TIỀU NÃO**

nằm phía dưới của bộ não, nó giúp điều phối, cân bằng và kiểm soát vận động.


KHÔNG CÓ NÃO,
BẠN SẼ TRỎ NỀN
NGƯ NGỐC!

Những người não phải tức là người sử dụng bán cầu não phải nhiều hơn, họ thường được cho là có xu hướng nghệ thuật, sáng tạo và giàu trí tưởng tượng hơn. Những người não trái sử dụng bán cầu não trái nhiều hơn, có xu hướng tư duy logic, toán học và định hướng ngôn ngữ. Các bán cầu não trái và phải được liên kết với nhau thông qua một sợi trống trong não gọi là **THÈ CHAI**.

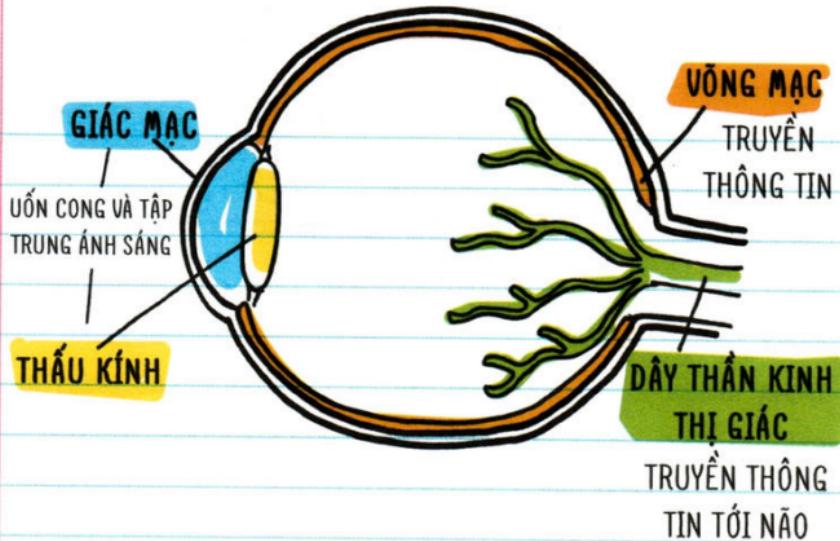
THẦN KINH

Thần kinh là đơn vị chức năng cơ bản của hệ thần kinh. Một tế bào thần kinh được gọi là **NƠ-RON** thần kinh, chúng truyền tải các thông điệp gọi là xung thần kinh. Có hai loại tế bào thần kinh chính: **TẾ BÀO THẦN KINH CẢM GIÁC** tiếp nhận thông tin xuất phát từ cảm giác như chạm hoặc mùi và chúng truyền thông tin đến não bộ hoặc tủy sống. **TẾ BÀO THẦN KINH TRUNG GIAN** chuyển tiếp phản ứng của não bộ đối với các tế bào thần kinh vận động, tế bào này có vai trò đưa ra mệnh lệnh cho các tuyến và cơ bắp của bạn hành động.

Một tế bào thần kinh được tạo thành từ một cơ thể tế bào, một sợi trực và các sợi nhánh:

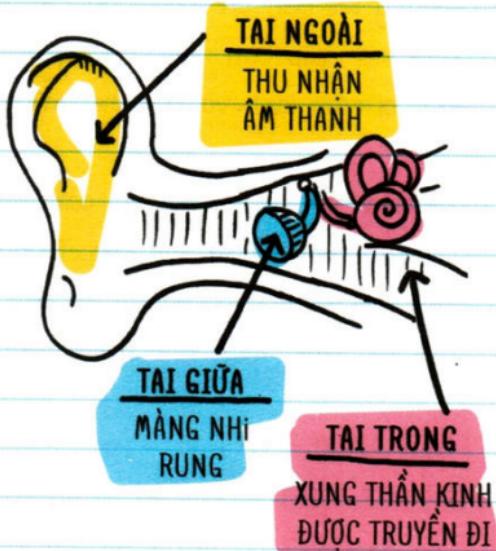
CÁC SỢI NHÁNH, là một tế bào trông giống như những nhánh nhỏ, chúng nhận một xung hoặc tín hiệu từ một tế bào thần kinh khác, và truyền tải xung thần kinh đến thân tế bào.

CÁC SƠI TRỰC, trông giống một nhánh dài hơn, chúng truyền tín hiệu từ thân tế bào tới tế bào thần kinh tiếp theo. Khoảng trống giữa các nơ-ron được gọi là **KHỚP THẦN KINH**.


Khi thông điệp từ sợi trực đến khớp thần kinh, sợi trực sẽ giải phóng một **CHẤT DẪN TRUYỀN THẦN KINH**, hoặc một chất hóa học truyền tín hiệu đến tế bào thần kinh tiếp theo. Các sợi nhánh nhận tín hiệu và gửi xung thần kinh đến thân tế bào, và quá trình này tiếp tục diễn ra và lặp lại như vậy.

TẤT CẢ
NHỮNG ĐIỀU
NÀY ĐỀU
XÂY RA TỰC
THỜI

Các cơ quan cảm giác


CÁC CƠ QUAN VÀ CÁC THỤ THỂ CẢM GIÁC của bạn, chẳng hạn như mắt, tai, mũi, da và lưỡi, giúp nhận biết kích thích từ môi trường. Kích thích cảm giác có thể đến từ bất cứ thứ gì như véo vào da bạn hay người thấy mùi khó chịu trong không khí. Các cơ quan và các thụ thể cảm giác của bạn truyền tải thông tin đến các dây thần kinh, sau đó chúng gửi một xung điện đến tủy sống và não bộ.

Ví dụ, mắt chúng ta thu thập thông tin về những gì bạn nhìn thấy và truyền nó đến một dây thần kinh, dây thần kinh này sẽ thực hiện nhiệm vụ gửi tín hiệu đi tới não của bạn. THẤU KÍNH và GIÁC MẠC uốn cong và tập trung ánh sáng vào võng mạc ở phía sau mắt của bạn, nơi chứa các thụ thể. Võng mạc truyền thông tin tới DÂY THẦN KINH THỊ GIÁC truyền tải thông tin đến não bộ.

Tai của bạn được thiết lập để nhận biết các sóng âm thanh. Chúng bao gồm ba bộ phận chính: **TAI NGOÀI**, **TAI GIỮA**, và **TAI TRONG**. Tai ngoài bao gồm cả phần tai bạn có thể nhìn thấy và ống tai. Nó được thiết kế như một cái phễu để thu âm thanh. Các sóng âm truyền xuống ống tai của bạn đến tai giữa và đến màng nhĩ. Tình trạng rung âm

thanh có thể làm dịch tai và những lớp lông nhỏ li ti ở tai trong chuyển động. Chúng cảm nhận được sự chuyển động và truyền một xung thần kinh, xung thần kinh này sẽ được các dây thần kinh đưa đến não của bạn.

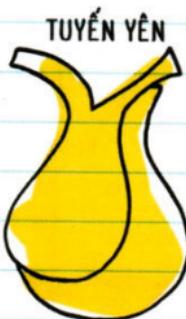
Dịch tai và lớp lông lì ti ở tai trong có thể hỗ trợ cân bằng cảm giác của bạn. Khi bạn di chuyển, chất lỏng cũng đồng thời di chuyển và những sợi lông sẽ có nhiệm vụ truyền thông tin về vị trí đầu của bạn đến não.

Mũi của bạn được lót bằng các tế bào cảm giác được gọi là **TẾ BÀO KHỨU GIÁC** với chức năng nhận biết mùi. Bên trong mũi của bạn được làm ẩm bởi chất nhầy. Các phân tử mùi có trong không khí khi hòa tan vào chất nhầy sẽ kích thích tế bào khứu giác.

Những hạt nhỏ lâm tấm trên lưỡi của bạn được gọi là **NỤ VỊ GIÁC**. Vị giác nhận biết hương vị và truyền thông tin đến não của bạn. Các khu vực khác nhau của lưỡi sẽ có nụ vị giác khác nhau, và nhạy cảm hơn với các vị giác khác, chẳng hạn như ngọt, mặn, chua hoặc đắng. Mùi vị có liên kết lớn với nhau. Miệng và khoang mũi của bạn kết nối với nhau, vì vậy khi bạn ăn thứ gì đó, các phân tử mùi sẽ di chuyển vào mũi, giúp bạn nhận biết vị giác. Đó là lý do tại sao khi bạn bị cảm lạnh và bị nghẹt mũi sẽ hạn chế vị giác.

DA của bạn có các tế bào cảm giác nhận biết nhiệt độ, kết cấu, áp suất và sự đau đớn. Tương tự, các tế bào này cung cấp thông tin này cho các tế bào thần kinh, gửi tín hiệu điện đến hệ thống thần kinh trung ương của bạn.

HỆ NỘI TIẾT

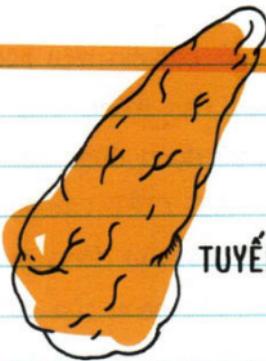

HỆ NỘI TIẾT là một hệ thống truyền tải thông tin khác của cơ thể. Thay vì gửi tín hiệu điện thông qua hệ thần kinh

chính, chúng gửi các tín hiệu hóa học đến cơ thể bạn thông qua dòng máu. Các thông điệp hóa học mà hệ thống nội tiết của bạn sử dụng được gọi là **HORMONE**, được sản xuất trong **TUYẾN NỘI TIẾT**. Các tuyến nội tiết giải phóng hormone trực tiếp vào dòng máu, mang hormone đến các bộ phận khác nhau của cơ thể. Những hormone này giúp cơ thể bạn thực hiện tất cả các hoạt động sống, từ việc nhận thức khi nào nên ngủ, đến việc kiểm soát lượng đường trong máu, cũng như việc sinh sản.

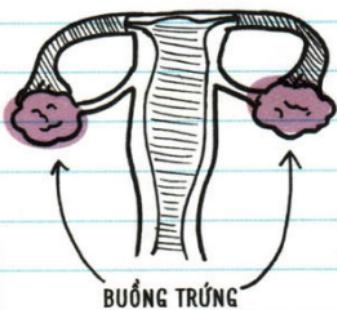
Một số ví dụ về các tuyến nội tiết là:

TUYẾN YÊN

- Cảnh liền với não, có kích thước bằng hạt đậu
- Kiểm soát một loạt các chức năng như huyết áp, trao đổi chất và giảm đau
- Sản xuất hormone tăng trưởng
- Kiểm soát các tuyến khác như buồng trứng hoặc tinh hoàn

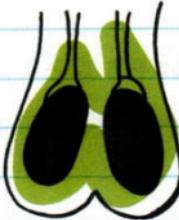

TUYẾN GIÁP

- Bên dưới thanh quản, một phần của cổ họng nơi đặt dây thanh quản của bạn
- Điều chỉnh sự trao đổi chất và lượng canxi được hấp thụ bởi xương và nhiều cơ quan khác.



TUYẾN TUY

- Sản xuất **INSULIN**, một loại hormone kiểm soát lượng đường trong máu



TUYẾN TUY

BUỒNG TRỨNG (NỮ GIỚI)

- Sản xuất **ESTROGEN** – một loại hormone sinh dục nữ kiểm soát tuổi dậy thì và nhiều hoạt động khác, **PROGESTERONE** – một loại hormone sinh dục nữ khác có vai trò quan trọng trong việc kiểm soát khả năng sinh con và nhiều chức năng khác.

TINH HOÀN

TINH HOÀN (NAM GIỚI)

- Sản xuất **TESTOSTERONE**, hormone sinh dục nam kiểm soát tuổi dậy thì, khả năng sản xuất tinh trùng và nhiều chức năng khác.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Các dây thần kinh trong cánh tay của bạn là một phần của ___ hệ thần kinh.
- 2 Não có chức năng gì?
- 3 Liệt kê năm cơ quan và thụ thể cảm giác của bạn.
- 4 Mắt của bạn sử dụng ___ và ___ để uốn cong và tập trung ánh sáng.
- 5 Thông điệp mà một tế bào thần kinh gửi đi được gọi là ___ và khoảng trống giữa hai nơ-ron được gọi là ___.
- 6 Tuyến nào kiểm soát các tuyến khác?
- 7 Hormone có chức năng gì?

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 Ngoại vi

2 Là một phần của bộ não có nhiệm vụ kiểm soát chức năng vô thức.

3 Mắt, tai, mũi, lưỡi và da

4 Thầu kinh, giác mạc

5 Xung thần kinh, khớp thần kinh

6 Tuyến yên

7 Hormone là thông điệp hóa học của hệ nội tiết, giúp cơ thể thực hiện nhiều hoạt động như ngủ, sinh sản và kiểm soát lượng đường trong máu của bạn.

Chương 38

HỆ TIÊU HÓA VÀ BÀI TIẾT

HỆ TIÊU HÓA

Hệ thống tiêu hóa có nhiệm vụ nhận thức ăn, phá vỡ chúng và hấp thụ các chất dinh dưỡng vào cơ thể bạn. Chất dinh dưỡng là những chất mà cơ thể bạn sử dụng cho năng lượng, tăng trưởng, sinh sản và phục hồi. Chất dinh dưỡng bao gồm vitamin, khoáng chất, protein, chất béo và carbohydrate.

Có 2 loại tiêu hóa:

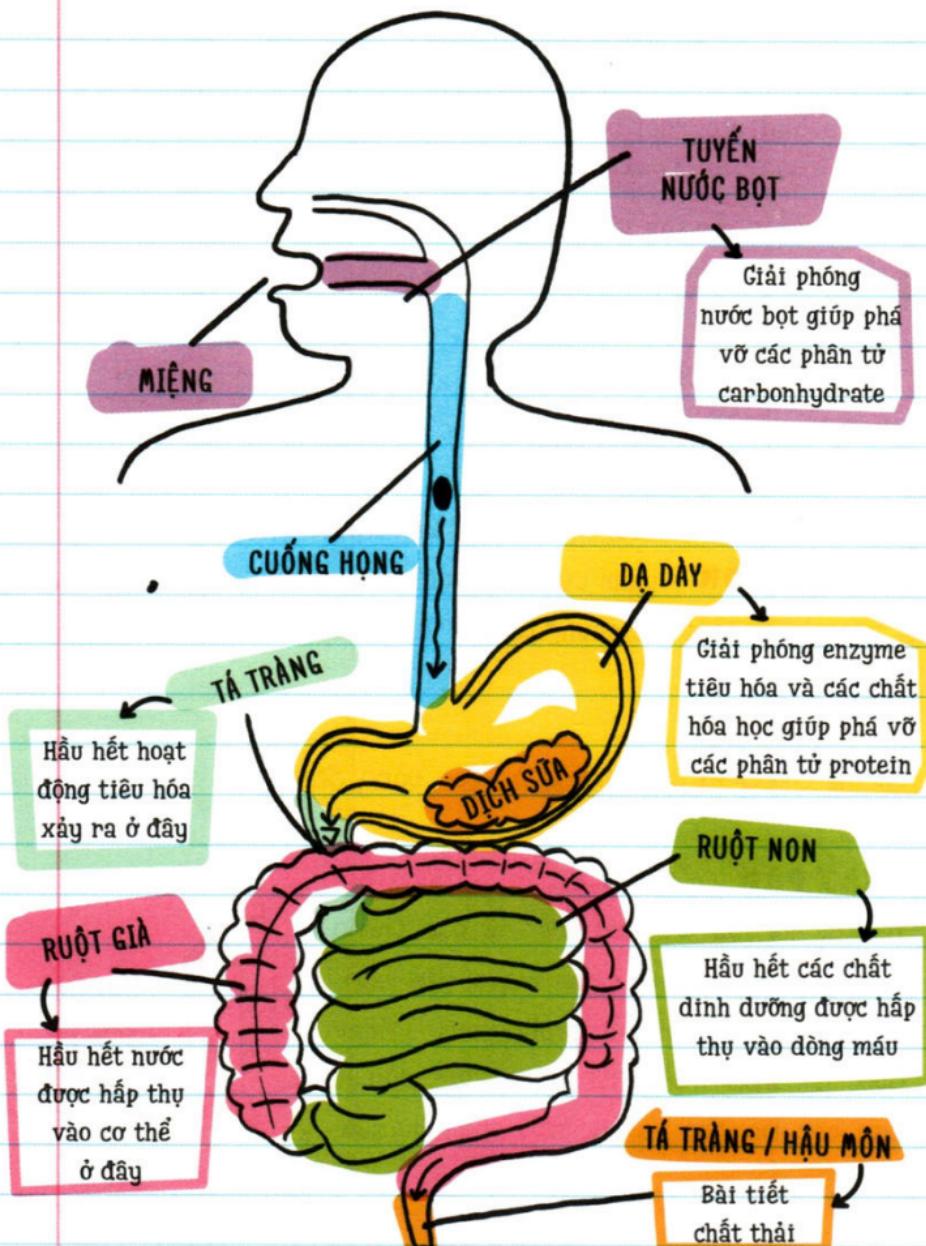
1. TIÊU HÓA CƠ HỌC: Khi cơ thể phá vỡ thức ăn một cách tự nhiên, chẳng hạn như khi bạn nhai thức ăn trong miệng. Dạ dày của bạn cũng phá vỡ thức ăn một cách cơ học khi chúng co bóp và nhào trộn thức ăn.

2. TIÊU HÓA HÓA HỌC: Khi cơ thể bạn vỡ thức ăn bằng các phản ứng hóa học. Cơ thể bạn sản xuất các enzyme qua đường tiêu để đẩy nhanh các phản ứng hóa học này. Enzyme là các protein đặc biệt kích thích các phản ứng hóa học.

Đường tiêu hóa

Đường tiêu hóa bao gồm:

MIỆNG: Tiêu hóa bắt đầu ở miệng, nơi việc nhai (tiêu hóa cơ học) kích thích **TUYẾN NƯỚC BỌT** để tiết ra nước bọt (tiêu hóa hóa học), quá trình này giúp phá vỡ thức ăn thành từng viên mềm. Những viên thức ăn này tiếp tục được đẩy xuống...


TUYẾN NƯỚC BỌT CÓ THỂ PHÁ
VỠ CÁC LIÊN KẾT CARBONHYDRAT
THÀNH ĐƯỜNG ĐƠN.

ỐNG THỰC QUẢN: Thức ăn bị đẩy xuống đây bởi hoạt động ép, hoặc co bóp, được gọi là **NHÚ ĐỘNG** vào...

NHÚ ĐỘNG CÙNG XÂY RA
TRONG PHẦN CÒN LẠI CỦA
ĐƯỜNG TIÊU HÓA ĐỂ DI
CHUYỂN THỰC ĂN.

ĐẠ DÀY: Đạ dày được coi là một mũi cơ khổng lồ, nó co bóp và nhào trộn thức ăn nhằm phá vỡ chúng (tiêu hóa cơ học). Đạ dày cũng giải phóng các enzyme và chất hóa học để phá vỡ thức ăn (tiêu hóa hóa học). Thức ăn trộn với dịch tiêu hóa để tạo ra **DỊCH SỮA** (hỗn hợp mềm nhuyễn của thức ăn và axit), sau đó chúng được di chuyển tới...

Đường tiêu hóa

RUỘT NОН: Phần đầu tiên của ruột non được gọi là **TÁ TRÀNG**. Tại đây có dịch tiêu hóa được tiết ra từ lá lách và gan, được gọi là **MẬT**. Trong khi mật chuyển hóa chất béo thì lá lách tiết ra dịch tiêu hóa nhằm chuyển hóa cả carbohydrate, chất béo và protein. Tá tràng là nơi diễn ra hầu hết các bước của quá trình tiêu hóa. Chất dinh dưỡng cũng được hấp thụ vào dòng máu tại ruột non. Điểm dừng tiếp theo cho dịch sữa là...

RUỘT GIÀ: Đây là nơi hầu hết nước được hấp thụ vào cơ thể. Khi nước trong dịch sữa được hấp thụ, những chất cơ thể không hấp thu được sẽ cứng lại thành chất thải. Phần cuối của ruột già được gọi là **TRỰC TRÀNG**, tiếp sau đó là **HẬU MÔN** – phần cuối của đường tiêu hóa. Chúng cùng nhau kiểm soát khi chúng ta đào thải phân (chất thải).

Dinh dưỡng:

Cơ thể chúng ta cần chế độ ăn cân bằng để duy trì sức khỏe.

CHẤT ĐẠM: Cơ thể chúng ta sử dụng protein để tái tạo và phát triển tế bào. Chúng được làm từ các axit amin mà cơ thể bạn có thể tái tạo lại thành protein mới. Protein được tìm thấy trong thịt, trứng, đậu, đậu Hà Lan, các loại hạt và các sản phẩm từ sữa.

BẠN LÀ NHỮNG GÌ
BẠN ĂN

CARBOHYDRATE: Cơ thể chúng ta đốt cháy carbohydrate để tạo ra năng lượng nhanh chóng. Chúng có thể là đường, tinh bột hoặc chất xơ. Đường đơn có thể cung cấp năng lượng một cách nhanh chóng nhưng cũng dễ dàng cạn kiệt. Trong khi đó, carbohydrate phức tạp (tinh bột và chất xơ) có thể cung cấp năng lượng lâu hơn vì cơ thể bạn phải chuyển hóa chúng trước khi có thể sử dụng. Carbohydrate thường có trong bánh mì, mì ống, khoai tây, đường, trái cây và rau quả.

CARBOHYDRATE

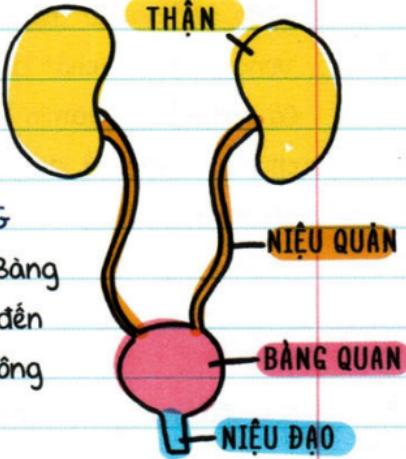
CHẤT BÉO: Chất béo có vai trò cung cấp năng lượng cho cơ thể, giữ nhiệt và là lớp đệm. Chúng cũng hỗ trợ cơ thể hấp thụ một số vitamin nhất định. Chất béo thường được tìm thấy trong thịt, cá, các loại hạt, dầu và trứng.

CHẤT BÉO

VITAMIN: Vitamin là chất dinh dưỡng mà cơ thể chúng ta cần cho sự tăng trưởng và chức năng tế bào. Cơ thể ta chỉ cần một lượng nhỏ các chất dinh dưỡng này. Có nhiều loại vitamin khác nhau và chúng có thể dễ dàng được tìm thấy trong mọi loại thực phẩm. Tuy nhiên, có một số loại thực phẩm sẽ chứa nhiều vitamin hơn những loại khác.

VITAMIN

KHOÁNG CHẤT: Khoáng chất là chất cần thiết để duy trì các chức năng của cơ thể một cách khỏe mạnh và hiệu quả.


Một số ví dụ điển hình về khoáng chất mà cơ thể chúng ta cần như canxi, phốt pho, kali, natri, sắt và iốt. Khoáng chất thường có trong rau bina, sữa, chuối, các loại hạt, trứng, thịt và hải sản.

HỆ BÀI TIẾT

HỆ BÀI TIẾT có chức năng loại bỏ chất thải từ cơ thể của bạn để giúp nó duy trì cân bằng nội môi. Cơ thể của bạn có một số hệ thống chất thải khác nhau. Trong hệ thống tiêu hóa của bạn, thức ăn không được tiêu hóa sẽ được bài tiết tại phần cuối của ruột già. Khi bạn thở ra, bạn cũng thải ra khí CO_2 , một sản phẩm loại thải của hô hấp. Da của bạn bài tiết muối, nước và các chất khác qua mồ hôi.

Hệ tiết niệu

HỆ TIẾT NIỆU lọc máu của bạn và loại bỏ chất thải, nước, muối và khoáng chất dư thừa. Thận là cơ quan chính của hệ tiết niệu. Máu của bạn liên tục được lọc bởi hàng triệu đơn vị lọc nhỏ trong thận gọi là ỐNG SINH NIỆU. Bất kỳ chất lỏng nào được lọc ra từ thận đều được thu thập và đưa vào NIỆU QUẢN, đó là một ống dẫn từ thận đến BÀNG QUANG, nơi NƯỚC TIỀU được lưu trữ. Bàng quang căng ra để giữ nước tiểu cho đến khi chúng được đưa ra khỏi cơ thể thông qua một ống gọi là NIỆU ĐẠO.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Dịch sữa là gì?
- 2 Cơ thể bạn đốt cháy những gì để có năng lượng nhanh chóng?
- 3 Hầu hết các chất dinh dưỡng được hấp thụ trong ruột ____.
- 4 Điều gì kết nối giữa thận và bàng quang?
- 5 Cơ thể chúng ta sử dụng gì để tái tạo và phát triển tế bào?
- 6 Nhu động là gì?
- 7 Ông sinh niệu là gì?
- 8 Nước được hấp thụ trong ruột ____ của bạn.
- 9 Cho một ví dụ về tiêu hóa cơ học và một ví dụ tiêu hóa hóa học.
- 10 Nước tiêu được lưu trữ ở đâu?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Dịch sữa là hỗn hợp giữa thực phẩm và dịch tiêu hóa.
- 2 Carbohydrate
- 3 Non
- 4 Niệu quản
- 5 Chất đạm (Protein)
- 6 Nhu động là sự co thắt gửi thức ăn xuống thực quản của bạn.
- 7 Ông sinh niệu là đơn vị lọc trong thận của bạn.
- 8 Già
- 9 Khi bạn nhai thức ăn bằng răng, bạn tiêu hóa một cách cơ học. Nước bọt là bước đầu tiên trong quá trình tiêu hóa hóa học thực phẩm.
- 10 Trong bằng quang

Câu số 9 có nhiều đáp án.

Chương 39

HỆ HÔ HẤP VÀ HỆ TUẦN HOÀN

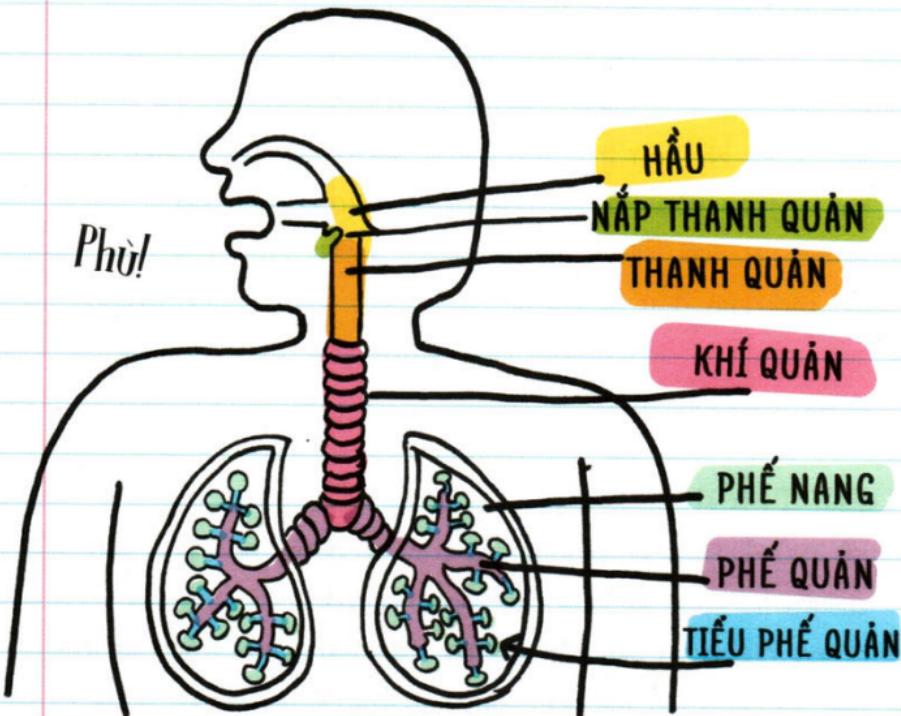
HỆ HÔ HẤP

Hô hấp tế bào là một chuỗi các phản ứng phá vỡ glucose, một loại đường đơn, giải phóng năng lượng hóa học cho cơ thể sử dụng. Để sử dụng loại đường này hoặc để "đốt cháy" lượng calo" này, cơ thể bạn cần oxy (giống như lửa cần oxy cho sự đốt cháy). Hô hấp tế bào sử dụng oxy và giải phóng carbon dioxide và nước dưới dạng chất thải. Máu là hệ thống phân phối mang oxy từ phổi đến tất cả các tế bào rồi quay trở lại phổi với chất thải là carbon dioxide.

Đường hô hấp

Bạn hít thở không khí qua miệng và mũi.

Từ đó, không khí di chuyển vào **HÀU** của bạn, đó là một lối đi trong cổ họng dẫn đến cả dạ dày và phổi của bạn. **NẮP THANH QUẢN** là một cái nắp (như một chiếc túi lỗ nhỏ ở sau cổ họng) ngăn không cho thức ăn đi vào đường thở của bạn, nhưng khi bạn thở, nắp thanh quản vẫn mở.


Sau đó, không khí di chuyển vào **THANH QUẢN**, một phần của đường dẫn khí là nơi đặt dây thanh âm của bạn.

Không khí sau đó di chuyển vào **KHÍ QUẢN**, được lót bằng sụn để giữ cho nó vững chắc và không thể bị méo mó. Khí quản cũng có cấu trúc như những sợi lông nhỏ xíu và chất nhầy để bẫy vi khuẩn, bụi hoặc bất kỳ hạt nào, ngăn không cho chúng đi vào phổi của bạn.

NHỮNG SỢI LÔNG NHỎ NÀY (ĐƯỢC GỌI LÀ **LÔNG MÀO**) LÀM TẤT CẢ CÁC CHẤT BẤM HƯỚNG LÊN TRÊN KHI BẠN KHẠC RA, HÌ MŨI HOẶC NUỐT. (TỐT HƠN HẾT LÀ NÊN TIÊU HÓA CHÚNG CÒN HƠN LÀ ĐỂ NÓ TẮC NGHẸN TRONG PHỔI CỦA BẠN! DÙ VẬY CŨNG THẬT GỒM!)

Tiếp theo, không khí di chuyển vào các ống dẫn đến phổi được gọi là **PHẾ QUẢN**. Thuật ngữ này khá giống từ "chi nhánh", và đó chính xác là những gì xảy ra với phế quản: Chúng phân nhánh thành các ống nhỏ hơn gọi là các **TIỀU PHẾ QUẢN**.

Các tiểu phế quản kết nối trực tiếp với **PHẾ NANG**, hàng triệu túi khí nhỏ. Oxy từ không khí trong phế nang di chuyển vào máu trong mao mạch được phân phối khắp cơ thể của bạn để sự hô hấp có thể xảy ra trong tất cả các tế bào. Cùng lúc đó, chất thải carbon dioxide trong máu di chuyển vào không khí trong phế nang qua đường thở.

HÚT THUỐC giết chết lông mao trong khí quản của bạn, đó là lý do tại sao những người hút thuốc thường ho khan. Họ phải tự khạc tất cả những thứ đó ra khỏi đường ống dẫn khí của họ. Siêu gớm!

Thở

THỞ là quá trình cơ học của việc nhận không khí. Bạn thở một cách tự động - bạn không cần phải nghĩ về việc thở. Nếu bạn cần nhiều oxy thì bạn sẽ thở nhanh hơn (đó là lý do tại sao bạn hít hơi khi tập thể dục. Khi đó, cơ thể bạn cần nhiều oxy hơn để đốt cháy nhiều calo hơn và lấy thêm năng lượng).

Khi bạn bóp một miếng bọt biển, tất cả không khí và nước ứa ra, và khi bạn thả tay, miếng bọt biển nở ra và không khí lại tràn vào. Hơi thở hoạt động theo cách tương tự. Không khí được kéo vào ngực của bạn khi ngực của bạn mở rộng, và đẩy ra khi nó co lại. Một cơ dưới lồng xương sườn của bạn được gọi là CƠ HOÀNH, nó kiểm soát chuyển động mở rộng và co lại này.

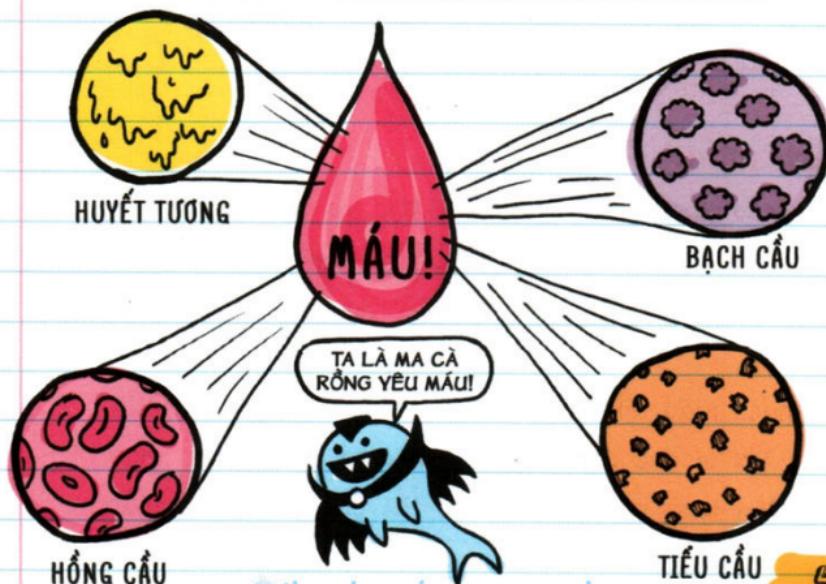
HỆ THỐNG TUẦN HOÀN MÁU

HỆ THỐNG TUẦN HOÀN MÁU của bạn giống như hệ thống vận chuyển trong cơ thể bạn. Nó mang và phân phối chất dinh dưỡng, đường và oxy đến các bộ phận khác nhau trong cơ thể bạn và đồng thời thu gom các chất thải để bài tiết ra ngoài.

Máu

Nếu hệ thống tuần hoàn của bạn là hệ thống vận chuyển của cơ thể, máu là chiếc xe vận chuyển. Máu là chất lỏng thực sự vận chuyển oxy, chất dinh dưỡng, chất thải và các chất khác.

Chất thải trong cơ thể của bạn được thu gom và vận chuyển bằng máu đến thận của bạn. Chất thải carbon dioxide được mang trong máu đến phổi của bạn, nơi nó sẽ được thoát ra qua việc thở. Máu của bạn cũng có các tế bào từ hệ thống miễn dịch giúp chống lại bệnh tật và chữa lành vết thương.


NÁU CÓ CHỨA:

HUYẾT TƯƠNG: chất lỏng trong máu mang hầu hết các chất cần vận chuyển, như đường (glucose), chất dinh dưỡng, khoáng chất, vitamin, carbon dioxide và chất thải

HỒNG CẦU: các tế bào mang oxy đến các tế bào

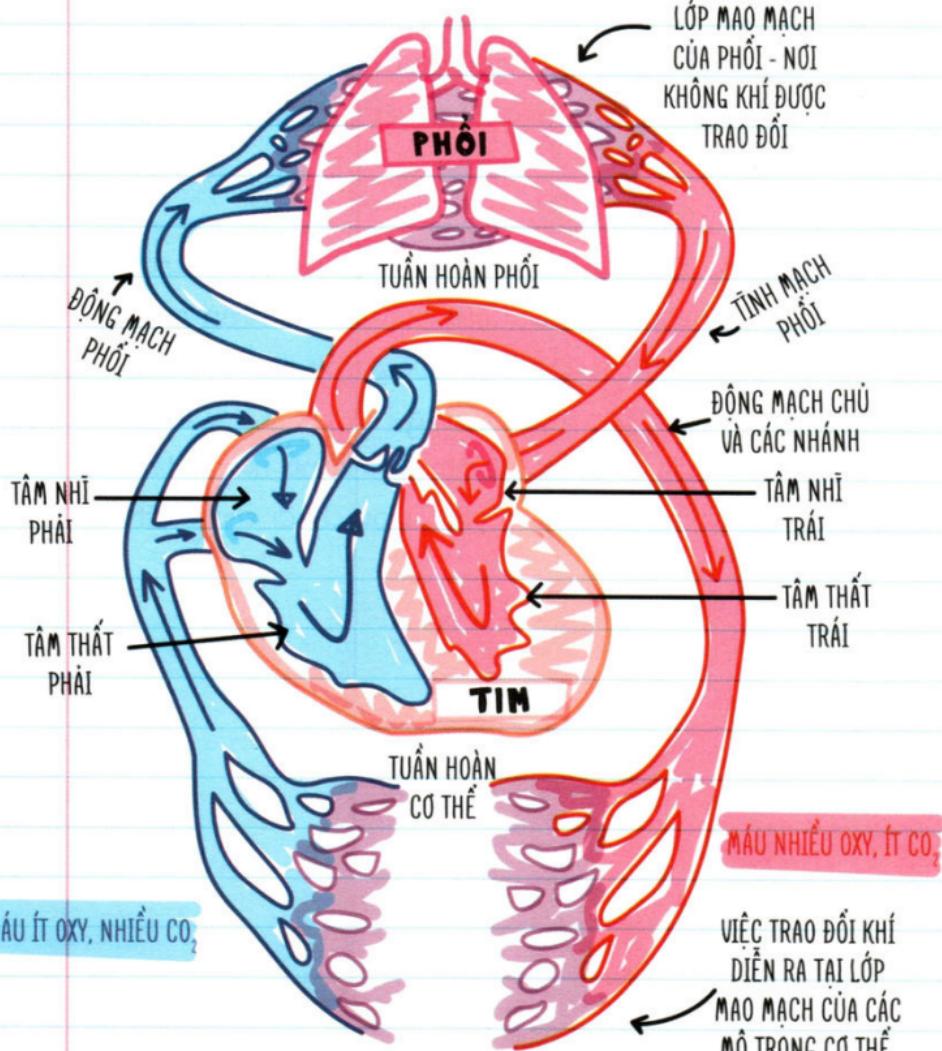
BẠCH CẦU: các tế bào từ hệ thống miễn dịch chống lại bệnh tật

TIỀU CẦU: các tế bào đông máu (giúp cầm máu khi bạn có các vết cắt gây chảy máu)

Tim

Tim của bạn đóng vai trò là động cơ của hệ thống tuần hoàn. Nó bơm máu đến các bộ phận khác nhau trong cơ thể bạn.

Trái tim của bạn được cấu tạo từ bốn ngăn: Hai **TÂM NHĨ**, một bên **TRÁI** và một bên **PHẢI**, hai **TÂM THẮT**, cũng gồm một bên **TRÁI** và một bên **PHẢI**.


Máu giàu oxy được chảy từ phổi sang bên tim của bạn, đầu tiên qua tâm nhĩ trái và sau đó đến tâm thất trái. Từ đó nó được bơm đến phần còn lại của cơ thể bạn thông qua động mạch chủ, đó là một động mạch rất lớn. Máu OXY HÓA di chuyển trong cơ thể bạn, giải phóng oxy và thu thập carbon dioxide. Máu ĐÃ KHỬ OXY quay trở lại tim của bạn thông qua tâm nhĩ phải và được bơm trở lại phổi từ tâm thất phải của bạn. Khi vào phổi, máu thu thập oxy và giải phóng carbon dioxide, bắt đầu lại quá trình.

Mạch máu

Mạch máu giống như những con đường và cao tốc trong hệ thống tuần hoàn của cơ thể. Khi cơ thể bơm máu oxy hóa đến các phần còn lại của cơ thể, nó vận chuyển qua các mạch máu.

Các mạch máu đưa máu ra khỏi tim được gọi là **ĐỘNG MẠCH**. Bởi vì các động mạch cần điều chỉnh lượng máu chảy đến từng bộ phận của cơ thể bạn, chúng có thành

Hành Trình Của Máu Chảy Trong Cơ Thể

Máu oxy hóa từ phổi → tâm nhĩ trái

→ tâm thất trái → động mạch chủ đến các động mạch khác →

mao mạch (trao đổi máu oxy hóa với máu đã khử oxy)

→ tâm nhĩ phải → tâm thất phải → phổi để oxy hóa và sau đó

chu kỳ này được lặp lại.

cor dày có thể nở ra hoặc co lại giúp điều chỉnh lượng máu chảy nhiều hay ít chảy qua. Từ các động mạch, máu di chuyển vào các mạch máu nhỏ gọi là CÁC MẠO MẠCH, từ đó cung cấp máu trực tiếp đến các tế bào trong cơ thể bạn.

Sau khi máu của bạn đã đưa hết oxy, glucose và chất dinh dưỡng đến các tế bào của bạn và thu nhận carbon dioxide cũng như các chất thải khác, máu bắt đầu quay trở lại tim trong các mạch máu gọi là CÁC TĨNH MẠCH. Để giữ cho máu đi ngược về tim theo đúng hướng, tĩnh mạch có van một chiều cho phép máu chỉ di chuyển theo một hướng.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Phế nang là gì?
- 2 Không khí dùng lối nào để đi qua đường hô hấp?
- 3 Nắp thanh quản là gì?
- 4 Những loại trao đổi khí nào diễn ra trong phổi?
- 5 Cơ nào kiểm soát việc hít vào và thở ra?
- 6 Mô tả các mạch mà máu đã đi qua trong hành trình từ lúc rời trái tim cho đến khi trở lại tim.
- 7 Những tế bào nào mang oxy?
- 8 Sau khi máu được oxy hóa trong phổi, nó sẽ đi đến phần nào của trái tim đầu tiên?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

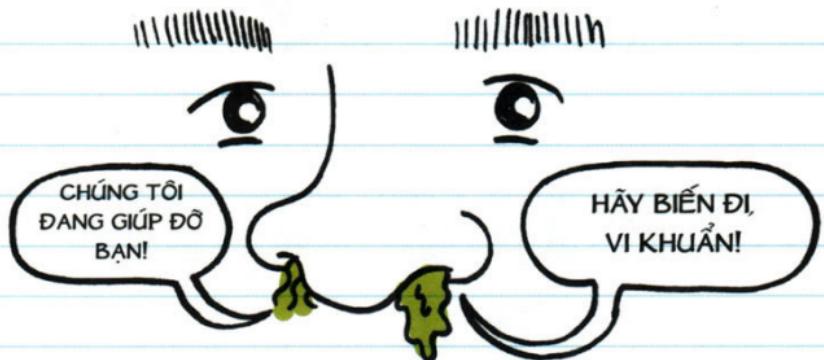
- 1 Phế nang là những túi khí nhỏ. Phổi của bạn được tạo thành từ hàng triệu phế nang, nối diễn ra quá trình trao đổi khí.
- 2 Khi bạn hít vào, không khí di chuyển qua miệng và khoang mũi xuống cổ họng, sau đó là thanh quản. Từ thanh quản, nó di đến phế quản của bạn, sau đó vào tiêu phế quản của bạn. Các phế quản dẫn trực tiếp đến phế nang phổi của bạn. Không khí sau đó di ra ngoài cùng một con đường.
- 3 Nắp thanh quản là một chiếc nắp đóng nhằm ngăn thức ăn đi vào đường thở của bạn. Khi bạn thở, nắp thanh quản vẫn mở.
- 4 Máu của bạn lấy oxy và thải carbon dioxide.
- 5 Cơ hoành
- 6 Máu rời khỏi trái tim của bạn đi qua các động mạch đến mao mạch. Trao đổi chất dinh dưỡng và khí với các tế bào xung quanh diễn ra trong mao mạch. Sau khi đi qua mao mạch, máu trở về tim qua các tĩnh mạch.
- 7 Hồng cầu
- 8 Tâm nhĩ trái

Chương 40

HỆ MIỄN DỊCH VÀ HỆ BẠCH HUYỆT

Hệ miễn dịch bảo vệ và chiến đấu chống lại nhiễm trùng và bệnh tật. Hệ miễn dịch giống như quân đội của riêng bạn, giúp bạn chiến đấu chống lại những tác nhân xâm nhập có hại.

TÁC NHÂN GÂY BỆNH:


virus hoặc các hạt/sinh vật khác (như nấm hoặc sinh vật nguyên sinh) có thể gây bệnh

MIỄN DỊCH KHÔNG RỎ RÀNG

Giống như một đội quân, hệ thống miễn dịch của bạn có các chiến thuật khác nhau để bảo vệ cơ thể bạn. Rào cản vật lý là hàng phòng thủ đầu tiên: ← GIỐNG NHƯ MỘT BỨC TƯỜNG THÀNH

Da của bạn cung cấp một hàng rào vật lý ngăn không cho

TÁC NHÂN GÂY BỆNH xâm nhập vào cơ thể bạn.

Chất nhầy và lông mao trong hệ thống hô hấp của bạn bãy và loại bỏ mầm bệnh khi chúng xâm nhập vào đường thở của bạn.

Nước bọt và axit trong dạ dày của bạn tiêu diệt nhiều loại vi khuẩn.

ĐIỀU NÀY GIỐNG NHƯ
NHỮNG NGƯỜI BẢO VỆ
THỜI TRUNG CỔ ĐỒ DẦU
SỐI TỪ TRÊN CAO VÀO
NHỮNG KẺ XÂM LƯỢC!

Bất chấp những biện pháp phòng vệ này, mầm bệnh đôi khi có thể tìm cách xâm nhập vào cơ thể bạn thông qua các vết cắt hoặc phương tiện khác. Đừng lo - cơ thể bạn còn có một hệ thống dự phòng để chiến đấu với chúng.

Tế bào bạch cầu

Các mầm bệnh khi xâm nhập vào cơ thể bạn trước hết chúng phải đối mặt với các tế bào bạch cầu, đó là những chiến binh hung dữ chống lại kẻ xâm lược. Các tế bào bạch cầu tiêu hóa, tiêu diệt vi khuẩn và các mầm bệnh khác xâm nhập vào cơ thể bạn. Có các loại tế bào bạch cầu khác nhau và mỗi loại có một nhiệm vụ khác nhau. Chẳng hạn,

ĐẠI THỰC BẢO là các tế bào bạch cầu nhẵn chim và tiêu diệt bất kỳ mầm bệnh nào chúng gặp phải.

MIỄN DỊCH CHỦ ĐỘNG và THỤ ĐỘNG

Cơ thể bạn có thể được miễn dịch một cách thụ động hoặc chủ động. Khi cơ thể bạn chống lại nhiễm trùng hoặc bệnh tật, nó sẽ tạo ra **KHÁNG THỂ** để đối抗 lại với mầm bệnh. Cơ thể bạn giữ các kháng thể này để chống lại mầm bệnh nếu nó quay trở lại, cung cấp khả năng miễn dịch. **MIỄN DỊCH CHỦ ĐỘNG** là khi cơ thể bạn tạo ra các kháng thể mang lại cho bạn khả năng miễn dịch.

Bạn cũng có thể có được sự miễn dịch từ các kháng thể được sản xuất bởi một cơ thể khác. Khả năng miễn dịch có được khi nhận được kháng thể được gọi là **MIỄN DỊCH THỤ ĐỘNG** vì khả năng miễn dịch được tiếp nhận một cách thụ động - cơ thể bạn không hoạt động vì nó. Chẳng hạn, một em bé nhận được khả năng miễn dịch thụ động từ mẹ của mình suốt quá trình mang thai và sau đó là từ sữa mẹ.

Tiêm phòng

Trong quá trình tiêm phòng, một lượng nhỏ kháng thể được tiêm vào cánh tay của bạn. Cơ thể của bạn được trang bị phản ứng miễn dịch với mầm bệnh, tạo ra các kháng thể. Những kháng thể này vẫn còn trong máu của bạn, sẵn sàng chống lại mầm bệnh thực sự nếu chúng ta lại chạm trán chúng.

Viêm

Sau khi bạn bị trầy đầu gối hoặc bị xước, khu vực này đôi khi có thể bị đỏ, sưng, ấm lên và hơi mềm. Màu đỏ và sưng này được gọi là **VIÊM**. Khi các tế bào bị tổn thương, do nhiễm trùng hoặc do chấn thương, chúng giải phóng một chất hóa học làm tăng lưu lượng máu đến khu vực này và gây viêm. Khi lưu lượng máu tăng lên, nhiều tế bào bạch cầu có thể đến khu vực này để bắt đầu chống lại mầm bệnh.

HỆ THỐNG BẠCH HUYẾT

HỆ THỐNG BẠCH HUYẾT giống như một ống thoát nước - nó thu thập chất lỏng (gọi là **BẠCH HUYẾT**) từ cơ thể bạn và lọc chất lỏng trong các khối mô nhỏ rải rác khắp cơ thể, được gọi là **HẠCH BẠCH HUYẾT**.

Các hạch bạch huyết cũng tạo ra một loại tế bào bạch cầu gọi là **TẾ BÀO LYMPHO**. Khi máu đi qua các hạch bạch huyết, các tế bào lympho sẽ tấn công và loại bỏ mầm bệnh khỏi cơ thể bạn. Cơ của bạn có nhiều hạch bạch huyết, vì vậy khi bạn bị bệnh, chúng thường sưng lên bởi những chiến binh tế bào lympho nhỏ này.

BỆNH TẬT

Bệnh của con người có thể được gây ra bởi một số nguyên nhân. Một số ví dụ về mầm bệnh và những gì chúng gây ra là:

Một số loài vi khuẩn gây viêm họng do liên cầu khuẩn, nhiễm trùng tai, lao hoặc viêm phổi.

Virus gây bệnh cúm, cảm lạnh, bại liệt, sởi, mụn cóc hoặc AIDS.

Một số loài sinh vật nguyên sinh gây bệnh sốt rét, kiết lỵ hoặc bệnh nhiễm giardia.

Một số loài nấm gây ra bệnh nấm ở bàn chân, nhiễm trùng nấm men hoặc các bệnh khác.

Mặc dù vi khuẩn có thể bị tiêu diệt và loại bỏ khỏi cơ thể bạn bằng thuốc kháng sinh, nhưng một khi bạn đã bị nhiễm virus, nó thường sẽ ở bên trong cơ thể bạn suốt đời!

Bệnh truyền nhiễm

Khi bạn bị nhiễm cúm từ một người bạn, một loại virus đã truyền từ bạn của bạn sang bạn. Bệnh truyền nhiễm là một bệnh có thể truyền từ sinh vật bị nhiễm sang sinh vật khác. Một số bệnh có thể lây lan qua không khí, nước, thức ăn hoặc tiếp xúc vật lý giữa hai sinh vật. Các bệnh khác, như HIV, lây lan qua những chất lỏng trong cơ thể, như máu. Vi khuẩn và virus cũng có thể tồn tại trên các bề mặt, như nấm cửa và tay vịn. Rửa tay là cách dễ nhất và hiệu quả nhất để giúp bản thân không bị bệnh.

Bệnh không nhiễm trùng

Các bệnh không nhiễm trùng là các bệnh không phát sinh do mầm bệnh gây ra và không thể lây lan từ người sang người. Bệnh tiêu đường, bệnh di truyền và ung thư là tất cả các ví dụ về các bệnh không nhiễm trùng. UNG THƯ là một bệnh không nhiễm trùng, trong đó các tế bào có sự đột biến DNA khiến tế bào sản sinh ngoài tầm kiểm soát, nhân bản các tế bào bị ung thư. Những tế bào này phát triển và cuối cùng hình thành các khối u và sự tăng trưởng này có thể ảnh hưởng đến sự vận hành của cơ thể. Để chống lại ung thư, các bác sĩ cố gắng loại bỏ hoặc tiêu diệt các tế bào ung thư (thường là phẫu thuật, dùng hóa chất hoặc phóng xạ).

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Giải thích tại sao viêm nhiễm lại xảy ra.
- 2 Khi bạn bị bệnh, _____ của bạn sưng lên với các tế bào lympho.
- 3 Bệnh truyền nhiễm là gì?
- 4 Khi bạn _____, một lượng nhỏ mầm bệnh được tiêm vào cánh tay của bạn để cung cấp cho bạn khả năng miễn dịch.
- 5 Giải thích sự khác biệt giữa miễn dịch thụ động và chủ động.
- 6 Hệ thống miễn dịch của bạn làm gì?
- 7 Liệt kê bốn mầm bệnh.
- 8 Cho một ví dụ về một bệnh không nhiễm trùng.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Khi các tế bào của bạn bị thương, chúng làm tăng lưu lượng máu đến khu vực này, do đó nhiều tế bào máu có thể chống lại các mầm bệnh.
- 2 Hạch bạch huyết
- 3 Bệnh truyền nhiễm là bệnh có thể truyền từ sinh vật này sang sinh vật khác.
- 4 Tiêm phòng
- 5 Khi bạn nhận được kháng thể từ một sinh vật khác, nó được gọi là miễn dịch thụ động. Khi cơ thể bạn tự tạo ra các kháng thể, nó được gọi là miễn dịch chủ động.
- 6 Nó bảo vệ và chiến đấu chống lại nhiễm trùng và bệnh tật.
- 7 Virus, vi khuẩn, sinh vật nguyên sinh và nấm
- 8 Bệnh tiêu đường

Câu số 8 có nhiều đáp án.

Chương 41

SỰ SINH SẢN VÀ PHÁT TRIỂN CỦA CƠN NGƯỜI

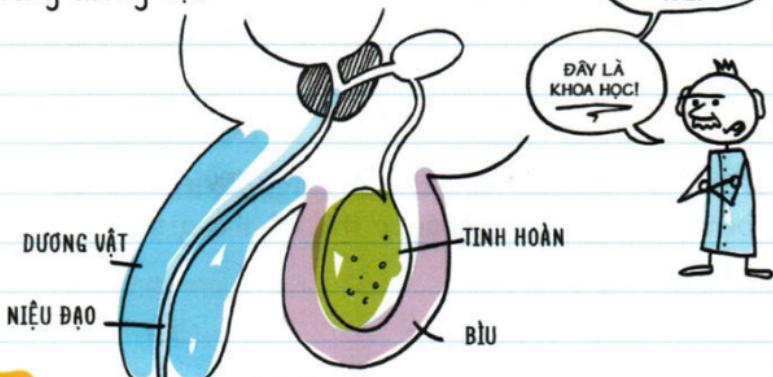
HỆ THỐNG SINH SẢN

Khi con người sinh sản, tế bào sinh dục nam và nữ hợp nhất tạo thành hợp tử (một tế bào hình thành từ quá trình thụ tinh và có một bộ nhiễm sắc thể hoàn chỉnh) và cuối cùng phát triển thành em bé.

Cơ thể nam và nữ có hệ thống sinh sản khác nhau, mỗi hệ thống có thích nghi riêng để tạo điều kiện thuận lợi cho việc kết hợp vật chất di truyền. ← LÃNG MẠN KHÔNG?

Hệ thống sinh sản nam

HỆ THỐNG SINH SẢN NAM bao gồm một số cơ quan, bên trong lẫn bên ngoài cơ thể. Hệ thống sinh sản nam bao gồm:

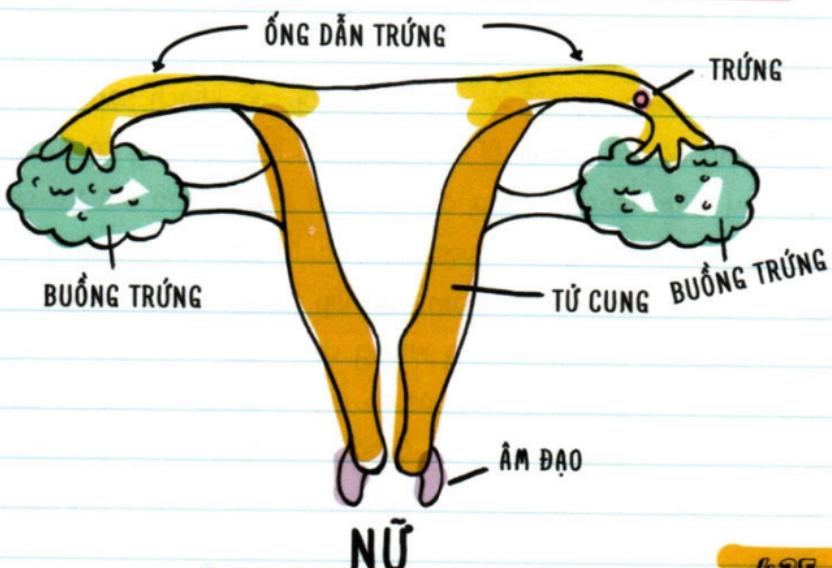

DƯƠNG VẬT: một cơ quan bên ngoài có chứa một ống gọi là NIỆU ĐẠO. **TINH DỊCH** và nước tiểu thoát ra khỏi cơ thể qua niệu đạo.

TINH DỊCH
dịch sinh sản nam

BÌU: một cơ quan giống như cái túi nằm ở bên ngoài và có chứa tinh hoàn

TINH HOÀN: sản xuất tinh trùng và testosterone, hormone sinh dục nam

TINH TRÙNG là tế bào sinh dục nam, được tạo thành từ một đầu và một đuôi, trong đó đầu chứa thông tin di truyền (DNA) và đuôi giúp tinh trùng di chuyển. Khi tinh trùng sẵn sàng rời khỏi cơ thể, chúng di chuyển từ tinh hoàn qua các ống dẫn lên phía sau bàng quang, nơi chúng được trộn với **TINH DỊCH**, một chất lỏng giúp tinh trùng di chuyển và cung cấp năng lượng cho chúng. Sự kết hợp của tinh dịch và tinh trùng được gọi là dịch sinh sản nam. Dịch này đi ra khỏi cơ thể qua niệu đạo, một ống trong dương vật.


Hệ thống sinh sản nữ

HỆ THỐNG SINH SẢN NỮ bao gồm buồng trứng, tử cung và âm đạo, là cơ quan bên trong và âm hộ là bộ phận bên ngoài.

BUỒNG TRỨNG: các cơ quan nhỏ trong giống như hạnh nhân kết nối với tử cung. Chúng sản xuất và giải phóng trứng; chúng cũng sản xuất hormone giới tính như là estrogen và progesterone.

ỐNG DẪN TRỨNG: ống nối với tử cung. Trứng rời khỏi buồng trứng đi đến tử cung qua ống dẫn trứng.

TRỨNG và **SỰ RỤNG TRỨNG**: Các tế bào sinh dục nữ (trứng) chứa thông tin di truyền (DNA). Nữ giới được sinh ra với số lượng khoảng 1 đến 2 triệu trứng trong cơ thể.

Nữ giới **RUNG TRỨNG** khoảng một tháng một lần và đó là khi trứng trưởng thành được phóng ra từ buồng trứng phải hoặc trái. Trứng di chuyển xuống ống dẫn trứng với sự trợ giúp của lông mao ngắn, nơi nó có thể được thụ tinh bởi một tinh trùng.

TỬ CUNG: một cơ quan rỗng nơi trứng được thụ tinh có thể phát triển. Tử cung được kết nối với ống dẫn trứng và âm đạo.

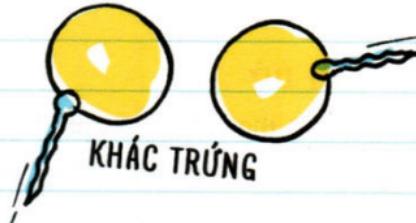
ÂM ĐẠO: một kênh kết nối tử cung với bên ngoài cơ thể, giống như cánh cửa của hệ thống sinh sản nữ. Tinh trùng xâm nhập qua âm đạo, em bé cũng ra khỏi tử cung qua âm đạo.

CHU KỲ KINH NGUYỆT: Khoảng một tháng một lần, cơ thể phụ nữ trải qua thay đổi để chuẩn bị cho việc sinh sản, được gọi là **CHU KỲ KINH NGUYỆT**. Tử cung trưởng thành giống như một khách sạn dành cho em bé, nó liên tục chuẩn bị sẵn sàng cho vị khách đó đến và vị khách đó là **MỘT TRỨNG ĐƯỢC THỤ TINH**. Bạn có thể nghĩ về chu kỳ kinh nguyệt là việc chuẩn bị của khách sạn. Mỗi tháng cơ thể chuẩn bị cho việc đón khách bằng cách lắp đầy niêm mạc tử cung để tạo một môi trường êm và chất lượng cho trứng nếu được thụ tinh. Nếu một quả trứng được thụ tinh, nó sẽ chạm vào lớp lót và bắt đầu phát triển. Nếu một quả trứng không được thụ tinh, lớp lót đầy máu sẽ bị phá vỡ và thoát ra qua âm đạo trong một quá trình gọi là **KINH NGUYỆT**. Cũng như khách sạn, tử cung thay đổi các tấm lót cho vị khách khác trong tương lai.

SỰ SỐNG

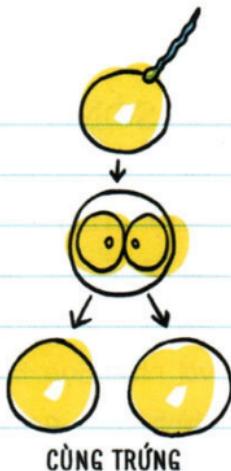
và SỰ PHÁT TRIỂN CON NGƯỜI

Thụ tinh


Sự phát triển của con người bắt đầu từ **SỰ THỤ TINH**. Sự thụ tinh là khi các tế bào sinh dục nam và nữ kết hợp với nhau, tạo thành một tế bào có bộ nhiễm sắc thể hoàn chỉnh, được gọi là hợp tử. Tế bào sinh dục nam và nữ (tinh trùng và trứng) chỉ có 23 nhiễm sắc thể, vì vậy khi chúng kết hợp hợp tử có đầy đủ 46 nhiễm sắc thể, một nửa từ mẹ, một nửa từ bố.

Quá trình thụ tinh bắt đầu khi tinh trùng vào được trong âm đạo. Tinh trùng bơi lên âm đạo cho đến khi chúng đến trứng, thường là trong ống dẫn trứng. Mặc dù có thể có tới 300 triệu tinh trùng lảng đạng trong âm đạo chạy về phía trứng, nhưng chỉ có một tinh trùng có thể thụ tinh với trứng.

SINH ĐÔI


SINH ĐÔI KHÁC TRÚNG

được hình thành khi hai quả trứng được rai cùng lúc từ buồng trứng, và cả hai đều được thụ tinh. Bởi

vì cặp song sinh này phát triển từ trứng và tinh trùng khác nhau, chúng không giống nhau về mặt di truyền.

SINH ĐÔI CÙNG TRÚNG phát triển từ một quả trứng và tinh trùng. Trong quá trình phát triển, hợp tử tách làm hai, và sau đó mỗi tế bào này phát triển thành phôi riêng biệt. Kết quả là hai em bé giống hệt nhau có chung vật liệu di truyền.

CÙNG TRÚNG

Phát triển

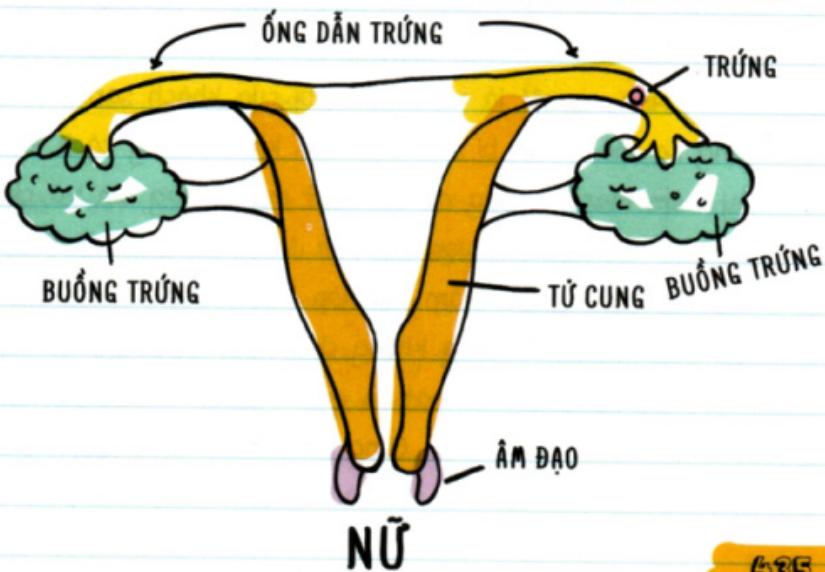
Khoảng thời gian giữa sự hình thành hợp tử và sự ra đời được gọi là THAI KỲ. Phải mất chín tháng để hợp tử phát triển đầy đủ, vì vậy việc mang thai thường kéo dài khoảng chín tháng. Trong thời gian đó, hợp tử phát triển bên trong người mẹ để trở thành **PHÔI THAI** đầu tiên, và sau đó là **THAI NHI** (sau hai tháng). Thai nhi tiếp tục tăng trưởng và phát triển cho đến khi nó được hình thành đầy đủ.

PHÔI THAI
một hợp tử bám
vào tử cung

THAI NHI
một phôi
thai hơn tám
tuần tuổi

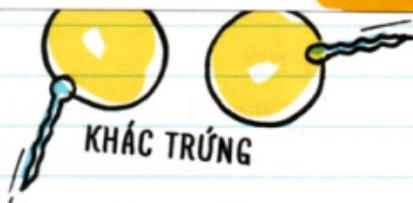
Sinh nở

Một khi thai nhi được phát triển đầy đủ, nó sẽ sẵn sàng để bước ra thế giới. Thông thường, người mẹ sinh con qua âm đạo. Đôi khi đứa trẻ được ra đời qua quá trình MỔ LẤY THAI. Khi em bé được sinh ra, dây rốn được cắt và em bé sẽ bắt đầu tự thở.


Hệ thống sinh sản nữ

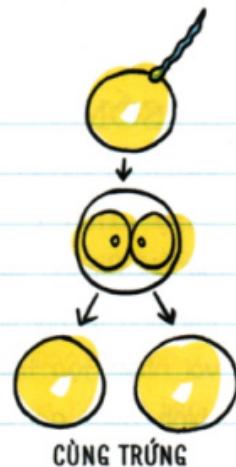
HỆ THỐNG SINH SẢN NỮ bao gồm buồng trứng, tử cung và âm đạo, là cơ quan bên trong và âm hộ là bộ phận bên ngoài.

BUỒNG TRỨNG: các cơ quan nhỏ trông giống như hạnh nhân kết nối với tử cung. Chúng sản xuất và giải phóng trứng; chúng cũng sản xuất hormone giới tính như là estrogen và progesterone.


ỐNG DẪN TRỨNG: ống nối với tử cung. Trứng rời khỏi buồng trứng đi đến tử cung qua ống dẫn trứng.

TRỨNG và **SỰ RỤNG TRỨNG**: Các tế bào sinh dục nữ (trứng) chứa thông tin di truyền (DNA). Nữ giới được sinh ra với số lượng khoảng 1 đến 2 triệu trứng trong cơ thể.

435


SINH ĐỘI KHÁC TRUNG được hình thành khi hai quả trứng được rai cùng lúc từ buồng trứng, và cả hai đều được thụ tinh. Bởi vì cặp song sinh này phát triển từ trứng và tinh trùng khác nhau, chúng không giống nhau về mặt di truyền.

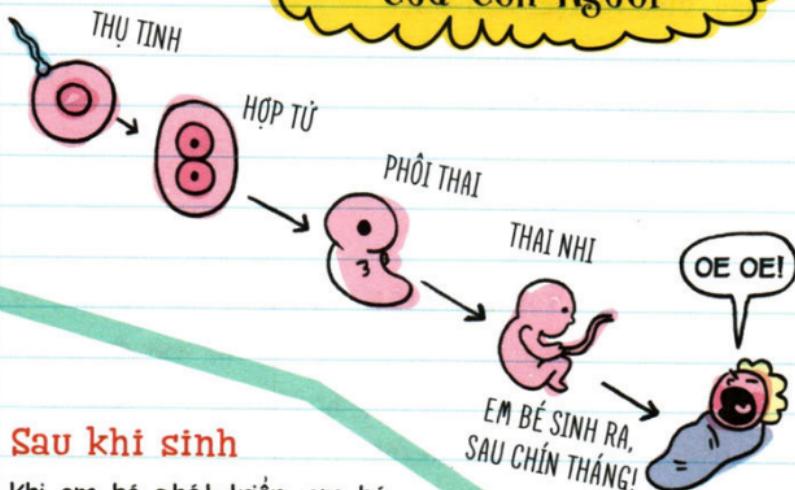
Nữ giới **RỤNG TRỨNG** khoảng một tháng một lần và đó là khi trứng trưởng thành được phóng ra từ buồng trứng phải hoặc trái. Trứng di chuyển xuống ống dẫn trứng với sự trợ giúp của lông mao ngắn, nơi nó có thể được thụ tinh bởi một tinh trùng.

TỬ CUNG: một cơ quan rỗng nơi trứng được thụ tinh có thể phát triển. Tử cung được kết nối với ống dẫn trứng và âm đạo.

SINH ĐÔI CÙNG TRỨNG phát triển từ một quả trứng và tinh trùng. Trong quá trình phát triển, hợp tử tách làm hai, và sau đó mỗi tế bào này phát triển thành phôi riêng biệt. Kết quả là hai em bé giống hệt nhau có chung vật liệu di truyền.

Phát triển

Khoảng thời gian giữa sự hình thành hợp tử và sự ra đời được gọi là **THAI KỲ**. Phải mất chín tháng để hợp tử phát triển đầy đủ, vì vậy việc mang thai thường kéo dài khoảng chín tháng. Trong thời gian đó, hợp tử phát triển bên trong người mẹ để trở thành **PHÔI THAI** đầu tiên, và sau đó là **THAI NHI** (sau hai tháng). Thai nhi tiếp tục tăng trưởng và phát triển cho đến khi nó được hình thành đầy đủ.


PHÔI THAI
một hợp tử bám vào tử cung

THAI NHI
một phôi thai hơn tám tuần tuổi

Sinh nở

Một khi thai nhi được phát triển đầy đủ, nó sẽ sẵn sàng để bước ra thế giới. Thông thường, người mẹ sinh con qua âm đạo. Đôi khi đứa trẻ được ra đời qua quá trình MỔ LÂY THAI. Khi em bé được sinh ra, dây rốn được cắt và em bé sẽ bắt đầu tự thở.

Sự Phát Triển Của Con Người


Sau khi sinh

Khi em bé phát triển, em bé
trải qua các giai đoạn sau:

GIAI ĐOẠN SƠ SINH: Bốn tuần
đầu tiên sau khi được sinh ra, một
cơ thể nhỏ bé thích nghi với cuộc
sống bên ngoài tử cung.


SƠ SINH

THƠ ẦU

THỜI THƠ ẦU: Trẻ học cách bò,
đứng và cuối cùng là tập đi. Sự phát
triển trí não trong thời gian này
là rất nhanh khi trẻ khám phá thế
giới mới của mình.

THIẾU NIÊN: Trẻ học cách điều khiển cơ thể, nói, mặc quần áo, vẽ, chạy, viết và đọc. Tuổi thiếu niên kết thúc ở tuổi dậy thì, thường bắt đầu khi trẻ khoảng mươi hai tuổi.

THIẾU NIÊN

DẬY THÌ

THANH NIÊN: Là khi cơ thể trải qua tuổi dậy thì. Ở tuổi dậy thì, các cậu bé cao hơn và khỏe hơn, giọng nói trầm và mọc râu tóc rất nhanh. Các cô gái cũng phát triển cao và khỏe hơn, cùng với sự phát triển của ngực, lông mu và hông. Sự phát triển của não cũng diễn ra nhanh trong những năm này.

TRƯỞNG THÀNH: Bắt đầu sau tuổi dậy thì và cũng là giai đoạn phát triển cuối cùng. Khi trưởng thành, xương của bạn ngừng phát triển. Khi người lớn già đi, xương và cơ bắp của họ trở nên yếu hơn và da họ bắt đầu nhăn lại. Giữ cho cơ thể và não hoạt động xuyên suốt giúp làm chậm quá trình lão hóa và rất có ích đối với sức khỏe.

TRƯỞNG THÀNH

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Buồng trứng là gì?
- 2 Rụng trứng là gì?
- 3 Sau hai tháng, một phôi được gọi là ____.
- 4 Tinh trùng kết hợp với tinh dịch gọi là ____.
- 5 Thông tin di truyền được lưu trữ ở đâu trong tế bào sinh dục nam?
- 6 Làm thế nào để nước tiểu và tinh dịch thoát ra khỏi cơ thể?
- 7 Làm thế nào để trứng di chuyển từ buồng trứng tới tử cung?
- 8 Hợp tử phát triển thành một ___ khi vào sâu trong thành tử cung.
- 9 Phụ nữ có thai sinh con sau khoảng ___ tháng.
- 10 Bìu chứa ____.
- 11 Liệt kê một số thay đổi mà bé trai và bé gái trải qua ở tuổi dậy thi.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Buồng trứng là cơ quan sinh dục nữ tiết ra hormone sinh dục nữ.
- 2 Rụng trứng là khi trứng ra khỏi buồng trứng.
- 3 Thai nhi
- 4 Tinh dịch
- 5 Trong đầu tinh trùng
- 6 Thông qua niệu đạo
- 7 Thông qua ống dẫn trứng
- 8 Phôi thai
- 9 Chín
- 10 Tinh hoàn
- 11 Bé trai phát triển cao và khỏe mạnh hơn, vỗ gióng, mọc râu và tóc. Trong khi con gái cũng cao và khỏe mạnh hơn, phát triển ngực, hông và lông mu. Sự phát triển của não bộ cũng xảy ra với bé trai và bé gái trong thời điểm này.

Câu số 11 có nhiều đáp án.

PHẦN 10

Lịch sử sự sống:
di truyền, tiến hóa
và hóa thạch

Chương 42

DI TRUYỀN VÀ DI TRUYỀN HỌC

Di truyền học là sự nghiên cứu về cách các gen tương tác và cách các tính trạng được truyền từ bố mẹ sang con cái. Phần lớn ngoại hình và hành động của bạn được xác định bởi di truyền. Việc truyền các đặc điểm từ thế hệ này sang thế hệ khác được gọi là SỰ DI TRUYỀN.

ĐẶC ĐIỂM và ALEN

Đặc điểm di truyền bao gồm cơ bản mọi đặc điểm về một sinh vật. Một số đặc điểm dễ quan sát nhất ở người bao gồm tóc, mắt và màu da, cũng như chiều cao, nhưng có một vài đặc điểm thiền về hành vi, chẳng hạn như chu kì giấc ngủ, sự gây hấn và các bản năng khác.

Gen là một đoạn của nhiễm sắc thể, được mã hóa bởi DNA. Các gen đi theo cặp gọi là **ALEN** và mỗi alen là một biến dị của gen đó. Nếu một trong các gen, hoặc alen, mạnh

hơn, nó có thể che dấu những đặc điểm của alen yếu hơn. Alen mạnh hơn được gọi là **ALEN TRỘI**. Các alen được giấu đi được gọi là **ALEN LẶN**. Alen lặn chỉ được biểu hiện khi cả hai alen mang hình thức lặn. Các nhà khoa học sử dụng một chữ cái để đại diện cho mỗi gen của một alen. Chữ viết hoa đại diện cho alen trội, trong khi chữ thường đại diện cho alen lặn.

Ví dụ: Chữ "R" có thể đại diện một alen cho đậu Hà Lan tròn hoặc đậu Hà Lan nhăn.

ALEN TRỘI

là alen luôn biểu hiện

ALEN LẶN

là alen có thể bị che giấu bởi alen trội. Alen lặn chỉ biểu hiện khi cả hai alen mang hình thức lặn.

R

Alen trội của đậu

Hà Lan tròn

r

Alen lặn của đậu

Hà Lan nhăn

RR **Rr**

Đậu Hà Lan sẽ tròn

rr

Đậu Hà Lan sẽ nhăn

Trong một alen trội và một alen lặn, alen trội được biểu hiện ở tình trạng, alen lặn lại không. Vì vậy, các alen thực của một sinh vật có thể không thể được dự đoán từ việc nhìn vào một đặc điểm của nó. Tập hợp gen của một sinh vật được gọi là **KIỀU GEN**, và những đặc điểm mà kiều gen biểu hiện được gọi là **KIỀU HÌNH**.

Bạn không thể quan sát kiều gen của sinh vật, nhưng bạn có thể quan sát kiều hình của chúng.

KIỀU GEN

là tập hợp gen của một sinh vật

KIỀU HÌNH

là những đặc điểm có thể nhìn thấy hoặc những gen được biểu hiện của một sinh vật

Khi một sinh vật có hai alen giống nhau, giống

nó như hai alen trội hoặc hai alen lặn, nó được

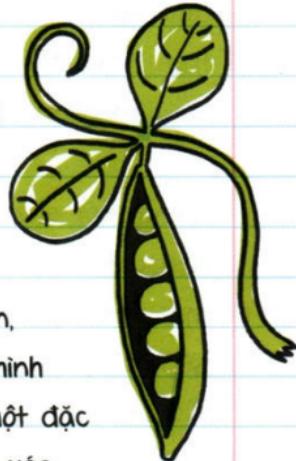
gọi là **ĐỒNG HỢP TỬ** cho đặc điểm đó. Khi sinh vật

có hai alen khác nhau (một alen lặn và một alen trội), nó được gọi là **ĐI HỢP TỬ**.

Như đậu Hà Lan RR hay rr

Như đậu Hà Lan Rr

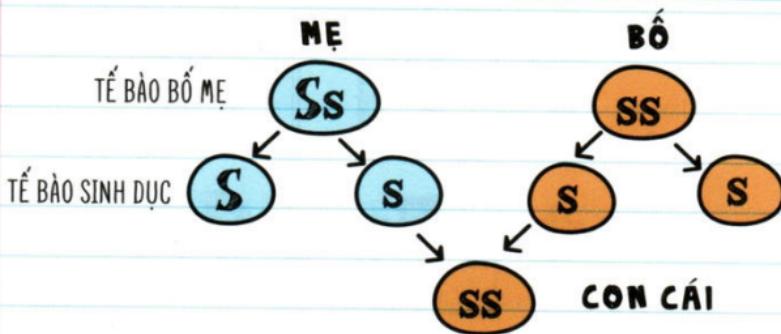
ĐỒNG HỢP TỬ


là một sinh vật có hai alen giống nhau

ĐI HỢP TỬ

là một sinh vật có hai alen khác nhau – một alen trội và một alen lặn

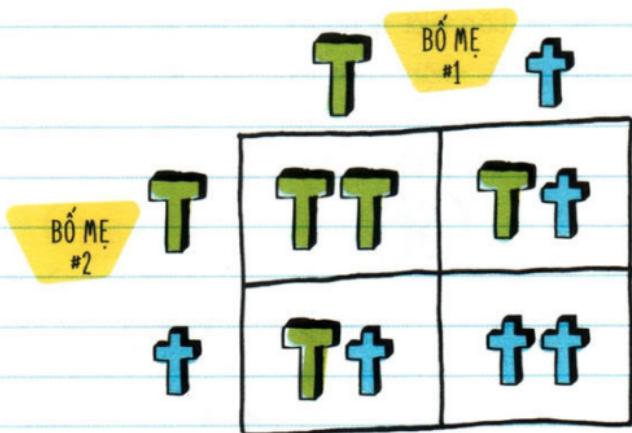
GREGOR MENDEL


GREGOR MENDEL, một nhà khoa học là một linh mục người Áo, là một trong những người đầu tiên nghiên cứu bao quát về di truyền học. Mendel làm vườn trong một tu viện, và ông ấy bắt đầu chú ý đến mô hình di truyền những đặc điểm của cây đậu Hà Lan, chẳng hạn như màu sắc của hạt, màu hoa, hình dạng và màu sắc vỏ quả. Ông đã tìm ra một đặc điểm thông qua những thế hệ khác nhau để xác định đặc điểm trội và đặc điểm lặn. Những khái niệm chính của Mendel sẽ được liệt kê tại trang tiếp theo.

Mỗi đặc điểm được điều chỉnh bởi hai gen, được gọi là alen.

Một alen có thể là alen trội hoặc alen lặn.

Khi nhiễm sắc thể tách ra trong quá trình sinh sản, mỗi tế bào sinh dục có một alen cho một đặc điểm. Vì vậy, khi tế bào giới tính của bố mẹ kết hợp, con cái ngẫu nhiên nhận được một alen từ mỗi bố, mẹ.


BẢNG PUNNETT

Bảng cách lai tạo hàng ngàn cây, Mendel đã sớm có thể dự đoán xác suất hoặc khả năng một loại cây cụ thể sẽ thừa hưởng những đặc tính nhất định.

BẢNG PUNNETT là một công cụ để tìm ra xác suất một cây con sẽ thể hiện một đặc điểm nhất định. Ví dụ, một cây cao dị hợp tử với chiều cao có thể là đại diện là Tt , một cây cao đồng hợp tử được đại diện là TT , và một cây ngắn đồng hợp tử có thể được đại diện là tt .

Trong Bảng Punnett, các alen của mỗi cặp bố mẹ được viết trên đầu và bên ngoài bảng.

Mỗi ô vuông tại bảng đại diện cho các alen có thể có của con cái. Do một trong số các alen của cặp bố mẹ sẽ được trao cho con cái nên mỗi ô vuông bên trong sẽ nhận được một alen từ mỗi cặp bố mẹ, như vậy:

Trong trường hợp này, cặp bố mẹ có hai dị hợp tử về chiều cao ngẫu nhiên. Do đó sẽ có ba trường hợp có thể xảy ra khi đẻ sinh ra cây con cái cao (TT, Tt, và tt), ngoài ra có một sự kết hợp có thể biểu hiện tính trạng lùn lặn cho đặc điểm cây con thấp (tt).

Bởi vì mỗi ô vuông đại diện cho một cây con, xác suất bố mẹ Tt và Tt có con có kiều gen TT là $\frac{1}{4}$ hoặc 25%, Tt là $\frac{1}{2}$ hoặc 50% và tt là $\frac{1}{4}$ hoặc 25%. Xét về kiều hình hoặc tính trạng, $\frac{3}{4}$ hoặc 75% sẽ cho con cây cao và $\frac{1}{4}$ hoặc 25% sẽ cho cây con thấp.

CẶP BỐ MẸ CÓ Ở
PHÍA TRÊN HOẶC
BÊN CẠNH BẢNG

GHỊ NHỚ:

Những điều này chỉ đại diện cho xác suất hoặc khả năng xảy ra của mỗi kết quả. Có trường hợp cây bồ mẹ sinh ra 4 cây con với xác suất 3 cây cao và 1 cây thấp hoặc 2 cây cao và 2 cây thấp hoặc 4 cây cao và 0 cây thấp. Nhưng nếu cây bồ mẹ sinh ra 400 cây con thì xác suất sẽ xấp xỉ 300 cây cao và 100 cây thấp.

XÁC ĐỊNH GIỚI TÍNH

Bảng Punnett cũng có thể được sử dụng như là công cụ để tính xác suất có giống đực hoặc giống cái. Trong số 23 cặp nhiễm sắc thể của chúng ta, có một cặp nhiễm sắc thể khác với tất cả các cặp còn lại và nó sẽ quyết định giới tính, chúng ta sẽ là giống đực hoặc giống cái. Các nhiễm sắc thể xác định giới tính được gọi là nhiễm sắc thể X và nhiễm sắc thể Y. Một giống cái có hai X(XX) và một giống đực có một X và một Y (XY).

Bảng Punnett

trong xác định
giới tính

	X	CON ĐỨC	Y
X	XX	XY	
X	XX	XY	

Do một nửa con là XX và một nửa là XY, xác suất sinh con mang giới tính đực và con mang giới tính cái là 50%.

Do con cái luôn có nhiễm sắc thể X, sự đóng góp nhiễm sắc thể của con đực sẽ quyết định giới tính đứa trẻ.

Di truyền phức tạp

Mặc dù Mendel đã nghiên cứu ra những điều mang đến sự tiên bộ đáng kể đối với di truyền học, nhưng di truyền học thực tế có sự phức tạp hơn so với mô hình nghiên cứu của Mendel. Đôi khi, một số gen kết hợp cùng nhau để tạo ra một kết quả duy nhất, ví dụ màu da. Hoặc nhiều gen cùng tham gia vào nhiều đặc điểm của da, mắt và màu tóc. Những đặc điểm của chúng ta rất phức tạp!

Ngoài ra, đối với một số đặc điểm, một alen không hoàn toàn trội và không che dấu được các alen lặn. Thay vì trội hoàn toàn, một phần của các đặc điểm sẽ được thể hiện trong một người con, hình thức di truyền đó được gọi là TRỘI KHÔNG HOÀN TOÀN. Đôi khi, không có alen nào mang đặc điểm trội hơn các alen còn lại, trường hợp đó chúng ta gọi là ĐẶC ĐIỂM CÙNG TRỘI. Trong cả hai trường hợp này, kết quả con di truyền sẽ mang gen dị hợp tử như là kết quả của một số loại pha trộn.

W

WW
HOA MÀU TRẮNG

RR
HOA MÀU ĐỎ

R

R

RW
HOA MÀU HỒNG

W

RW
HOA MÀU HỒNG

Sự tác động của môi trường

Thật vậy, không phải tất cả các đặc điểm luôn luôn được thể hiện. Một số đặc điểm có thể được thể hiện bởi sự kết hợp giữa môi trường và di truyền. Di truyền học có thể khiến sinh vật đó có rủi ro trong việc phát triển một đặc điểm, nhưng các yếu tố môi trường có thể cần thiết trong việc đặc điểm đó được biểu hiện. Ví dụ, một số người dễ bị thừa cân về mặt di truyền. Nhưng trên thực tế, việc người có thực sự thừa cân hay không phụ thuộc vào các yếu tố bên ngoài như thói quen ăn uống và tập thể dục. Ngoài ra, hầu hết các đặc điểm thu được về phương diện môi trường, không cần thông qua di truyền. Ví dụ, nếu bạn có một làn da rám nắng hoặc biết chơi trống, con bạn sẽ không ra với da rám nắng hoặc khả năng cảm thụ giai điệu tốt hơn.

RỐI LOẠN DI TRUYỀN và BỆNH Nhiễm sắc thể bất thường

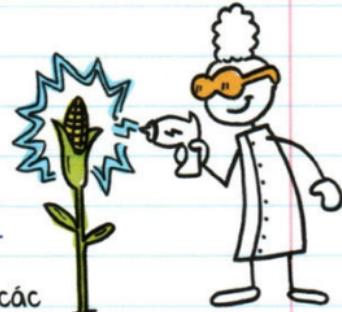
Đôi khi một đứa trẻ thừa hưởng số lượng nhiễm sắc thể không chính xác. Một dạng rối loạn nhiễm sắc thể phổ biến được gọi là **HỘI CHÙNG ĐAO**, trong đó đứa trẻ thừa hưởng ba bản sao nhiễm sắc thể số 21 thay vì hai. Những người mắc hội chứng Đao thường có cuộc sống bình thường, nhưng họ có thể bị khuyết trong việc nhận biết, tiếp thu, bắt thường về thể chất và/hoặc mắc các vấn đề về tim.

Bệnh di truyền do gen lặn

Trong quá trình gen di truyền các đặc điểm như tóc và màu mắt, gen cũng có thể truyền cả các bệnh di truyền, ví dụ như bệnh xơ nang - một bệnh phổi. Hầu hết các bệnh di truyền là do gen lặn, có nghĩa là alein mang bệnh bị che giấu

bởi các alen khác và những alen bệnh đó không biểu hiện bất kỳ triệu chứng nào trừ trường hợp đứa trẻ tinh cờ thừa hưởng cả hai alen lặn.

Bệnh di truyền do liên kết giới tính


Nếu một bệnh di truyền được mang trên nhiễm sắc thể giới tính X hoặc Y, thì bệnh này được gọi là **RỒI LOẠN LIÊN KẾT GIỚI TÍNH**. Rồi loạn liên kết giới tính ảnh hưởng đến một giới tính nhiều hơn so với người khác. Ví dụ, mù màu là một rối loạn liên kết giới tính lặn mang trên nhiễm sắc thể X. Bởi vì con đực chỉ có một nhiễm sắc thể X, nên nếu nó mang alen gây mù màu, con đực sẽ là mù màu. Bởi vì con cái có nhiễm sắc thể X thứ hai nên đứa trẻ chỉ bị mù màu nếu chúng nhận được alen lặn mù màu trên cả hai nhiễm sắc thể X, trường hợp này rất khó xảy ra.

KỸ THUẬT DI TRUYỀN

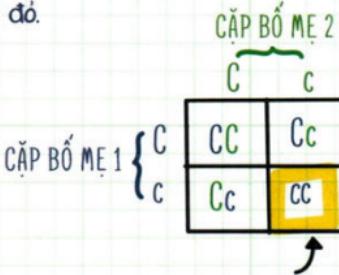
Các nhà khoa học có thể sử dụng quá trình sinh học hoặc hóa học để thay đổi gen của một tế bào, quá trình đó gọi là **KỸ THUẬT DI TRUYỀN**. Sử dụng kỹ thuật di truyền, các nhà khoa học có thể tạo ra các loại cây trồng có thể phát triển trong nhiều điều kiện hơn và chống lại một số hóa chất hoặc sâu bệnh.

Với kỹ thuật di truyền, các nhà khoa học đã phát triển cả chua chống sương giá và cây ngô kháng thuốc diệt cỏ. Cây trồng đã thay đổi gen của chúng được gọi là **VẬT BIẾN ĐỔI GEN**.

(GENETICALLY MODIFIED ORGANISMS - GMOS).

THUỐC DIỆT CỎ LÀ
MỘT CHẤT HÓA HỌC
TIÊU DIỆT CỎ DẠI

KIỂM TRA KIẾN THỨC CỦA BẠN

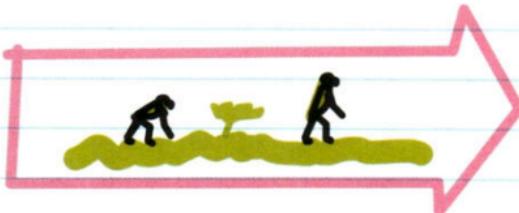

- 1 Xác định "Kiểu hình".
- 2 Xác định "Kiểu gen".
- 3 _____ được sử dụng để xác định kiểu gen của con và xác suất của mỗi lần xảy ra.
- 4 Các nguyên tắc chính của di truyền học Mendel là:
 - A. Mỗi tính trạng được kiểm soát bởi hai gen được gọi là _____.
 - B. Các alen có thể chiếm ưu thế (trội) hoặc _____ _____ alen lặn _____ alen.
 - C. Mỗi con có một alen từ mỗi _____.
- 5 Giải thích sự trội không hoàn toàn.
- 6 Nếu một người mẹ và một người cha đều là người mang bệnh xơ nang, mỗi người có kiểu gen Cc , khả năng họ có con bị ảnh hưởng với kiểu gen cc là _____.
- 7 Khi một gen được mang trên nhiễm sắc thể X hoặc Y, nó được gọi là một _____ - _____ đặc điểm.
- 8 Xác định "kỹ thuật di truyền."
- 9 Một con đực nhận được một nhiễm sắc thể _____ từ mẹ và một nhiễm sắc thể _____ từ cha.
- 10 Một sinh vật có alen Aa được gọi là _____ trong khi một với aa hoặc AA được gọi là _____.

← GÓI Ý: VẼ BIỂU ĐỒ PUNNETT

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Kiểu hình là cách các alen được biểu hiện (một đặc điểm "giống như là").
- 2 Kiểu gen là các alen thực tế có mặt (gen là).
- 3 Bảng Punnet
- 4 A. Các alen
B. Lặn, trội, lặn
C. Bố mẹ
- 5 Trội Không hoàn toàn là một kiểu di truyền trong đó đặc điểm của con là ở đâu đó giữa những đặc điểm của mẹ và những đặc điểm của cha, như một bông hoa màu hồng hình thành từ hoa bố mẹ màu trắng và màu đỏ.
- 6 $\frac{1}{4}$ hoặc 25%
- 7 Liên kết giới tính
- 8 Kỹ thuật di truyền là sự biến đổi gen thông qua quá trình sinh học hoặc hóa học.
- 9 X, Y
- 10 Di hợp tử, đồng hợp tử


Chương 43

SỰ TIẾN HÓA

THUYẾT TIẾN HÓA

Như ta đã biết rất nhiều loài sinh vật trên Trái Đất ngày nay đã tồn tại một hình thức rất khác tại thời điểm hàng triệu năm trước. Sự thay đổi và phát triển của một loài qua tiến trình của nhiều thế hệ được gọi là **TIẾN HÓA**.

THUYẾT LAMARCK VỀ CÁC ĐẶC ĐIỂM THU ĐƯỢC

JESE-BAPTISTE LAMARCK đã hình thành một trong những lý thuyết đầu tiên về sự tiến hóa. Lamarck đề xuất rằng những đặc điểm được phát triển trong suốt vòng đời của một sinh vật được truyền lại cho thế hệ tiếp theo. Thật đúng là những đặc điểm được truyền từ thế hệ này sang thế hệ khác - nhưng TẤT CẢ chúng là gì? Điều này không tuân theo nghiên cứu của Mendel.

CHARLES DARWIN và CHỌN LỌC TỰ NHIÊN

Một nhà khoa học tên là CHARLES DARWIN đã phát triển lý thuyết tiến hóa quan trọng nhất, lý thuyết dựa trên CHỌN LỌC TỰ NHIÊN.

Phần lớn sự hiểu biết về tiến hóa của ngày hôm nay dựa trên những ý tưởng và phát hiện ban đầu của Darwin.

GRRR!

Lý thuyết về sự tự nhiên mô tả cách các loài thay đổi theo thời gian để thích nghi với môi trường. Tất cả các sinh vật cạnh tranh để tồn tại. Không gian và thức ăn bị hạn chế, vì vậy các sinh vật có đặc điểm phù hợp nhất với môi trường sẽ đánh bại các sinh vật khác để sinh tồn, khái niệm đó được gọi là ĐẤU TRANH SINH TỒN. Đặc điểm mang lại cho sinh vật một lợi thế sinh tồn được truyền lại cho con cái đời sau khi sinh vật sinh sản. Vì vậy, chỉ những sinh vật thực sự thích ứng được với môi trường mới đủ điều kiện sống sót và sinh sản tạo ra thế hệ sau.

Khi một loài sinh vật không phù hợp với môi trường sống, do môi trường thay đổi hoặc do sự cạnh tranh sinh tồn tại môi trường tăng lên, loài đó có thể bị **TUYỆT CHỦNG**. Tuyệt chủng là khi tất cả các thành viên của một loài chết.

Những điểm chính của chọn lọc tự nhiên

Những cá thể cùng loài nhưng có những đặc điểm khác nhau.

Các sinh vật cạnh tranh với nhau để sinh tồn.

Các cá thể có đặc điểm giúp chúng sống sót và sinh sản tốt hơn. Những cá thể này truyền những đặc điểm tốt, hữu ích của chúng sang đời con cháu.

Cuối cùng, những cá thể mang biến dị hữu ích đó có thể trở thành một loài sinh vật riêng biệt khi số lượng của chúng tăng lên hoặc khi chúng bị cô lập khỏi quần thể sinh vật gốc ban đầu.

CÁC LOÀI MỚI HÌNH THÀNH NHƯ THẾ NÀO?

Biến dị và thích nghi

Sự tiến hóa là quá trình sinh vật trở nên khác đi về mặt di truyền.

Sự tiến hóa đã dẫn đến một loạt các sinh vật trên Trái Đất ngày nay. Các cá thể trong quần thể có các **BIẾN ĐỊ**, hoặc khác biệt về

mặt di truyền trong các đặc điểm của chúng. Khi biến dị đó có ích cho loài, nó được gọi là **THÍCH NGHI**. Các nhà khoa học gọi đó là sự thích ứng, biến dị hữu ích vì sinh vật đó có những đặc điểm thích nghi tốt hơn với môi trường sống. Ví dụ,

BIẾN ĐỊ

khác biệt về mặt di truyền giữa các cá thể trong cùng một loài

THÍCH NGHI

biến dị di truyền giúp sinh vật thích ứng tốt hơn với môi trường sống

chim có cấu tạo xương rỗng làm cho chúng nhẹ hơn và giúp chúng bay. Đôi khi sự khác biệt trong di truyền nhỏ, nhưng nếu những thay đổi đó lớn thì các sinh vật có thể tự phân biệt với **TỔ TIỀN CHUNG** của mình qua nhiều thế hệ.

TỔ TIỀN CHUNG

tổ tiên về mặt sinh học được chia sẻ chung

Đột biến gen

Đột biến gen xảy ra mọi lúc, làm thay đổi DNA của một sinh vật và tạo ra những tình trạng mới. Thông thường đột biến DNA có hại cho sinh vật và làm tăng cơ hội sống sót của chúng. Nhưng nếu thường xuyên như vậy, một đột biến có thể làm tăng cơ hội sống sót và sinh sản của sinh vật. Cuối cùng, các cá thể đột biến có sự thích nghi có thể trở thành một loài khác.

Cách ly địa lý và di cư

Đôi khi một quần thể sinh vật trở nên biệt lập với phần còn lại bởi các đặc điểm địa lý như núi, sông hoặc đại dương. Quần thể bị cô lập có thể phát triển các đột biến gen và các biến dị khác nhau trong một môi trường mới. Sau nhiều thế hệ, quần thể bị cô lập có thể trở thành hoàn toàn khác biệt so với những cá thể còn lại của loài (tổ tiên của nó) và cuối cùng có thể trở thành một loài mới, không thể giao phối và sinh sản với quần thể ban đầu.

Chọn giống

Các loài hoặc giống mới có thể được tạo ra bằng cách giao phối các cá thể xác định trong một quần thể. Ví dụ, nếu bạn muốn tạo ra một giống chó đèn từ một quần thể chó có bộ lông màu khác nhau thì chỉ cần những con chó có lông màu đen, cho đến khi các allele cho tất cả các màu lông khác bị loại khỏi giống. Con người đã sử dụng nhân giống chọn lọc để tạo ra hàng trăm giống chó, cùng với nhiều loài động vật khác. Chúng ta đã sử dụng nhân giống chọn lọc rộng rãi với thực vật, đặc biệt là cho cây trồng. Nhân giống chọn lọc giống như chọn lọc tự nhiên, tuy nhiên việc chọn lọc là do con người thực hiện, không phải do tự nhiên.

LÀM THẾ NÀO ĐỂ THÚC ĐẨY NHANH QUÁ TRÌNH TIẾN HÓA?

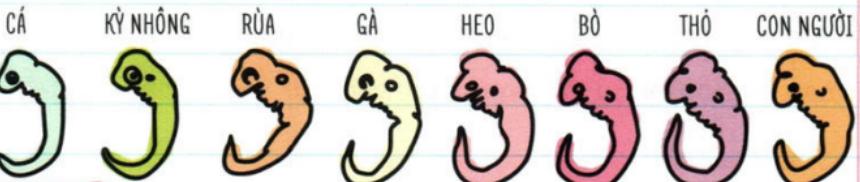
Mặc dù tất cả các nhà khoa học đều đồng ý rằng các loài thay đổi và sinh vật thích nghi, có nhiều quan điểm khác nhau về tốc độ diễn ra quá trình đó. Một số nhà khoa học nghĩ rằng tiến hóa có xu hướng là một quá trình thực sự chậm chạp phải mất hàng triệu năm - đây là một mô hình tiến hóa có tên TIẾN HÓA DẦN DẦN. Một số các nhà khoa học khác nghĩ rằng sự tiến hóa xảy ra khi có sự thúc đẩy, được giải thích trong một lý thuyết gọi là TRẠNG THÁI CÂN BẰNG ĐÚT QUĂNG. Có bằng chứng ủng hộ cả hai lý thuyết này và có quan điểm cho rằng sự kết hợp của hai mô hình này đã tạo ra sự đa dạng của sinh vật sống trên Trái Đất.

BẰNG CHỨNG CỦA SỰ TIẾN HÓA

Hóa thạch

Hầu hết các bằng chứng về sự tiến hóa ban đầu được tìm thấy trong hóa thạch.

Hóa thạch có thể bảo tồn cấu trúc của một sinh vật theo nhiều cách và chúng cho chúng ta một hình dung thực sự rõ nét về những sinh vật cụ thể trông như thế nào trong suốt lịch sử lâu đời của Trái Đất. Tuy nhiên, những nguồn tài liệu từ hóa thạch thường


không đầy đủ. Những điều kiện cần để bảo tồn một sinh vật như một hóa thạch là rất hiếm,

thường có những phần thiếu trong tài liệu hóa thạch của một sinh vật. Nhưng việc thu thập hóa thạch đang trở nên hoàn thiện hơn mỗi ngày từ những khám phá mới.

VÀ HÓA THẠCH RẤT
KHÓ ĐỂ XÁC ĐỊNH VỊ TRÍ

Một lĩnh vực làm bằng chứng cho sự tiến hóa là **PHÔI HỌC**, nghiên cứu về phôi. So sánh sự phát triển phôi của nhiều loài giúp chúng ta hiểu rằng nhiều loài đó có chung đặc điểm trong sự phát triển ban đầu của chúng. Ví dụ tất cả các động vật có xương sống sẽ có cơ bắp được sắp xếp theo nhóm hoặc theo bá, và có đuôi. Ngoài ra, tất cả sinh vật đó đều có lớp vỏ cứng, bao phủ và bảo vệ não bộ. Thật vậy, chúng ta không quá khác biệt!

SỰ TƯƠNG ĐỒNG CỦA PHÔI THAI

Manh mői từ cấu trúc

Các loài sinh vật đang sống cũng cho chúng ta manh mői về sự tiến hóa. Ví dụ, nhiều loài ngày nay có

CẤU TRÚC TƯƠNG ĐỒNG

cấu trúc cơ thể tương tự

CẤU TRÚC TƯƠNG ĐỒNG, hoặc cấu trúc cơ thể tương tự.

Một số ví dụ về cấu trúc tương đồng là cánh tay người, cánh chim, chân chèo cá voi, cẳng tay chó và chân trước của ếch.

Sự giống nhau giữa các cấu trúc cơ thể cung cấp cho chúng ta thông tin về nguồn gốc của từng loài chia sẻ tổ tiên chung.

CẤU TRÚC TÀN DƯ

đó là những cấu trúc cơ thể không còn chức năng, cung cấp nhiều manh mői về sự tiến hóa. Một cấu trúc tàn dư là một dấu vết (còn sót lại) từ một loài tổ tiên. Cấu trúc tàn dư đã từng là

CẤU TRÚC TÀN DƯ

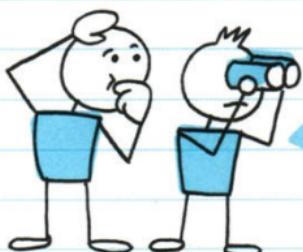
những cấu trúc cơ thể không còn chức năng, cung cấp nhiều manh mői về sự tiến hóa

một chức năng hoặc là một phần quan trọng của các loài tổ tiên, nhưng ngày nay nó không còn quan trọng nữa. Ví dụ, con người không có đuôi, nhưng chúng ta vẫn có xương đuôi, được gọi là xương cụt. Ruột thừa và amidan của chúng ta cũng là những vết tích - chúng là hai cơ quan tuy không còn sử dụng nữa nhưng vẫn tồn tại trong cơ thể.

Manh mői DNA

DNA của chúng ta cũng nắm giữ nhiều manh mői tiến hóa.

Các nhà khoa học so sánh DNA của các loài khác nhau để tìm ra điểm tương đồng. Sự giống nhau về DNA có thể cho

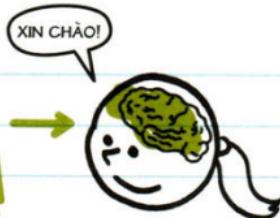

chúng ta biết thông tin về tổ tiên thực sự của chúng ta. Tỷ lệ đột biến cũng có thể được sử dụng để theo dõi sự thay đổi của các loài theo thời gian. Phân tích DNA đã đào sâu sự hiểu biết của chúng ta về sự tiến hóa và thậm chí buộc chúng ta phải phân loại lại các loài có liên quan nhiều hơn hoặc ít hơn chúng ta nghĩ ban đầu!

SỰ TIẾN HÓA CỦA LOÀI LINH TRƯỞNG

LOÀI LINH TRƯỞNG là một nhóm động vật có vú bao gồm con người, khỉ, vượn và vượn cáo. Loài linh trưởng thể hiện những đặc điểm chung phân biệt chúng với các động vật có vú khác, điều này cho thấy chúng có tổ tiên chung.

Những đặc điểm này bao gồm:

Ngón tay cái đối nghịch với những ngón còn lại, cho phép bạn cầm nắm ly hoặc những thanh ngang chỉ di chuyển bằng tay như khi


Tầm nhìn hai mắt, cho phép bạn nhìn thấy khoảng cách và độ sâu

Vai xoay, cho phép bạn có thể vung tay trên đầu

Bộ não tương đối lớn, cho phép bạn xử lý thông tin trực quan và quản lý các tương tác xã hội.

Loài linh trưởng giống người đi bằng hai chân, được gọi là **VƯỢN NGƯỜI**, xuất hiện lần đầu tiên cách đây 4 đến 6 triệu năm. Một trong những hóa thạch vượn người lâu đời nhất, có biệt danh **LUCY**, được tìm thấy ở Châu Phi. Hiện tại có hàng ngàn hóa thạch vượn người đã được tìm thấy và phân tích. Hóa thạch vượn người từ 1,5 đến 2 triệu năm trước cho thấy nhiều đặc điểm giống con người hơn. Một vượn người hóa thạch đã được tìm thấy bên cạnh một số công cụ, vì vậy vượn người được đặt tên là **NGƯỜI TỐI CỐ** (**HOMO HABILIS**), có nghĩa là người khéo léo.

Ngày nay, con người hiện đại là một phần của loài **HOMO SAPIENS SAPIENS**. **Homo sapiens sapiens** tiến hóa từ loài **HOMO SAPIENS**, có nghĩa là người tinh khôn.

↑ (**SIEU "SAPIENS" CÓ NGHĨA LÀ LOÀI NGƯỜI SIEU THÔNG MINH?**)

Homo sapiens sapiens là loài Vượn người duy nhất chưa tuyệt chủng. **Homo sapiens** đầu tiên xuất hiện 400.000 năm trước và chúng phân nhánh thành hai nhóm người: **NGƯỜI NEANDERTHALS** và **NGƯỜI CRO-MAGNONS**. Người Neanderthal lùn và nặng nề với xương trán lớn và cằm nhỏ. Họ sống trong hang động, chế tạo công cụ và săn bắn động vật. Mặc dù người Neanderthal có những đặc điểm tương tự như

chúng ta, nhưng họ có lẽ là một nhánh khác của sự tiến hóa loài người và không phải tổ tiên trực tiếp của chúng ta. Người Cro-Magnons, mặt khác, được cho là tổ tiên trực tiếp của chúng ta. Họ trông gần giống chúng ta. Họ cũng sống trong hang động, có chế tạo công cụ và thậm chí có thể vẽ tranh trong những hang động đó!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Ai đã phát triển lý thuyết tiến hóa về chọn lọc tự nhiên?
- 2 ___ là một biến dị về đặc điểm giúp cá thể tồn tại và sinh sản.
- 3 Giải thích trạng thái cân bằng đứt quãng.
- 4 Xác định "cấu trúc tàn dư" và đưa ra một ví dụ.
- 5 Các bộ phận cơ thể có cấu trúc tương tự được gọi là cấu trúc ___.
- 6 Di truyền ___ là biến dị một chiều xảy ra.
- 7 ___ đã tạo ra lý thuyết hiện đã bị bác bỏ về đặc điểm thu được.
- 8 Định nghĩa "sự tuyệt chủng".
- 9 ___ - ___ là những người Homo sapiens xuất hiện sớm và được cho là tổ tiên trực tiếp của chúng ta.
- 10 Giải thích khái niệm nhân giống chọn lọc.

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

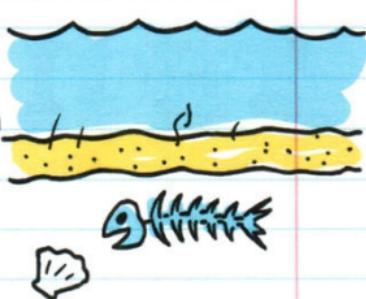
- 1 Charles Darwin
- 2 Thích ứng
- 3 Trạng thái cân bằng đứt quãng là lý thuyết cho rằng quá trình tiến hóa diễn ra bộc phát giữa các giai đoạn dài của ít sự thay đổi tiến hóa.
- 4 Cấu trúc tàn dư là phần còn lại cấu trúc không còn phục vụ chức năng. Amidan của con người là cấu trúc tàn dư.
- 5 Tương đồng
- 6 Đột biến
- 7 Lamarck
- 8 Tuyệt chủng là khi tất cả các cá thể của một loài chết.
- 9 Cro-Magnons
- 10 Nhân giống chọn lọc là khi một số cá thể của một loài được giao phối cho những phẩm chất nhất định.

Chương 44

HÓA THẠCH VÀ THỜI KỲ ĐỒ ĐÁ

HÓA THẠCH

HÓA THẠCH là những dấu ấn được bảo tồn hoặc dấu tích của các sinh vật thời tiền sử. Phần lớn những gì chúng ta biết về lịch sử sự sống trên Trái Đất đều từ tàn tích hóa thạch. Hóa thạch có thể cho chúng ta biết cả về cấu trúc vật lý của một sinh vật và về cách thức và nơi sống. Chỉ có một tỷ lệ nhỏ sinh vật trở thành hóa thạch. Thông thường, các sinh vật khác hao mòn và phân hủy cơ thể, trả lại chất dinh dưỡng của nó cho đất. Tuy nhiên, khi sinh vật được chôn nhanh chóng hoặc nó có các phần cứng như xương, vỏ hoặc răng, nó có nhiều khả năng được bảo tồn.



CÁCH THỨC ĐỂ SINH VẬT CÓ THỂ HÓA THẠCH

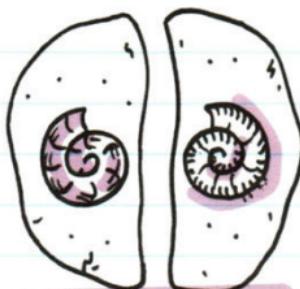
HÓA THẠCH TỪ KHOÁNG VẬT:

Xương, răng và vỏ của nhiều sinh vật có không gian bị chiếm bởi không khí hoặc vật liệu mềm, chẳng hạn như mạch máu. Sau khi sinh vật chết, không gian lắp đầy bằng các khoáng chất từ nước ngầm sau đó cứng lại.

HÓA THẠCH TỪ KHOÁNG VẬT

MÀNG CARBON: Một sinh vật bị chôn vùi trong trầm tích sẽ chịu áp lực và bị đốt nóng bởi nhiệt độ phát từ tâm Trái Đất, nó đầy tắt cả khí và chất lỏng ra khỏi cơ thể sinh vật. Sức ép này đẽ lại một màng carbon mỏng trên các tảng đá xung quanh, tạo thành một lớp bóng hoặc hình dáng của sinh vật.

MÀNG CARBON



THAN: Than mà chúng ta đốt để sưởi ấm thực sự được làm từ phần còn lại của động vật đã hóa thạch. Tuy nhiên, vì phần còn lại đã bị nén và cacbon hóa hoàn toàn, nên nó không chứa nhiều thông tin hữu ích.

ĐÓ LÀ LÝ DO VÌ SAO GỌI CHÚNG LÀ "NHIỀU LIỆU HÓA THẠCH".

KHUÔN VÀ BẢN IN: Sinh vật bị chôn vùi dưới lòng đất phân hủy và tan rã tạo ra một khoảng trống đối với những tảng đá xung quanh gọi là **KHUÔN**. Trầm tích và khoáng chất đi vào khuôn. Khi trầm tích và khoáng chất cứng lại, chúng tạo ra một **BẢN IN** như bản sao của sinh vật ban đầu.

KHUÔN ĐỨC / BẢN IN

PHẦN CÒN LẠI NGUYÊN GỐC: Đôi khi phần còn lại của các sinh vật được bảo tồn. Côn trùng được tìm thấy được bảo quản trong nhựa cây cứng, được gọi là **HỒ PHÁCH**, trong hàng triệu năm về sau. Các bộ phận của các loài đã tuyệt chủng, chẳng hạn như voi ma-mút, đã được tìm thấy dưới lòng đất đóng băng. Phần còn lại của các sinh vật cũng đã được tìm thấy trong các hồ nhựa đường tại California.

PHẦN CÒN LẠI
NGUYÊN GỐC

HÓA THẠCH DÂU VỀT: Đôi khi dâu chàm, dâu vét và hang của động vật có thể bị hóa thạch. Những hóa thạch này đặc biệt thú vị bởi vì chúng có thể cung cấp thông tin về hành vi và chuyên động của một sinh vật.

HÓA THẠCH
DÂU VỀT

THỜI KỲ ĐỒ ĐÁ

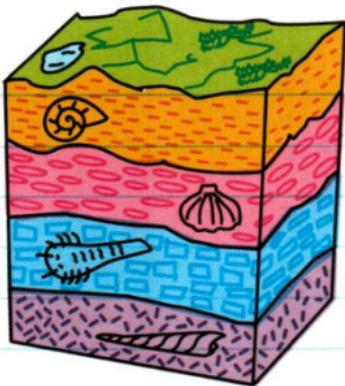
Niên đại tuyệt đối

Khi cần biết NIÊN ĐẠI TUYỆT ĐỐI, hoặc tuổi chính xác của một tảng đá, các nhà khoa học có thể xác định niên đại bằng cách sử dụng phân rã phóng xạ. **PHÂN RÃ**

PHÓNG XÃ là khi một nguyên tố bị phá vỡ. Tất cả các loại đá đều chứa các nguyên tố không ổn định, như đồng vị của carbon, kali, uranium và các loại khác. Một trong những chất đồng vị đó Carbon-14, hoặc C-14 - hiện diện trong các sinh vật sống. Nó phân rã chậm, nhưng có thể dự đoán được, vì vậy các nhà khoa học có thể đo lượng hiện diện nguyên tố đó trong một hóa thạch và kích hoạt trở lại để tìm hiểu xem nó bao nhiêu tuổi. Công việc tìm ra niên đại tuyệt đối này đôi khi được gọi là **ĐỊNH TUỔI CARBON** hoặc **ĐỊNH TUỔI PHÓNG XÃ**.

Niên đại tương đối

Niên đại tuyệt đối là một cách chính xác để tìm ra tuổi của một lớp đá, nhưng kỹ thuật này không hoạt động trên đá trầm tích, nơi gần như tất cả các hóa thạch bị chôn vùi. (Đá trầm tích được tạo thành từ các mảnh của các loại đá khác, vì vậy việc xác định niên đại tuyệt đối sẽ mang lại tuổi của tất cả các mảnh đá trầm tích khác nhau - không thể sử dụng phương pháp đo tuổi này khi nó là đá trầm tích). **NIÊN ĐẠI TƯƠNG ĐỐI** của đá tức là so sánh tuổi của đá này với đá khác. Các nhà khoa học xác định trình tự các tảng đá và ước tính tuổi dựa trên thứ tự của chúng và các hóa thạch hiện tại.

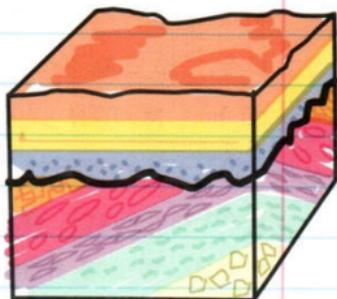


Thông thường, mọi thứ
chôn sâu dưới lòng đất
cũ hơn. NGUYỄN LÝ CHỒNG
CHẤP nói rằng khi sự
phân hủy không làm
nguyên tố xáo trộn, những
tảng đá lâu đời nhất nằm

TRẺ NHẤT

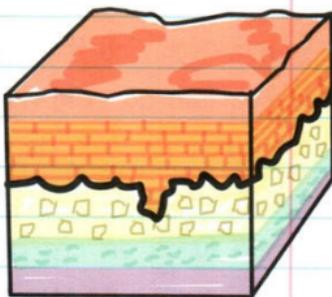
GIÀ NHẤT

ở phía dưới và những tảng đá trẻ nhất nằm ở trên cùng. Đá
mới được hình thành khi trầm tích được nén lại với nhau thành
các tảng đá nằm ngang. Trầm tích mới tích tụ trên các lớp đá
cũ hơn, đó là lý do tại sao lớp đá trẻ hơn nằm trên lớp đá cũ.
Sử dụng nguyên tắc này, các nhà khoa học có thể xác định
tuổi tương đối của đá. Nguyên tắc chống chấp chỉ hoạt động
khi các lớp đá không bị xáo trộn. Đôi khi, một sự cố có thể phá
vỡ các lớp đá, hoặc dịch chuyển, đè lên hoặc đảo ngược (lật)
các lớp đá. Ngoài ra, magma có thể từ từ đẩy lên từ bên trong
Trái Đất và đẩy vào các vết nứt hoặc đẩy đá ra khỏi vị trí
của nó - một quá trình gọi là SỰ XÂM NHẤT. Đá magma nằm
phía bên dưới trên thực tế có thể trẻ hơn các lớp đá trên cùng.

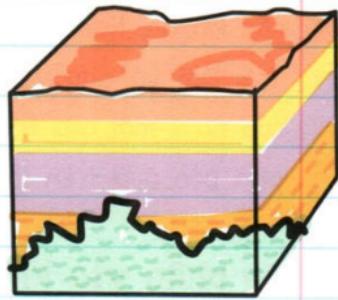


Sự phân vỉa không chỉnh hợp

Sự hình thành các lớp đá là một phần của chuỗi đá hoàn chỉnh,
sự chống chấp đó có thể cho ta biết tuổi tương đối của đá.
Tuy nhiên, đôi khi, các lớp đá có thể ăn mòn hoặc bị cuốn trôi,
tạo thành một khoảng trống trong chuỗi đá hoàn chỉnh. Những
khoảng trống này được gọi là SỰ PHÂN VỈA KHÔNG CHỈNH HỢP.
Sự phân vỉa không chỉnh hợp có thể xảy ra theo ba cách chính:


GÓC PHÂN VÌA KHÔNG CHỈNH HỢP:

Đôi khi các lớp đá được đẩy lên trên, tạo thành một độ nghiêng hoặc cuộn. Khi đá bị xói mòn, nó lấy đi một số lớp đá nổi lên, do đó các lớp đá không còn song song. Trầm tích mới được lắng đọng trên đỉnh tạo thành các lớp đá mới. Kết quả là một khoảng trống trong chuỗi đá.


KHÔNG CHỈNH HỢP:

Khi các lớp đá mới hình thành trên các lớp đá cũ đã bị xói mòn, để lại một khoảng trống trong chuỗi. Không giống như góc phân lớp không hoàn chỉnh, tất cả các lớp đá vẫn song song, nhưng chúng thiếu một lớp.

BÈ MẶT KHÔNG CHỈNH HỢP

(không khớp): Khi đá trầm tích hình thành trên một loại đá khác như đá biến chất hoặc đá magma đã bị xói mòn.

Vật hóa thạch chỉ số

Một số sinh vật chỉ sống trên Trái Đất trong một khoảng thời gian ngắn và cụ thể. Khi những sinh vật này được tìm thấy dưới dạng hóa thạch, chúng được gọi là **VẬT HÓA THẠCH CHỈ SỐ** vì chúng cung cấp một tham khảo được sử dụng để xác định niên đại đá và các hóa thạch gần đó.

KIỂM TRA TRIẾN THỨC CỦA BẠN

- 1 Định nghĩa "hóa thạch."
- 2 Liệt kê những cách khác nhau để sinh vật hóa thạch.
- 3 Các bộ phận của động vật có khả năng được bảo tồn là gì?
- 4 Đầu chân được bảo tồn được gọi là ____ hóa thạch.
- 5 Thuật ngữ sử dụng phân rã phóng xạ để xác định tuổi của hóa thạch vật sống một lần là ____.
- 6 Khi một hóa thạch tan biến để lại một khoảng trống, nó tạo ra một ____ có thể được lắp đầy bằng trầm tích để tạo ra một bản sao của hóa thạch, được gọi là ____.
- 7 Một hóa thạch tạo thành một bong của sinh vật là một dạng ____.
- 8 Giải thích sự xâm nhập.
- 9 Các nhà khoa học sử dụng đồng vị nguyên tố nào để tìm hiểu tuổi của hóa thạch?
- 10 Giải thích nguyên tắc chồng chập.
- 11 Xác định "vật hóa thạch chỉ số".

KIỂM TRA ĐÁP ÁN CỦA BẠN

1. Hóa thạch là những dấu ấn được bảo tồn hoặc dấu tích của các sinh vật thời tiền sử.
2. Thay thế khoáng sản, màng carbon, than, khuôn và phôi, phần còn lại nguyên gốc và hóa thạch dấu vết.
3. Phần cứng, chẳng hạn như xương, vỏ hoặc răng.
4. Dấu vết
5. Niên đại Carbon
6. Khuôn đúc, bản in
7. Màng carbon
8. Xâm nhập xảy ra khi đá magma hoặc magma được đẩy lên từ bên trong Trái Đất và làm xáo trộn các lớp đá hiện có.
9. Carbon-14 hoặc C-14
10. Nguyên tắc chồng chập nói rằng những tầng đá lâu đời nhất nằm ở phía dưới, và những tầng đá trẻ nhất nằm gần bề mặt.
11. Vật hóa thạch chỉ số cung cấp một tham khảo được sử dụng để xác định niên đại đá và hóa thạch gần đó.

Chương 45

LỊCH SỬ SỰ SỐNG TRÊN TRÁI ĐẤT

TRỤC THỜI GIAN

TRỤC THỜI GIAN ĐỊA CHẤT là một đơn vị thời gian được tổ chức theo thời điểm một số sinh vật nhất định sống trên Trái Đất. Trục thời gian địa chất bao gồm 4 phân chia thời gian chính:

NIÊN ĐẠI: sự chia nhỏ dài nhất, có thể kéo dài hàng trăm triệu năm. Được xác định bởi sự phổ biến của một số hóa thạch nhất định.

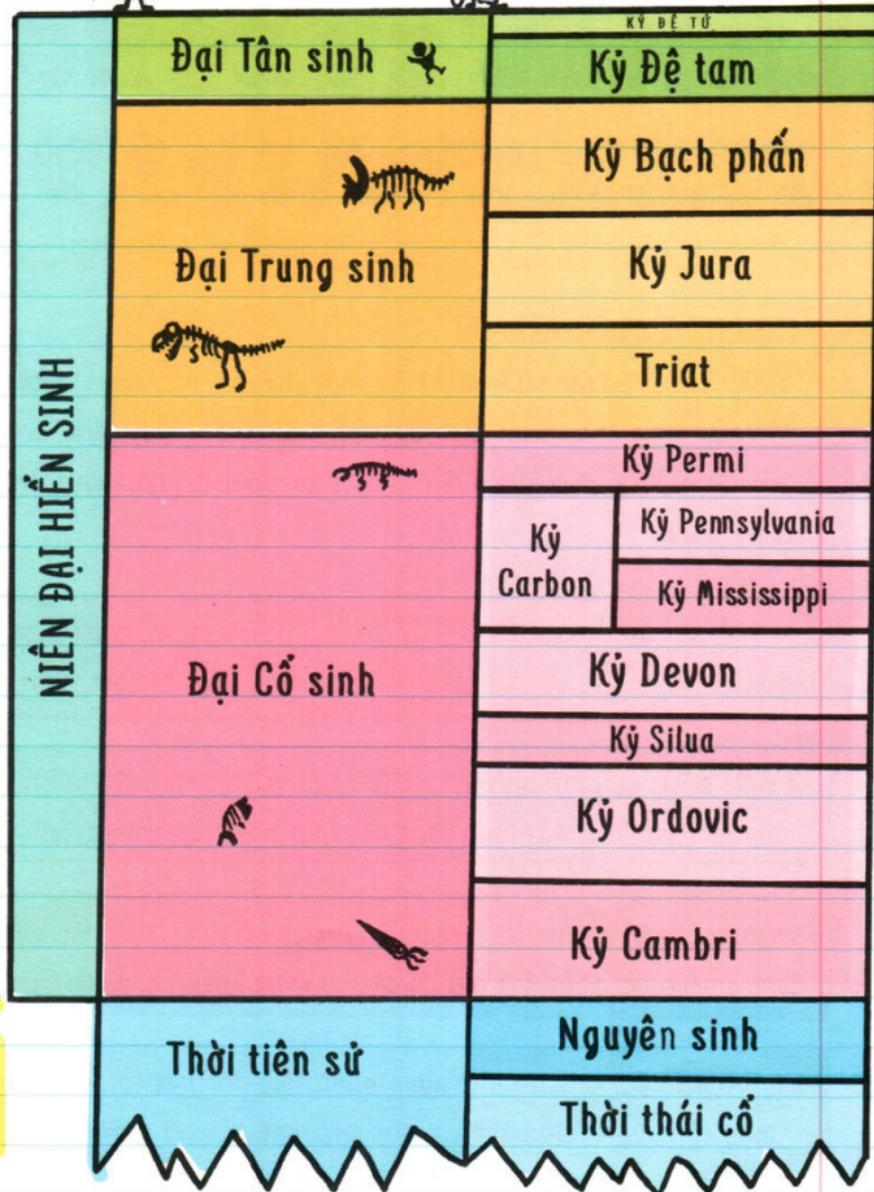
THỜI ĐẠI: sự chia nhỏ dài nhất kế tiếp. Một thời đại đánh dấu một sự thay đổi lớn trong các loại hóa thạch hiện tại.

KỶ: kỷ là sự phân chia trong một thời đại. Kỷ đánh dấu các giai đoạn trong một thời đại nơi có các sự sống khác nhau tồn tại.

KỶ NGUYÊN: sự chia nhỏ ngắn nhất, kéo dài vài triệu năm. Một kỷ nguyên chia thời gian thành các đơn vị nhỏ hơn và cũng được xác định bởi những thay đổi dạng sống.

TRỤC THỜI GIAN ĐỊA CHẤT

HIỆN TẠI


NIÊN ĐẠI

ĐẠI

KỶ

Trục thời gian địa chất dựa trên sự xuất hiện và biến mất của các dạng sống. Các dạng sống xuất hiện và biến mất khi chúng tiến hóa và/hoặc bị tuyệt chủng do các yếu tố như thay đổi môi trường. Các sinh vật cạnh tranh với nhau về tài nguyên thiên nhiên và các cá thể phù hợp nhất với môi trường tồn tại, như được giải thích bởi lý thuyết chọn lọc tự nhiên của Darwin. Các loài không còn phù hợp với môi trường sống buộc phải di chuyển môi trường sống để thích nghi hoặc tuyệt chủng.

TRÊN 99% TRONG SỐ CÁC LOÀI ĐỘNG VẬT TÙNG SỐNG TRÊN TRÁI ĐẤT ĐÃ TUYỆT CHỦNG

Đây là mẹo nhỏ để ghi nhớ thứ tự của thời đại:

Purple Pandas Make Crepes
(Gấu Trúc Tím Làm Bánh Kép)

(Precambrian - Tiền kỷ Cambri; Paleozoic - Đại Cổ sinh; Mesozoic - Đại Trung sinh; Cenozoic - Đại Tân sinh)

SỰ TIẾN HÓA của TRÁI ĐẤT

Trái Đất không phải lúc nào cũng có hình thái như ngày nay. Kiến tạo địa tầng và mực nước đã liên tục thay đổi diện mạo Trái Đất. Trước Đại Trung Sinh, phần lớn Trái Đất bị bao phủ trong nước. Vào cuối Đại Cổ Sinh, mực nước biển giảm xuống và các lục địa bị ép lại với nhau thành một vùng đất rộng lớn có tên là Siêu Lục Địa Pangaea. Siêu lục địa bắt đầu lan rộng và tách ra thành các lục địa mà chúng ta biết ngày nay vào giữa Đại Trung Sinh. Ngày nay, các lục địa vẫn đang di chuyển.

ĐẠI TIẾN CAMBRI ĐÃ BAO TRÙM 80% LỊCH SỬ TRÁI ĐẤT (KHÔNG CÓ NHIỀU SINH VẬT SỐNG TRONG 4 TỶ NĂM ĐẦU TIÊN CỦA TRÁI ĐẤT)

LỊCH SỬ CỦA

Các nhà khoa học chia lịch sử Trái Đất thành bốn đại. Đại sớm nhất bắt nguồn vào khoảng 4,6 tỷ năm trước, bao gồm:

1. TIỀN CAMBRI

Trái dài từ 4,6 tỷ năm đến 541,1 triệu năm trước, kỷ này chiếm phần lớn thời gian tồn tại của Trái Đất (hơn 80% thời gian).

CHÚNG
TÔI LÀ
SỐ 1!

Những sinh vật đầu tiên xuất hiện! Vi khuẩn lam là vi khuẩn đơn bào, tạo ra năng lượng thông qua quá trình quang hợp, giải phóng oxy vào khí quyển.

Tầng ozone cũng bắt đầu xuất hiện. Sự kết hợp giữa oxy và ozone trong khí quyển từ từ tạo ra một môi trường cho phép nhiều dạng sống phát triển hơn.

Vào cuối Tiền Cambri, một số sinh vật đa bào đơn giản đã bắt đầu tiến hóa.

TRÁI ĐẤT

2. ĐẠI CỔ SINH

Trái đất 544,1 triệu đến 252 triệu năm trước.

Nhiều sinh vật có vỏ hoặc **BỘ XƯƠNG NGOÀI** - bắt đầu xuất hiện.

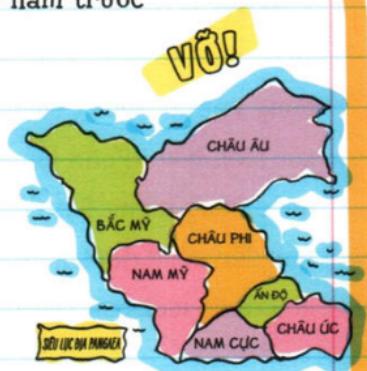
Động vật có xương sống, thực vật, động vật lưỡng cư và bò sát tiến hóa. (Phần lớn Trái Đất được bao phủ trong vùng nước nông trong Đại Cổ Sinh, vì vậy hầu hết các loài sinh vật đều sống dưới nước.) Động vật trên cạn đơn giản tiến hóa được một nửa trong thời kỳ này.

Siêu lục địa Pangaea hình thành vào cuối Đại Cổ sinh, tạo ra những ngọn núi khi các mảng lục địa va chạm.

Sự kết thúc của Đại Cổ sinh được đánh dấu bằng sự tuyệt chủng hàng loạt sinh vật: 90% tất cả các động vật biển biến mất và 70% sinh vật trên cạn đã bị tuyệt chủng.

BỘ XƯƠNG NGOÀI

Tiền tổ exo có nghĩa là "bên ngoài" và skeleton - bộ xương là một cấu trúc vững chắc. Vì vậy, một bộ xương ngoài (exoskeleton) là một cấu trúc cơ thể có phần bên ngoài cứng.


Bởi vì các sinh vật trong Tiền Cambri không có xương hoặc các phần cứng khác, không có nhiều di chỉ hóa thạch. Có nhiều di chỉ hơn ở thời Đại Cổ sinh.

Loài bò sát là một trong số ít loại sinh vật sống sót từ Đại Cổ sinh tới Đại Trung sinh vì chúng thích nghi tốt trên cạn. Các nhà khoa học không chắc chắn về nguyên nhân gây ra sự tuyệt chủng hàng loạt, mặc dù chúng có thể là kết quả của sự hình thành Siêu lục địa Pangaea, sự giảm mực nước biển, và sự hình thành các sa mạc....

3. ĐẠI TRUNG SINH ← THỜI CỦA BÒ SÁT

Kéo dài khoảng 252 triệu đến 66 triệu năm trước (khoảng 4% lịch sử Trái Đất).

Siêu lục địa Pangaea phân chia lần đầu thành hai vùng đất rộng lớn và cuối cùng thành các lục địa chúng ta biết ngày nay.

Khủng long phát triển trong thời đại này.

Những con chim và động vật có vú đầu tiên cũng xuất hiện trong Đại Trung sinh, mặc dù động vật có vú chủ yếu còn nhỏ và sống dưới lòng đất.

NẾU DÒNG THỜI GIAN CỦA TRÁI ĐẤT ĐƯỢC VẼ LÊN SÂN BÓNG ĐÁ...

Thực vật hạt kín (thực vật có hoa) và thực vật hạt trần (thực vật có hạt) lần đầu tiên xuất hiện.

Sự kết thúc của Đại Trung sinh được đánh dấu bằng một đợt tuyệt chủng hàng loạt sinh vật khác, có lẽ là do một thiên thạch va chạm với Trái Đất, đã gửi một lượng lớn bụi và khói vào bầu khí quyển!

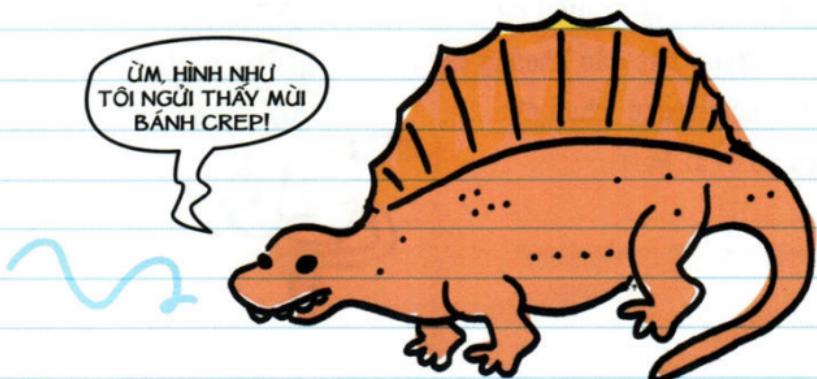
Bụi và khói ngăn ánh sáng mặt trời và làm thay đổi khí hậu Trái Đất, khiến thực vật chết và sau đó khiến động vật phụ thuộc vào thực vật cũng bị chết theo.

4. ĐẠI TÂN SINH

Thời đại chúng ta hiện đang sống! Nó đã bắt đầu khoảng 65 triệu năm trước (chưa đến 2% lịch sử Trái Đất).

THỜI KỲ CỦA
ĐỘNG VẬT CÓ VÚ

... LOÀI NGƯỜI NGÀY NAY RỘNG LỚN NHƯ MỘT CHIẾC LÁ TRÊN ĐÁM CỎ


Những dãy núi hiện đại, giống như dãy Himalaya hình thành.

Động vật có vú trở nên lớn hơn và chiếm ưu thế hơn so với tổ tiên của chúng, có lẽ vì không có sự cạnh tranh từ khủng long.

Con người hiện đại sơ khai lần đầu tiên hóa khoảng 200.000 năm trước.

CHỈ CHIẾM 0.000044%
LỊCH SỬ TRÁI ĐẤT.
CHÚNG TA MỚI Ở ĐÂY
MỘT THỜI GIAN NGẮN!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Liệt kê các phân chia thời gian địa chất từ lớn nhất đến nhỏ nhất.
- 2 Những lực địa như chúng ta biết hiện nay xuất hiện từ khi nào?
- 3 Tại sao có sự tuyệt chủng hàng loạt vào cuối Đại Cổ sinh?
- 4 Trục thời gian địa chất dựa trên điều gì?
- 5 Thời đại nào chúng kiến sự tuyệt chủng hàng loạt, có thể gây ra một phần do tác động của thiên thạch hoặc sao Chổi?
- 6 Chúng ta hiện đang sống tại thời đại nào?
- 7 Mô tả bề mặt Trái Đất trước Đại Trung sinh.
- 8 Sinh vật đầu tiên xuất hiện trên Trái Đất là gì? Làm cách nào chúng tạo ra năng lượng?

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Niên đại, đại, kỷ, kỷ nguyên
- 2 Trong Đại Trung sinh, sau khi siêu lục địa Pangaea tách ra và tiếp tục lan rộng
- 3 Các mảng lục địa đã kết hợp với nhau để tạo thành vùng đất rộng lớn mang tên Siêu lục địa Pangaea. Phần diện tích dưới nước trước đây đã trở thành đất liền. Nhiều sinh vật biển không thể sống sót trên đất liền, vì vậy chúng bị tuyệt chủng. Loài bò sát do có khả năng sống trên cạn nhiều hơn nên đã sống sót.
- 4 Trục thời gian địa chất dựa trên sự biến mất và sự xuất hiện của các dạng sống.
- 5 Đại Trung sinh
- 6 Đại Tân sinh
- 7 Bao phủ trong nước.
- 8 Vi khuẩn lam. Nó tạo ra năng lượng thông qua quá trình quang hợp.

PHẦN

1 1

Sinh thái học:
Môi trường sống, sự phụ
thuộc lẫn nhau và tài nguyên

Chương 46

SINH THÁI HỌC VÀ HỆ SINH THÁI

SINH THÁI HỌC nghiên cứu về mối quan hệ giữa các sinh vật (sinh vật sống) và môi trường của chúng.

HỆ SINH THÁI

Các nhà sinh thái học nghiên cứu về **HỆ SINH THÁI**. Hệ sinh thái bao gồm tất cả các sinh vật và các yếu tố môi trường trong một khu vực nhất định. Nó có thể chỉ đơn giản là một hệ sinh thái nhỏ hoặc bất kỳ kích cỡ nào. Nó có thể nhỏ như khoảng sân sau nhà bạn hoặc to lớn như... hệ sinh thái lớn nhất trên thế giới là **SINH QUYỀN**, bao gồm tất cả các phần trên Trái Đất nơi sinh vật có thể sinh sống, chẳng hạn như lớp vỏ Trái Đất, đường thủy, địa hình, rừng và bầu khí quyển. Sinh quyền là tập hợp toàn bộ hệ sinh thái trên Trái Đất.

SINH THÁI HỌC

Nghiên cứu về sự tương tác giữa các sinh vật và môi trường của chúng

HỆ SINH THÁI

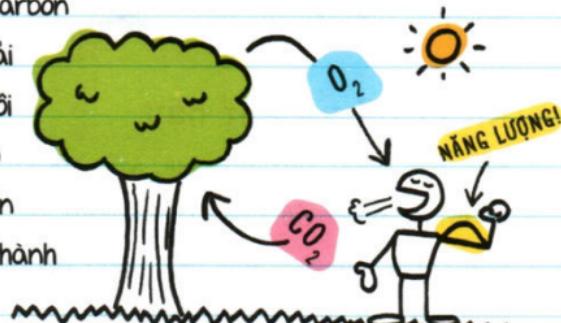
là tập hợp các quần thể sinh vật và cả yếu tố không có sự làm việc cùng nhau và tương tác lẫn nhau

Một hệ sinh thái có thể được chia thành các yếu tố **SINH HỌC** bao gồm các sinh vật sống và sinh vật sống một lần, và các yếu tố **PHI SINH HỌC**

là bộ phận không tồn tại sự sống. Một số yếu tố phi sinh học là không khí, nước, đất, ánh sáng mặt trời, nhiệt độ và khí hậu.

SINH QUYỀN

là hệ sinh thái lớn nhất thế giới – đó là sự kết hợp của tất cả các hệ sinh thái trên Trái Đất


SINH VẬT - SỐNG

YẾU TỐ PHI SINH HỌC

Không khí

Bầu khí quyển, không khí bao quanh Trái Đất, là một yếu tố phi sinh học quan trọng. Động vật hít vào oxy (O_2) và thải ra khí carbon dioxide (CO_2). Thực vật sử dụng carbon dioxide (CO_2) cho các quá trình thiết yếu, như quang hợp, sử dụng ánh sáng mặt Trời, CO_2 và nước để tạo ra các phân tử đường làm năng lượng. Sau khi sử dụng carbon dioxide (CO_2), thực vật giải phóng oxy (O_2) trả lại môi trường. Động vật sau đó hít oxy để hô hấp, chuyển đổi các phân tử đường thành năng lượng.

Nước

Hầu như tất cả quá trình sống, như quang hợp, hô hấp và tiêu hóa đều liên quan đến nước. Nhiều loài thực vật và động vật dựa vào vào nước không chỉ để nuôi dưỡng mà còn là nơi trú ẩn. Nước là môi trường sống của cá, ếch và nhiều sinh vật khác.

Đất

Đất bao gồm một hỗn hợp của đá, các hạt khoáng chất, nước và các sinh vật chết. Các loại đất khác nhau có chất lượng dinh dưỡng khác nhau, vì vậy các loại đất khác nhau hỗ trợ các loại thực vật khác nhau.

Ánh sáng mặt trời

Rễ của hầu hết tất cả thực phẩm của chúng ta có thể được truy nguyên tới ánh sáng mặt trời. Thực vật và tảo thu năng lượng mặt trời và sử dụng nó để sản xuất năng lượng hóa học dưới dạng đường. Động vật sau đó ăn thực vật để lấy năng lượng.

Nhiệt độ và khí hậu

Hầu hết động vật và thực vật chỉ có thể tồn tại trong một phạm vi nhiệt độ nhất định. Nhiệt độ bị ảnh hưởng bởi lượng ánh sáng mặt trời mà một vùng nhận được, góc của ánh sáng mặt trời đó, độ cao, các vùng nước lớn ở gần đó, tuần hoàn đại

dương và các yếu tố khác. Khi hậu cũng gây ảnh hưởng bởi thời gian, lượng gió và lượng mưa mà một hệ sinh thái nhận được.

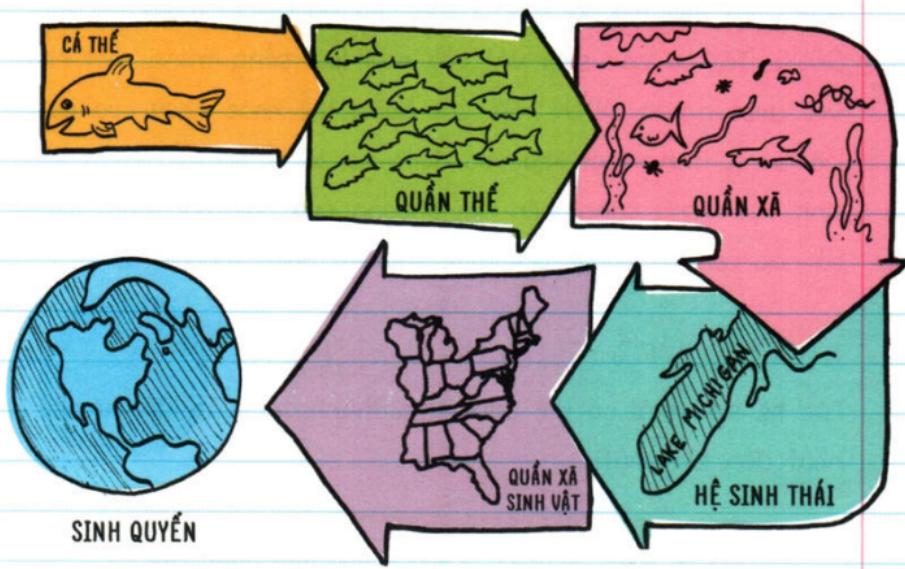
YẾU TỐ SINH HỌC

Các yếu tố sinh học của một hệ sinh thái bao gồm tất cả các sinh vật sống và sinh vật sống một lần. Mỗi sinh vật có vai trò riêng trong hệ sinh thái, được gọi là **SỰ THÍCH NGHĨ** và môi trường sống riêng của nó gọi là **MÔI TRƯỜNG SỐNG**. Tất cả các sinh vật của một loài sống trong một khu vực được gọi là **QUẦN THỂ**. Các quần thể khác nhau của các loài sống trong một khu vực được gọi là **QUẦN XÃ**. Quần xã sinh vật trong công viên địa phương của bạn bao gồm tất cả các con bò, chuột, gấu trúc Mỹ, và chim sống ở đó.

MỨC ĐỘ TỔ CHỨC trong HỆ SINH THÁI

Các hệ sinh thái có thể được chia thành các cấp độ (từ nhỏ nhất đến lớn nhất):

CÁ THỂ: một sinh vật trong một quần thể
(một con cá hồi đơn lẻ ở hồ Michigan)


QUẦN THỂ: tổng số lượng một loại sinh vật (một loài) trong một khu vực nhất định (tất cả những con cá hồi ở hồ Michigan)

QUẦN XÃ: tất cả các quần thể tương tác trong một khu vực (các loại cá, vi khuẩn, địa, bọ nước, tảo và thực vật khác nhau sống ở hồ Michigan)

HỆ SINH THÁI: tất cả các quần xã và các yếu tố không sống, trong một khu vực (toàn bộ hồ Michigan)

QUẦN XÃ SINH VẬT: một khu vực có thể bao gồm một số hệ sinh thái (rừng rụng lá ôn đới)

SINH QUYỀN: tập hợp tất cả các hệ sinh thái trên Trái Đất

QUẦN THỂ


MẬT ĐỘ QUẦN THỂ là mật độ sống gần nhau của các thành viên trong một quần thể. Quần thể dày đặc hơn khi nhiều sinh vật cư ngụ trong diện tích nhỏ hơn. Với cùng mật độ quần thể, quần thể có thể sinh sống tại những không gian khác nhau. Một số quần thể tụ lại với nhau, và một số quần thể khác sống trải rộng toàn bộ không gian tại một khu vực.

Yếu tố giới hạn

Số lượng sinh vật trong một quần thể phụ thuộc vào lượng tài nguyên sẵn có. Bởi vì tài nguyên thiên nhiên sẽ giới hạn dân số, chúng được gọi là **YẾU TỐ GIỚI HẠN**. Chúng bao gồm:

NƯỚC ÁNH SÁNG THỨC ĂN KHÔNG GIAN SỐNG

Các sinh vật cạnh tranh lẫn nhau để sử dụng nguồn tài nguyên này và phụ thuộc vào nó để tồn tại.

Sự thích nghi

Để tồn tại, mỗi sinh vật tìm thấy vị trí hoặc vai trò riêng của mình trong quần thể. Sự thích nghi của một sinh vật bao gồm:

KHI NÀO CHÚNG ĂN VÀ THỨC ĂN LÀ GÌ

KHI NÀO CHÚNG HOẠT ĐỘNG

CHÚNG TRÚ ẨM TẠI ĐÂU

CHÚNG SINH SẢN NHƯ THẾ NÀO

NẾU HAI CÁ THỂ CÙNG SỰ THÍCH NGHỊ, CHÚNG SẼ BUỘC PHẢI CẠNH TRANH TRỰC TIẾP VỚI NHAU.

Sức chứa

SỨC CHỮA là số lượng lớn nhất các sinh vật mà một hệ sinh thái có thể đáp ứng. Khả năng tài của một hệ sinh thái được xác định bằng yếu tố giới hạn và bằng các yếu tố như số lượng sinh vật sống trong hệ sinh thái đó. Ví dụ, nếu một đợt hạn hán giết chết phần lớn cỏ trong khu vực, số lượng

cứu sống sử dụng loại cỏ đó để làm thức ăn cũng sẽ giảm. Tổng số cứu còn lại mà số cỏ còn lại có thể đáp ứng được sẽ tạo nên một sức chứa mới tại khu vực đó.

UH-OH.

Tiềm năng sinh học

Nếu không có các yếu tố giới hạn, quần thể sẽ tăng nhanh như thế nào? TIỀM NĂNG SINH HỌC là tỷ lệ khả năng sinh sản cao nhất của một loài trong điều kiện sống lý tưởng. Chó có tiềm năng sinh học cao hơn con người vì chó sinh ra nhiều chó con cùng một lúc, trong khi con người thường chỉ sinh một con một lần. Chó cũng có thể sinh sản trong vòng một năm sau khi sinh. Con người cần nhiều thời gian hơn để có thể sinh sản.

VI KHUẨN CÓ
THỂ SINH SẢN
LIÊN TỤC TRONG
VÒNG 20 PHÚT

Gia tăng dân số và di cư

Tỷ lệ gia tăng dân số phụ thuộc vào số lượng sinh và tử trong khu vực dân số đó. Zimbabwe có tỷ lệ tăng dân số hàng năm là 2.3%, nhưng Hy Lạp có tỷ lệ tăng dân số là -0.06% (có nghĩa là dân số của Hy Lạp đang bị thu hẹp).

Số lượng dân số cũng có thể bị ảnh hưởng bởi SỰ DI CỨ, đó là khi dân số di chuyển từ môi trường này sang môi trường sống khác, như chim bay về phía nam hoặc phía bắc. Một số di cư được gây ra bởi một sự thay đổi lâu dài hơn trong môi trường sống hoặc khi hậu buộc một số dân phải di chuyển đi nơi khác có môi trường sống phù hợp hơn.

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Liệt kê các cấp độ của hệ sinh thái từ nhỏ nhất đến lớn nhất.
- 2 Sự khác biệt giữa yếu tố sinh học và yếu tố phi sinh học là gì? Cho một số ví dụ của mỗi yếu tố?
- 3 Yếu tố giới hạn là gì? Liệt kê bốn yếu tố giới hạn.
- 4 Làm thế nào để các sinh vật tránh cạnh tranh cùng yếu tố hạn chế?
- 5 Sức chứa của một hệ sinh thái là gì?
- 6 Nếu chim cánh cụt đẻ một quả trứng một năm và chim két Bắc Mỹ đẻ năm đến mười quả trứng một năm, loài vật nào có tiềm năng sinh học cao hơn?
- 7 Mô tả mật độ dân số ảnh hưởng đến sinh vật.
- 8 Mô tả các yếu tố phi sinh học và sinh học của sa mạc và rừng khác nhau như thế nào.

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Sinh vật, quần thể, quần xã, hệ sinh thái, quần xã sinh vật và sinh quyển
- 2 Các yếu tố sinh học là các bộ phận sống và sống một lần của một hệ sinh thái, chẳng hạn như thực vật và động vật. Các yếu tố phi sinh học là các yếu tố không có sự sống của một hệ sinh thái, chẳng hạn như ánh sáng mặt trời, nước, không khí, nhiệt độ, khí hậu và không gian phát triển.
- 3 Một yếu tố giới hạn là một nguồn tài nguyên hạn chế giới hạn số lượng sinh vật có thể tồn tại trong quần thể. Một số yếu tố hạn chế là không gian, thức ăn, ánh sáng mặt trời và nước.
- 4 Các sinh vật tìm thấy vị trí riêng của nó, hoặc vai trò trong quần thể. Mỗi sinh vật thích nghi với các hành vi nuôi dưỡng và sống khác nhau.
- 5 Sút chửa là số lượng sinh vật lớn nhất mà một hệ sinh thái có thể hỗ trợ.
- 6 Chim két Bắc Mỹ có tiềm năng sinh học cao hơn.
- 7 Khi mật độ sinh vật sống trong một khu vực cao, tài nguyên thiên nhiên để đáp ứng nhu cầu của số lượng sinh vật sống sẽ trở nên khan hiếm hơn.
- 8 Sa mạc nhận được nhiều ánh sáng mặt trời hơn, khô hơn, có xương rồng và có để hỗ trợ côn trùng và động vật. Một khu rừng nhận được nhiều nước hơn khiến cây cối phát triển tốt làm gia tăng môi trường sống, hỗ trợ phần lớn sinh vật như côn trùng và động vật.

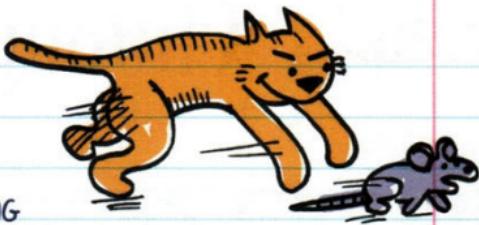
Câu số 8 có nhiều đáp án.

Chương 47

SỰ PHỤ THUỘC LÃN NHAU VÀ SỰ LUÂN CHUYỂN CỦA NĂNG LƯỢNG VÀ VẬT CHẤT

MỐI QUAN HỆ GIỮA CÁC QUẦN THỂ

Sự phụ thuộc vào các quần thể khác để sinh tồn trong một cộng đồng được gọi là **SỰ PHỤ THUỘC LÃN NHAU**. Các quần thể tồn tại trong sự cân bằng dịch chuyển liên tục. Một số mối quan hệ giúp cho các quần xã cân bằng, trong khi một số khác có thể làm thay đổi quần xã đó.


Sự cạnh tranh

Các sinh vật khác nhau cạnh tranh cùng một nguồn tài nguyên chẳng hạn như nước, không gian và ánh sáng mặt trời. Các sinh vật thích nghi tốt của một quần xã có nhiều khả năng sống sót và sinh sản dưới sự cạnh tranh nặng nề về nguồn tài nguyên.

Lối sống ăn thịt

Quần thể thay đổi do mối quan hệ giữa ĐỘNG VẬT ĂN THỊT và CON MỒI CỦA ĐỘNG

VẬT ĂN THỊT là động vật ăn các động vật khác, và CON MỒI là động vật bị ăn. Đôi với động vật ăn thịt, con mồi là một nhân tố có giới hạn.

Sự hợp tác

Các thành viên trong một quần thể thường hợp tác với nhau để giúp nhau cùng tồn tại. Một số con khi đi săn theo bầy để tăng khả năng thành công. Một số đàn động vật cảnh báo nhau về sự hiện diện của động vật ăn thịt.

Sự cộng sinh

Đôi khi, các sinh vật từ các loài khác nhau tương tác với nhau theo cách có lợi cho một hoặc cả đôi bên. Điều này được gọi là CỘNG SINH. Cộng sinh xảy ra theo ba cách khác nhau:

1. HỖ SINH: Hai loài đều được hưởng lợi từ việc liên kết với nhau. Ví dụ một con chim đậu lung ngựa ăn những con bọ ve trên người con ngựa vằn. Chim có đồ ăn còn ngựa vằn được sạch sẽ.

2. HỘI SINH: Một loài sinh vật được hưởng lợi từ mối quan hệ và loài còn lại không bị ảnh hưởng. Cá hề có khả năng kháng vết chích từ hải quỳ, sử dụng hải quỳ để bảo vệ bản thân trong khi hải quỳ không chịu ảnh hưởng bất lợi nào.

3. KÝ SINH: Một loài sinh vật được hưởng lợi trong khi sinh vật kia bị tổn thương. Thông thường, một sinh vật gọi là **KÝ SINH** ăn thịt một sinh vật khác, được gọi là **VẬT CHỦ**. Giun móc xâm nhập vào vật chủ như chó hoặc con người qua đường ăn uống, và lấy chất dinh dưỡng trong ruột của vật chủ. Giun móc tự dưỡng bằng cách ăn cấp chất dinh dưỡng từ vật chủ.

Mỗi quan hệ nuôi dưỡng

Mỗi sinh vật cần nguồn năng lượng để tồn tại. Có hai loại sinh vật chính:

I. Những sinh vật tự tạo ra năng lượng

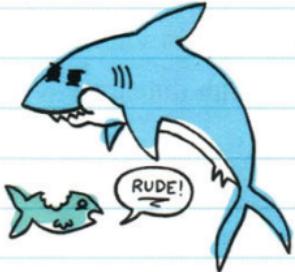
2. Những sinh vật ăn sinh vật khác để tạo ra năng lượng

Sinh vật sản xuất

Các sinh vật tự dưỡng tự tạo ra thức ăn. Thực vật, tảo và một số vi khuẩn là sinh vật tự dưỡng. Hầu hết các sinh vật tự

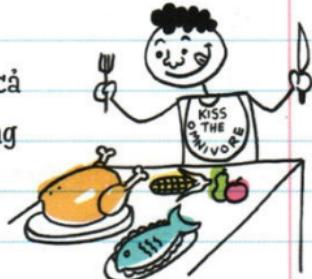
Sinh vật sản xuất còn được biết đến với tên gọi
SINH VẬT TỰ DƯỠNG

dưỡng tạo ra năng lượng thông qua quá trình quang hợp, đó là việc tạo ra các phân tử đường thông qua phản ứng hóa học đòi hỏi cacbon dioxide, nước và ánh sáng.


Sinh vật tiêu thụ

Sinh vật tiêu thụ là những sinh vật tiêu thụ năng lượng từ sinh vật khác. Các loại sinh vật tiêu thụ chính bao gồm:

Sinh vật tiêu thụ còn được biết đến với tên gọi
SINH VẬT ĐI DƯỠNG



ĐỘNG VẬT ĂN CỎ: động vật ăn thực vật. Động vật ăn cỏ ăn sinh vật tự dưỡng như thực vật. Bò là động vật ăn cỏ vì chúng chỉ ăn thực vật

ĐỘNG VẬT ĂN THỊT: là những loài ăn thịt. Động vật ăn thịt ăn các sinh vật tiêu thụ khác. Cá mập là động vật ăn thịt vì chúng ăn thức ăn là các loài cá và sinh vật khác.

ĐỘNG VẬT ĂN TẠP: là những loài ăn cả thịt và thực vật. Hầu hết con người là động vật ăn tạp. Họ ăn trái cây, rau quả và cả những sinh vật tiêu thụ khác như bò, gà.

SINH VẬT PHÂN HỦY: là động vật ăn tạp ăn sinh vật chết và các chất thải khác. Sinh vật phân hủy thích các thực phẩm như nấm và vi khuẩn phân hủy chất thải, thực vật chết và động vật. Sinh vật phân hủy thực sự quan trọng vì chúng tái chế chất dinh dưỡng quay trở lại hệ sinh thái.

SINH VẬT HÓA DƯỠNG: là các sinh vật lấy năng lượng trực tiếp từ chất hóa học mà không cần sử dụng năng lượng mặt trời. Các sinh vật hóa dưỡng thường là các vi khuẩn hoặc sinh vật đơn bào. Ví dụ như methanogens là một loại vi khuẩn sống dưới đáy đại dương gần lỗ thông núi lửa dưới biển sâu. Chúng tạo ra năng lượng thông qua một phản ứng hóa học với các phân tử trong môi trường của chúng hơn là thông qua quá trình quang hợp.

Dưới đây là một vài cách để ghi nhớ sinh vật tiêu dùng ăn cái gì: Động Vật Ăn Cỏ (Herbivore) có từ "Herb" – thảo mộc. Động Vật Ăn Thịt (Carnivore) có tiền tố "carni" theo tiếng latin có nghĩa là thịt. Động Vật Ăn Tạp có tiền tố "omni" có nghĩa là mọi thứ. Động Vật Ăn Tạp ăn **MỌI THÚ**.

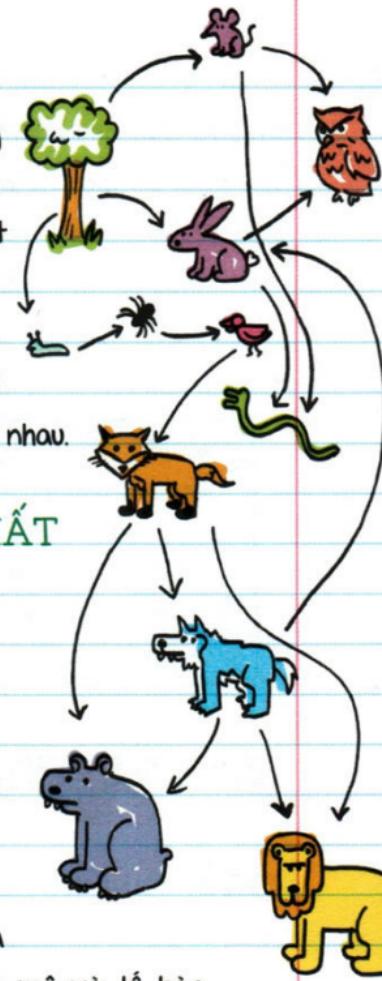
CHUỖI THỨC ĂN

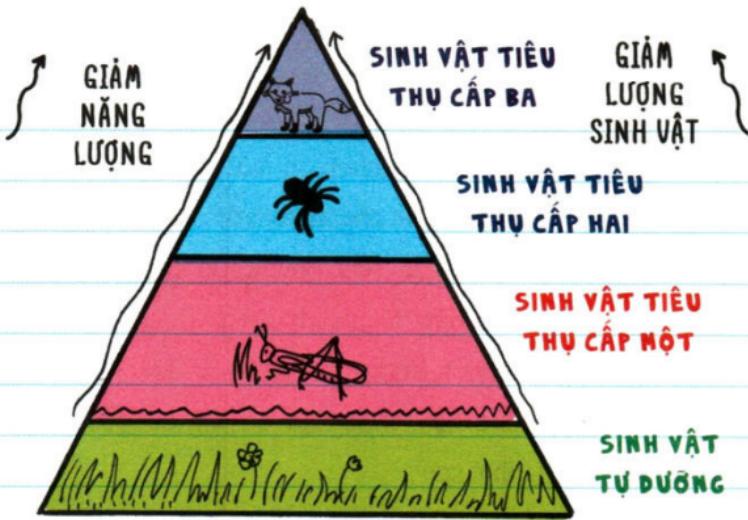
CHUỖI THỨC ĂN cho thấy nơi các sinh vật khác nhau tìm thức ăn. Chuỗi thức ăn theo dõi các nguồn năng lượng trên các sinh vật khác nhau.

Trong chuỗi thức ăn, cỏ là sinh vật tự dưỡng, chau chau là **SINH VẬT TIÊU THỤ CẤP THỦ NHẤT** hoặc sinh vật tiêu thụ đáy của chuỗi thức ăn. Nhện là **SINH VẬT TIÊU THỤ CẤP THỦ HAI** vì chúng ăn sinh vật tiêu thụ sơ cấp để lấy năng lượng, **SINH VẬT TIÊU THỤ CẤP THỦ BA** là cấp thứ ba của chuỗi thứ ăn, là chim hoặc các loài động vật ăn thịt nào khác như cáo hoặc sói.

LƯỚI THỰC ĂN

Trong thế giới thực, trao đổi năng lượng phức tạp hơn nhiều so với chuỗi thực ăn đơn lẻ. Cùng một sinh vật có thể là một phần của chuỗi thực ăn phức tạp. Các nhà khoa học sử dụng **LƯỚI THỰC ĂN** để biểu thị tất cả các mối quan hệ nuôi dưỡng và chuỗi thực ăn chồng chéo lên nhau.

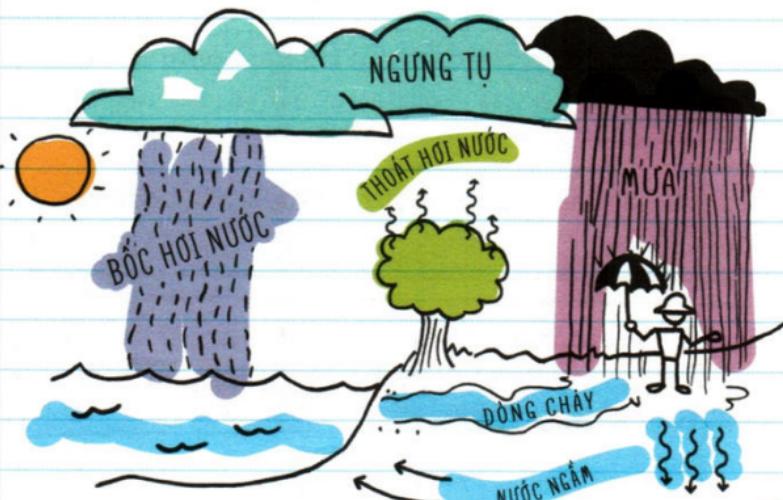

SỰ LUÂN CHUYỂN VẬT CHẤT và NĂNG LƯỢNG


Năng lượng và vật chất liên tục được biến đổi và tái chế qua môi trường.

Chu trình năng lượng

Năng lượng đi vào lưới thực ăn thông qua các sinh vật tự dưỡng sản xuất năng lượng từ ánh sáng hoặc chất hóa học. Năng lượng được lưu trữ trong các mô và tế bào, sau đó được chuyển sang sinh vật tiêu thụ khi chúng ăn sinh vật khác.

Năng lượng được luân chuyển qua hệ sinh thái qua chuỗi thực phẩm và lưới thực ăn. Mỗi một cấp độ của chuỗi thực ăn, phần lớn năng lượng được chuyển thành chuyển động và nhiệt. Chỉ có khoảng 10% năng lượng được truyền sang cấp tiếp theo.



THÁP NĂNG LƯỢNG thể hiện nguồn năng lượng ở mỗi cấp nuôi dưỡng trong hệ sinh thái.

Chu trình nước

Nước liên tục được đưa vào chu trình thông qua môi trường - từ mưa rơi xuống sông, biển và thực vật rồi trở lại bầu trời thông qua sự bốc hơi và quay trở lại. Động vật tiêu thụ và giải phóng nước như là một phần của chu trình nước.

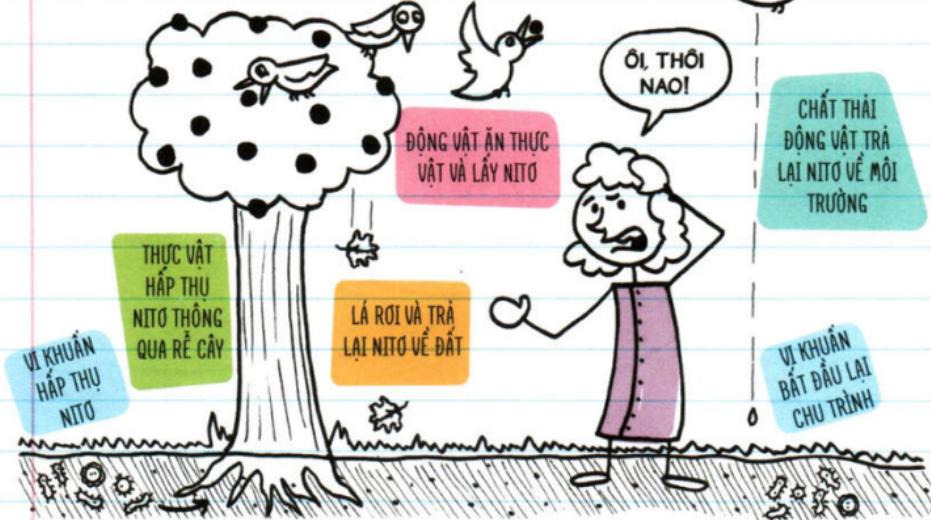
Chu trình nitơ

Nitơ được sử dụng để tạo protein vì vậy nó là một trong những thành phần thiết yếu cho thực vật và động vật. Mặc dù bầu khí quyển có 78% là nitơ nhưng động thực vật không thể sử dụng nitơ trực tiếp từ môi trường. Thay vào đó, chúng dựa vào chu trình được gọi là **CỐ ĐỊNH ĐẠM**, chuyên đổi khí nitơ thành các hợp chất nitơ có thể sử dụng được. CHU TRÌNH NITƠ như sau:

Nitơ từ khí quyển hoặc đất vào chu trình nitơ thông qua **CỐ ĐỊNH NITƠ** như ví khuẩn.

Thực vật hấp thụ hợp chất nitơ và sử dụng chúng để xây dựng tế bào.

Động vật lấy nitơ bằng cách ăn thực vật.


Chất thải động vật trả lại một số hợp chất nitơ vào môi trường.

Khi động vật hoặc thực vật chết, các sinh vật phân hủy giải phóng nitơ quay trở lại đất.

Thực vật hấp thụ các hợp chất nitơ từ đất, bắt đầu chu trình mới.

Một số vi khuẩn thay đổi các hợp chất nitơ trở lại thành dạng khí và hoàn lại khí nitơ về môi trường.

CHU TRÌNH NITO

CHU TRÌNH CARBON

Carbon dioxit (CO_2) và oxy (O_2) liên tục được hấp thu và trả lại môi trường thông qua CHU TRÌNH CARBON. Trong khí quyển, carbon đi kèm với hai nguyên tử oxy để tạo ra CO_2 carbon dioxide.

Thực vật, tảo và vi khuẩn sử dụng CO_2 từ môi trường để tạo đường giàu carbon cho năng lượng thông qua quá trình quang hợp. Chất thải từ quá trình quang hợp là oxy.

Sinh vật, ví dụ như con người, phá vỡ các phân tử đường để tạo năng lượng thông qua một quá trình gọi là hô hấp. Trong hô hấp, sinh vật lấy oxy và thải ra CO_2 .

Đốt cháy nhiên liệu hóa thạch và cây cối sẽ giải phóng CO_2 vào môi trường.

Nấm và vi khuẩn phân hủy động vật và chất thải của chúng, thân cây, sẽ giải phóng CO_2 về môi trường.

Thực vật lấy CO_2 , bắt đầu lại chu trình.

Đại dương tuần hoàn nhiều CO_2 thông qua nhiều chu trình vật lý và sinh học khác nhau. Một cách là để CO_2 khuếch tán vào bề mặt nước từ không khí. CO_2 cũng vào **CHU TRÌNH CARBON ĐẠI DƯƠNG** khi các sinh vật siêu nhỏ như **THỰC VẬT PHÙ ĐỦ** sử dụng nó để quang hợp và trở thành một của chuỗi thức ăn đại dương. Ngoài ra, sự sống của đại dương cũng tạo ra chất thải, cái chết, phân hủy – tất cả những thứ giải phóng ra CO_2 .

TIẾNG HỌ LẠP 'THỰC VẬT TRÔI ĐAT'

NHƯ TRÊN CAN!

KIỂM TRA KIẾN THỨC CỦA BẠN

- 1 Sinh vật tự dưỡng và sinh vật tiêu thụ cấp một nằm ở đây của chu trình ____.
- 2 Các sinh vật sử dụng oxy để đốt cháy đường và giải phóng carbon dioxide thông qua chu trình của ____.
- 3 ____ cho biết tất cả mối quan hệ nuôi dưỡng phức tạp trong hệ sinh thái.
- 4 Giải thích về hội sinh.
- 5 Hầu hết các năng lượng vào hệ sinh thái thông qua chu trình ____.
- 6 Đưa ra ví dụ về sự hợp tác.
- 7 Năng lượng ____ cho biết năng lượng ở một cấp độ nuôi dưỡng trong hệ sinh thái.
- 8 Cỏ là một ____ vì nó tự tạo ra nguồn năng lượng.
- 9 Sư tử là ____ Vì nó đi săn và ăn con mồi.
- 10 Xác định "Sự phụ thuộc lẫn nhau".
- 11 Sinh vật tiêu thụ ăn cả thực vật và động vật là ____.

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

1 Chuỗi

2 Hô hấp

3 Lưỡi

4 Hồi sinh là mỗi quan hệ cộng sinh trong đó một sinh vật được hưởng lợi và sinh vật còn lại không bị ảnh hưởng.

5 Quang hợp

6 Ví dụ về sự hợp tác là khi các thành viên trong đàn cá sòng báo nhau về sự hiện diện của động vật ăn thịt.

7 Kim tự tháp

8 Sinh vật tự dưỡng

9 Động vật ăn thịt

10 Sự phụ thuộc lẫn nhau là sự nương tựa vào các quần thể khác để sinh tồn trong một quần xã.

11 Động vật ăn tạp

Câu số 6 có nhiều đáp án.

Chương 48

DIỄN THẾ SINH THÁI VÀ

QUẦN XÃ SINH VẬT

DIỄN THẾ SINH THÁI

Đất đai luôn phát triển và biến đổi. Một ngày nào đó, một cánh đồng trống có thể trở thành một khu rừng. Các sinh vật sống trong một khu vực cũng thay đổi theo thời gian. Sự phát triển và thay đổi của một khu vực qua thời gian được gọi là **DIỄN THẾ SINH THÁI**.

Diễn thế nguyên sinh tới quần xã cực đỉnh

Quá trình diễn thế bắt đầu từ một khu vực nơi mà trước đây không có cây cối được gọi là **DIỄN THẾ NGUYÊN SINH**. Diễn thế nguyên sinh luôn bắt đầu với những tảng đá tròn như dung nham. Những sinh vật sống

đầu tiên di chuyển được gọi là các **LOÀI TIỀN PHONG** (Giống như những người

Mỹ tiên phong là những người định cư nhập cư đầu tiên di chuyển tới châu Mỹ).

Một số loài tiên phong:

RÊU

ĐỊA Y

NÂM

Khi những loài tiên phong phát triển, chúng giải phóng axit phá vỡ đá, hình thành đất (đất được tạo thành từ các hạt đá, nước và chất hữu cơ từ các sinh vật chết). Khi những loài tiên phong chết, chúng cung cấp chất hữu cơ cho đất. Cuối cùng, đất trở nên giàu chất dinh dưỡng dù để hỗ trợ đời sống thực vật khác như cỏ và thảo mộc.

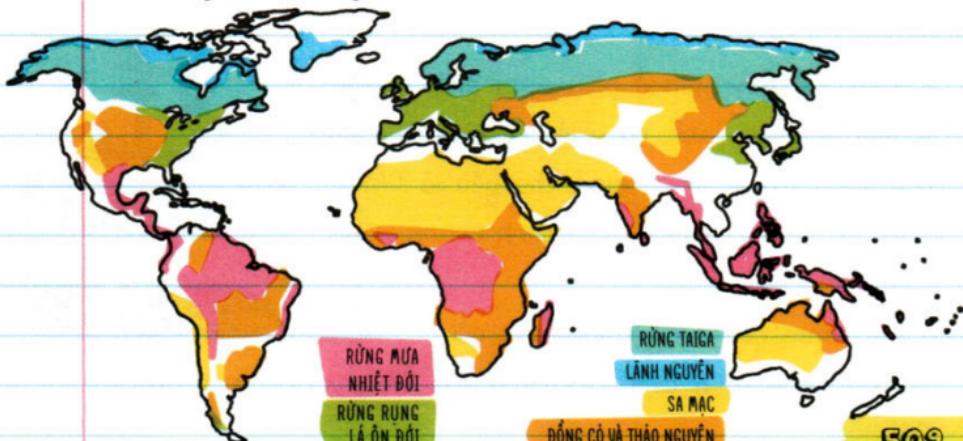
Sự hiện diện của cỏ và đời sống thực vật khác thu hút những động vật nhỏ ăn thịt trong khu vực. Khi các động vật nhỏ này di chuyển vào thì các con vật lớn hơn di chuyển theo để tìm kiếm con mồi là các con vật nhỏ hơn. Tất cả những con vật này bổ sung chất dinh dưỡng vào đất thông qua chất thải của chúng và phần còn lại bị phân hủy bởi vi khuẩn trong đất. Đất giàu chất dinh dưỡng và giàu hơn có thể hỗ trợ các loại cây lớn hơn như bụi rậm và cây bụi. Những cây lớn hơn thường vượt trội hơn những cây nhỏ như cỏ. Cuối cùng, đất thậm chí giàu chất dinh dưỡng hơn cho tới khi có thể hỗ trợ dinh dưỡng cho cây. Cây phát triển và nhân lên cho tới khi chúng vượt qua nhiều cây bụi và bụi rậm. Cây trưởng thành và vùng đất đạt tới điểm mà ít loài mới có thể XÂM CHIẾM hoặc di chuyển vào khu vực. Khi một khu vực đạt tới giai đoạn trưởng thành này, nó được gọi là **QUẦN XÃ CỰC ĐỊNH**. Nhưng dù ở quần xã cực định, sự thay đổi và xáo

NHỮNG LOÀI TIỀN PHONG

Là những loài đầu tiên xuất hiện ở các vùng đất, như rêu, địa y hoặc nấm

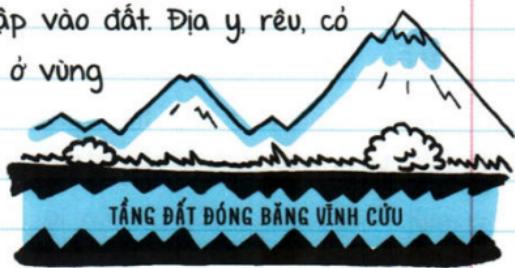
trộn vẫn diễn ra mọi lúc. Một con sông có thể ngập, hoặc xung đột có thể nổ ra - tất cả sẽ tạo ra các cơ hội cho các loài mới xâm chiếm vào khu vực sống.

QUẦN XÃ CỰC ĐỊNH


là một tập hợp nhiều quần thể thực vật và động vật nơi mà mọi khu vực sống đều được lấp đầy. Hầu như không có loài mới nào có thể di chuyển và xâm chiếm khu vực này.

Diễn thế thứ cấp

Không giống như diễn thế nguyên sinh, nơi sinh vật cần bắt đầu lại từ hỗn tạp, **DIỄN THẾ THỨ CẤP** là sự phát triển của một khu vực nơi đất đã tồn tại. Diễn thế thứ cấp thường xảy ra ở một khu vực gần đây đã trải qua một trận cháy rừng, gió bão, côn trùng tấn công hoặc xáo trộn khác.


QUẦN XÃ SINH VẬT

QUẦN XÃ SINH VẬT là các khu vực tương tự về các đặc trưng sống và không sống. Nói cách khác, quần xã sinh vật có đặc trưng tương tự về hệ sinh thái, khí hậu, thảm thực vật và động vật hoang dã.

Lãnh nguyên

LÃNH NGUYÊN là một sa mạc lạnh lẽo, giống như Bắc Cực. Các quần xã sinh vật lãnh nguyên nói chung không có cây vì đất không đủ dinh dưỡng để hỗ trợ cây xanh, nhiệt độ quá thấp làm chậm quá trình phân hủy của sinh vật, do đó cần nhiều thời gian hơn để chất dinh dưỡng xâm nhập vào đất. Địa y, rêu, cỏ và cây bụi nhỏ thường sống ở vùng lãnh nguyên.

Bên dưới lớp đất có một tầng băng cố định, được gọi là **TẦNG ĐẤT ĐÓNG BĂNG VĨNH CỬU**. Trong suốt mùa hè ngắn ngủi, khi một số loài thực vật phát triển và ra hoa, lãnh nguyên tràn ngập rệp, diều hâu, cú, gà gô trắng, chuột, con lemmut, tuần lộc và bò xạ hương. **LÃNH NGUYÊN NÚI** giống như **LÃNH NGUYÊN VÙNG CỰC** ngoại trừ việc nó được tìm thấy ở những nơi có độ cao lớn, giống như những rặng cây trên núi.

Rừng taiga và cây lá kim


RỪNG TAIGA nằm ở phía nam lãnh nguyên và là một khu vực lạnh, có nhiều rừng. Những cây sinh sống trong rừng taiga chủ yếu là **CÂY LÁ KIM**, là những cây có màu xanh quanh năm

Ở phía nam của rừng taiga, cây cối có thể dày đặc đến nỗi rất ít ánh sáng mặt trời chiếu xuống mặt đất,

có nghĩa là tại khu vực này cho có một số ít cây nhỏ sinh sống. Các động vật sống ở rừng taiga bao gồm linh miêu Mũi, sói, cáo, mèo rừng, thỏ, nai sừng tấm Bắc Mũi và nai sừng tấm.

Cây Giáng sinh là cây lá kim. Cây có lá kim sáp, và phát triển thành hình nón.

Rừng cây rụng lá

RỪNG RỤNG LÁ chứa nhiều loại cây và thực vật chủ yếu rụng lá. Cây rụng lá là cây có thời kỳ rụng lá mỗi năm. Các khu rừng rụng lá nằm ở các vùng ôn đới, như bờ biển phía đông của nước Mũi, Trung Âu và các khu vực của châu Á.

Quần xã rừng rụng lá có một mùa tăng trưởng dài vì trời nhiều mưa và có nhiệt độ vừa phải. Gấu trúc Bắc Mũi, gấu đen, chim, chuột, thỏ, chim gõ kiến và cáo là một số động vật sống trong các khu rừng rụng lá.

RỪNG CÂY RỤNG LÁ

Rừng được tạo thành từ hầu hết các loại cây hay rụng lá (ở các khu vực ôn đới)

Rừng mưa ôn đới

RỪNG MƯA ÔN ĐỚI

rừng ở vùng ôn đới (nhiệt độ khoảng $50^{\circ}\text{F} = 10^{\circ}\text{C}$) nhận được rất nhiều mưa - chẳng hạn như rừng ở New Zealand

và một số vùng của nước Mỹ, như tiểu bang Washington.

Gấu đen, báo sư tử và các loài lưỡng cư là một vài loài sinh vật sống trong rừng mưa ôn đới.

RỪNG MƯA ÔN ĐỚI

Rừng nhận được rất nhiều mưa (ở các khu vực ôn đới)

Rừng mưa nhiệt đới

RỪNG MƯA NHIỆT ĐỚI

nằm gần xích đạo. Nơi đó có nhiệt độ ẩm áp và có nhiều mưa. Rừng mưa nhiệt đới chứa nhiều loài hơn bất kỳ quần xã sinh vật nào khác.

Một số ví dụ về các loài sống trong rừng mưa nhiệt đới bao gồm khỉ, báo đốm Mỹ, báo, rắn, bọ cánh cứng, kiến, dê, vẹt và chim tu-căng.

RỪNG MƯA NHIỆT ĐỚI

Rừng nhận được nhiều mưa (ở các khu vực cận xích đạo)

Rừng mưa nhiệt đới được chia thành các cấp. Mỗi cấp độ cung cấp một môi trường sống khác nhau cho động vật.

TẦNG VƯỢT TÁN: tại ngọn của những cây cao nhất mọc ra (nối lên) phía trên các lớp; nhà của chim và côn trùng

TẦNG TÁN CHÍNH: phần trên của cây, nhà của chim, bò sát và động vật có vú như khỉ

TẦNG DƯỚI TÁN: dưới tán lá nhưng không chạm đất; nhà của côn trùng, bò sát và các loài lưỡng cư

TẦNG THẦM XANH: khu vực thấp nhất, nhà của bọ và động vật có vú lớn

TƯƠNG ĐƯƠNG
VỚI KÍCH
THƯỚC CỦA MỘT
SÂN BÓNG ĐÁ
MỖI GIÂY

Rừng nhiệt đới đang có nguy cơ bị thu hẹp dần một cách nhanh chóng. Mỗi giây 1,5 mẫu rừng nhiệt đới bị đốn hạ để lấy gỗ và lấy không gian canh tác.

Đồng cỏ và thảo nguyên

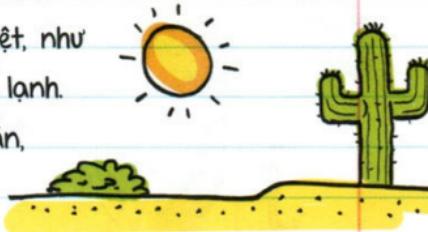
ĐỒNG CỎ VÀ THẢO NGUYÊN

ở vùng ôn đới và nhiệt đới, nhưng chúng ít mưa hơn so với rừng mưa nhiệt đới và ôn đới.

Đồng cỏ quá khô để cây phát triển, nhưng chúng vẫn có thể hỗ trợ nhiều loại cỏ và cây nhỏ. Nhiều động vật sinh sống tại đồng cỏ và thảo nguyên là động vật được con người chăn thả, chẳng hạn như bò rừng bizon và cầy thảo nguyên (sóc đồng cỏ).

THẢO NGUYÊN

giống với đồng cỏ, nhưng chỉ có một ít cây cối. Châu Phi có một vùng thảo nguyên rộng lớn được gọi là Rerengeti. Hươu cao cổ, báo và voi thường sống ở thảo nguyên.


Sa mạc

SA MẠC là những khu vực có mưa rất ít và thường có nhiệt độ cao, khắc nghiệt, như ban ngày rất nóng và ban đêm rất lạnh. Xương rồng, bụi cây, chuột túi, thằn lằn, rắn, kền kền và tatu là một số sinh vật thích nghi với điều kiện khô. Với độ ẩm quá thấp trong lòng đất, thực vật phải mở rộng không gian để giảm sự cạnh tranh. Nhiều động vật sống sót bằng cách trốn dưới những tảng đá vào ban ngày nóng bức và hoạt động trong thời tiết ban đêm mát mẻ.

ĐỒNG CỎ

nằm ở khu vực ôn đới và nhiệt đới mà không được nhận nhiều mưa

SA MẠC

vùng đất rất khô có nhiệt độ cả nóng và lạnh

HỆ SINH THÁI NƯỚC NGỌT Suối, sông, cửa sông

Các dòng suối chảy xiết thường có nhiều oxy hơn, vì vậy chúng có thể hỗ trợ các loài cá và ấu trùng côn trùng. Các dòng suối chảy chậm hơn tạo điều kiện hình thành nhiều lớp trầm tích lắng xuống đáy, cung cấp chất dinh dưỡng cho sự phát triển của cây.

Vị trí những dòng sông nước ngọt chảy vào đại dương được gọi là **CỬA SÔNG**. Các chất dinh dưỡng của sông lắng đọng tại đây làm cho cửa sông rất màu mỡ. Ốc sên, tôm, cua và ngao là một số loài sống ở cửa sông. Nếu lớp trầm tích lắng đọng tại đây đủ dày, khu vực này có thể hình thành một **ĐỒNG BẰNG**.

Hồ và ao

Nhiều loài cá và thực vật sống trong ao hồ. Cây sậy và cây hương bồ là những cây sống dọc theo bờ ao. Tảo và **SINH VẬT PHÙ DU**, tảo đơn bào, sống gần bề mặt nước. Thực vật thường sống sót tốt hơn khi sống tại vùng nước nông, vì vậy ao và hồ cạn có đời sống thực vật rất đa dạng.

Đầm lầy ← **TÊN GỌI PHẢN ẢNH TÍNH CHẤT:**

VÙNG ĐẤT NGẬP NƯỚC

ĐẦM LẤY, còn được gọi là vùng đất ngập nước, có đời sống động thực vật rất phong phú như hải ly, cá sấu Mũi, rùa, cây nam việt quất, v.v. Chúng cũng là những "bộ lọc" quan trọng trong hệ sinh thái.

HỆ SINH THÁI NƯỚC MẶN

Hầu hết nước trên Trái Đất là nước mặn. **HỆ SINH THÁI NƯỚC MẶN** chủ yếu ở các đại dương, nhưng chúng cũng ở trong các hồ nước mặn. Đại dương được chia thành ba khu vực:

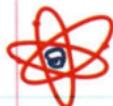
1. KHU VỰC ĐẠI DƯƠNG MỞ: Vùng đại dương lớn nhất được chia thành các lớp tùy theo độ sâu; sinh vật khác nhau sống ở độ sâu khác nhau. Ấu trùng động vật và sinh vật phù du sống gần bề mặt, mức cao nhất trong khu vực đại dương mở.

2. VÙNG GIAN TRIỀU: Các phần của đại dương được bao phủ trong nước khi thủy triều cao và sẽ lộ ra khi thủy triều thấp. Ốc sên, hàu, cua và các động vật có vỏ khác sống trong các vùng gian triều.

3. RẶNG SAN HÔ: San hô là một loài động vật nhỏ mọc vặn xoắn với các loại san hô khác hoặc vỏ và xương bị vôi hóa của san hô chết. Các rặng san hô là những cấu trúc bền lớn. Các rạn san hô cung cấp một môi trường sống cho tính đa dạng rộng lớn của các loại sinh vật, như sao biển, cá, tôm và bọt biển.

ĐÓ LÀ LÝ DO CON NGƯỜI GỌI RẶNG SAN HÔ LÀ
"RỪNG MÙA NHIỆT ĐỚI CỦA ĐẠI DƯƠNG"

GIỐNG NHƯ MỘT KHU PHỨC HỢP
KHÔNG LỒ CHO CÁC ĐỘNG VẬT NHỎ


KIỂM TRA TRIẾN THỨC CỦA BẠN

- 1 Diễn thế ___ thường xảy ra sau khi một hòn đảo núi lửa mới hình thành.
- 2 Xác định khái niệm "loài tiên phong".
- 3 Sau một vụ cháy rừng, một khu vực được tái phát triển thông qua diễn thế ___.
- 4 Xác định khái niệm "Quần xã đỉnh cao".
- 5 ___ là quần xã có số lượng loài lớn nhất.
- 6 Mô tả một răng san hô.
- 7 Cây ___ là loại cây mất lá vào mùa thu và cây ___ là loài cây luôn giữ được màu xanh quanh năm.
- 8 ___ là quần xã ngay phía nam lãnh nguyên, nơi có rừng lá kim.
- 9 Phần lớn các sinh vật nước mặn và nước ngọt sống gần ___ của hồ hoặc đại dương.
- 10 Tại sao đồng cỏ thường không có cây nào sinh sống?

ĐÁP ÁN

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 Nguyên sinh
- 2 Loài đầu tiên xâm nhập vào một khu vực
- 3 Thứ cấp
- 4 Một nơi đã bị chiếm đóng hoàn toàn, nơi có ít sinh vật mới có thể di chuyển vào
- 5 Rừng mưa nhiệt đới
- 6 Các rặng san hô là các cấu trúc dưới nước bền xoắn, được tạo từ san hô sống được xây dựng trên lớp vỏ vôi hóa và bộ xương của san hô chết.
- 7 Cây rụng lá, cây lá kim
- 8 Rừng Taiga
- 9 Bề mặt
- 10 Đất cát không thể hỗ trợ cuộc sống của cây vì điều kiện sống quá khô.

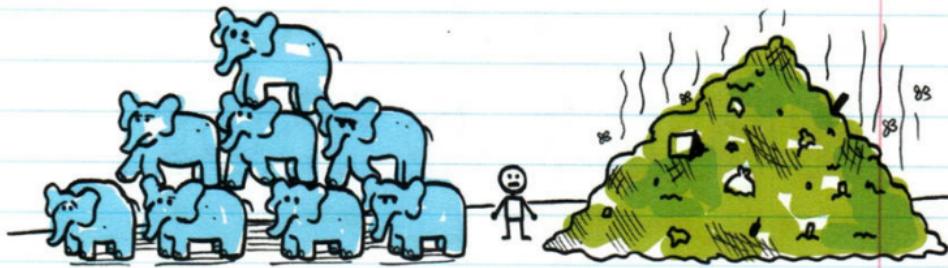
Chương 49

TÀI NGUYÊN THIÊN NHIÊN VÀ SỰ BẢO TỒN

TÀI NGUYÊN THIÊN NHIÊN

TÀI NGUYÊN THIÊN NHIÊN là bất cứ thứ gì được tìm thấy trong tự nhiên hữu ích cho con người và động vật. Nước, ánh sáng, thức ăn, không khí, dầu thô, bông, vàng và cây cối là tất cả các nguồn tài nguyên thiên nhiên. Nguồn tài nguyên thiên nhiên có thể được tái chế hoặc thay thế nhanh chóng bằng thiên nhiên (trong khoảng 100 năm hoặc lâu hơn) được gọi là **TÀI NGUYÊN CÓ THỂ TÁI TẠO**. Tài nguyên phải mất hàng triệu năm để thay thế gọi là **TÀI NGUYÊN KHÔNG THỂ TÁI TẠO**. Thật không may, hầu hết các nguồn năng lượng chúng ta sử dụng đều đến từ nguyên liệu hóa thạch - một nguồn tài nguyên không thể tái tạo. Con người đã có tác động lớn đến môi trường - quá thường xuyên gây ra sự ô nhiễm.

TÀI NGUYÊN CÓ THỂ TÁI TẠO


ánh sáng, cây cối, nước, gió

TÀI NGUYÊN KHÔNG THỂ TÁI TẠO

kim loại, phi kim (như kim cương), và nguyên liệu hóa thạch như dầu thô, than đá và khí tự nhiên.

Ô NHIỄM ĐẤT và XÓI MÒN

Trung bình một người dân Mỹ tạo ra khoảng 1.600 pound rác mỗi năm. Và hầu hết trong số đó đi vào các BÃI RÁC, những khu đất mà chúng ta tích tụ rác.

Do sự chặt cây và cày ruộng, con người đã để lại đất dễ bị tổn thương hơn dẫn tới xói mòn, hoặc sự bào mòn đất bởi mưa, sông suối và gió. Sự xói mòn di chuyển và rửa trôi các lớp đất xốp ở cuối sông hoặc suối nơi có thể làm vỡ đập nước. Điều này ngăn cản các sinh vật như sinh vật phù du tiếp nhận ánh sáng để quang hợp, từ đó gây ảnh hưởng đến toàn bộ chuỗi thức ăn! Hơn nữa, sự sôi mòn có nghĩa là phân bón và các hóa chất độc hại từ các trang trại có thể bị cuốn trôi vào sông và đại dương, gây ảnh hưởng đến toàn bộ hệ sinh thái.

Ô NHIỄM NƯỚC

Các hóa chất độc hại từ nhà cửa, trang trại và nhà máy thâm nhập vào nguồn nước của chính chúng ta đang sử dụng. Đôi khi nước thải thô trộn vào nguồn nước. Nước biển bị ô nhiễm khi sông suối chảy vào đại dương, mang theo chất ô nhiễm. Tàu chở dầu mang dầu dọc theo đại dương đôi khi đã xảy

ra các vụ tràn dầu giết hại hàng ngàn, hàng ngàn sinh vật như chim và cá.

Vùng chết

Ô nhiễm nước gây ra những vấn đề nghiêm trọng cho đời sống thủy sinh. Phân bón và nước thải thô có thể khiến tảo phát triển rất nhanh chóng. Khi tảo chết, vi khuẩn sẽ phá vỡ chúng. Tuy nhiên, những vi khuẩn này tiêu tốn quá nhiều oxy trong nước khiến cá và các loài thủy sinh khác không thể sống sót, từ đó gây ra VÙNG CHẾT.

Khoảng 70% diện tích Trái Đất được bao phủ bởi nước, vì vậy thật khó để nghĩ nước là một nguồn tài nguyên hữu hạn. Tuy nhiên chỉ một phần nhỏ nước trên Trái Đất là nước ngọt sử dụng để uống, nấu ăn và tắm. Và chúng ta sử dụng **RẤT NHIỀU** lượng nước này – trung bình một người dân Mỹ sử dụng khoảng 100 gallon mỗi ngày! Chúng ta cũng phải xử lý và làm sạch nước trước khi nó được sử dụng lại, điều này cũng đòi hỏi rất nhiều năng lượng.

Ô NHIỄM KHÔNG KHÍ

Chúng ta gây ô nhiễm không khí khi đốt gỗ và năng lượng hóa thạch. Ánh sáng mặt trời phản ứng với các chất ô nhiễm trong không khí để tạo ra SMOG, một hỗn hợp giữa khói và sương mù có thể gây khó thở và có thể gây kích ứng mắt. Rất nhiều ô nhiễm không khí đến từ ô tô đốt xăng hoặc dầu diesel. Ô nhiễm không khí cũng đến từ các nhà máy điện đốt than, khí tự nhiên hoặc thậm chí là các nhiên liệu sinh học.

ĐƯỢC GỌI LÀ
KHÍ NHÀ KÍNH

Hiệu ứng nhà kính

Khi trong khí quyển như carbon dioxide giữ nhiệt từ bức xạ của mặt trời. Chúng làm ấm Trái Đất của chúng ta. Nhưng quá nhiều khí nhà kính trong môi trường đang làm Trái Đất của chúng ta nóng lên quá nhanh - đây gọi là hiện tượng hiệu ứng nhà kính. Trái Đất nóng lên gây ra hiện tượng băng tan, mực nước dâng cao và khiến các kiều thời tiết trở nên khắc nghiệt hơn. Mặc dù bạn không thể nhìn thấy khí CO₂ trong không khí, nó vẫn gây ra ô nhiễm không khí cực kỳ nghiêm trọng.

Mưa axit

Chất ô nhiễm trong không khí như lưu huỳnh và nitrogen oxide từ khí thải xe cộ, tác động tới nước trong khí quyển, từ đó sinh ra MƯA AXIT (mưa có chứa acid). Nó phá hủy đời sống thực vật bằng cách rửa trôi chất dinh dưỡng từ đất, có thể biến hồ và ao có tính axit, khiến cá và các sinh vật thủy sinh chết. Mưa axit thậm chí còn phát hủy các tòa nhà và các bức tượng, đặc biệt nếu chúng làm từ đá vôi hoặc các loại đá có chứa carbon khác.

Suy yếu tầng ozone

Tầng ozone là lớp khí trong khí quyển giúp bảo vệ con người và động vật khỏi tác hại của tia UV nguyên nhân gây ra cháy nắng và ung thư da.

Đồng nhầm lẫn hiệu ứng nhà kính và lỗ thủng tầng ozone! Hiệu ứng nhà kính ảnh hưởng khí hậu toàn cầu, trong khi lỗ thủng tầng ozone gây ra tổn thương từ tia UV.

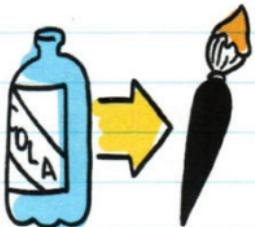
Chloroflourcarbons (CFCs) là một chất ô nhiễm không khí làm phá hủy tầng ozone. CFCs rò rỉ vào môi trường từ tủ đông, điều hòa không khí và các loại chai xịt sol khí.

Các nhà khoa học sử dụng phương pháp khoa học và quy trình kỹ thuật để giám sát tác động của con người đối với môi trường như giám sát chất lượng không khí và nước, lấy mẫu đại diện của các sinh vật sống.

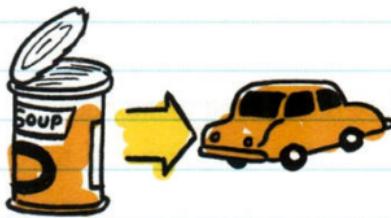
BẢO TỒN

Làm thế nào để giúp ngăn chặn những tác động khủng khiếp của ô nhiễm môi trường? Ô nhiễm có thể ít hơn nếu bạn có ý thức sử dụng nguồn năng lượng. Một nguyên tắc tốt để tuân theo sự bảo tồn là Quy tắc 3R:

GIẢM THIẾU: Giảm lượng rác bạn thải ra và lượng năng lượng bạn tiêu tốn. Đó là một trong những cách tốt nhất để bảo tồn nguồn tài nguyên thiên nhiên và giảm thiểu ô nhiễm.


TÁI SỬ DỤNG: Mua các sản phẩm mà bạn có thể dùng nhiều lần. Tránh sử dụng các sản phẩm sử dụng một lần vì chúng sẽ tiêu tốn nhiều tài nguyên thiên nhiên và sản sinh ra càng nhiều rác thải hơn.

TÁI CHẾ: Tái chế là một quá trình tái sử dụng và thay đổi các vật liệu đã sử dụng thành những thứ có thể sử dụng lại được. Mặc dù nó đòi hỏi năng lượng để tái chế nhưng về mặt tổng thể tái chế giúp tiết kiệm năng lượng và không gian chôn lấp, giảm nhu cầu của chúng ta về tài nguyên thiên nhiên. Có rất nhiều thứ có thể tái chế như nhựa, kim loại, kính, giấy và phân hữu cơ.


NHỮNG THỨ GÌ CÓ THỂ ĐƯỢC TÁI CHẾ

Chai và hộp đựng **NHỰA**
có thể được tái chế thành
các loại sản phẩm như dây
thừng, thảm, lông cừu, cọ son
và nhiều thứ khác!

KIM LOẠI ở dạng lon soda
nhôm, lon thực phẩm, lon thép,
sắt và đồng đều có thể được
nấu chảy và tái sử dụng. Một
phần lớn thép được sử dụng
trong việc xây dựng
các tòa nhà chọc
trời, thiết bị và xe
hơi được tái chế.

KÍNH từ chai lọ có thể được nấu chảy để tạo thành chai lọ mới.

GIẤY có thể được tái chế thành các sản phẩm khác, chẳng hạn như giấy vệ sinh, bìa cứng, khăn giấy, giấy in báo và văn phòng phẩm. Tái chế giấy sẽ tiết kiệm năng lượng và nước!

CHẤT HỮU CƠ như trái cây và rau thừa lại, lá, cỏ có thể được **Ủ PHÂN** (trở về với đất). Ủ phân sẽ tiết kiệm không gian chôn lấp rác vào tạo ra đất tốt, màu mỡ có thể được sử dụng để trồng cây.

ĐA DẠNG SINH HỌC đề cập đến sự đa dạng của sự

sống trên Trái Đất và các loại hệ sinh thái mà các loài này tạo ra. LỢI ÍCH HỆ SINH THÁI là những lợi ích tích cực mà đời sống hoang dã và hệ sinh thái mang lại cho con người như hình thành đất và tái chế chất dinh dưỡng. Ví dụ, đầm lầy rất quan trọng có việc lọc nước – chúng có thể loại bỏ từ 20% đến 60% kim loại trong nước và loại bỏ nhiều nitơ vào nước. Vì sự đa dạng sinh học và lợi ích hệ sinh thái đang gặp nguy hại, các nhà khoa học đang tìm cách để cân bằng hệ sinh thái của chúng ta, như khôi phục lại các vùng đầm lầy và tạo ra các CÔNG VIÊN ĐA DẠNG SINH HỌC – một môi trường đặt biệt được thiết kế để hỗ trợ các dạng sống đa dạng. Các nhà khoa học phải trình bày những ý tưởng có mức chi phí hợp lý, được xã hội chấp nhận và có cơ sở khoa học để hỗ trợ hệ sinh thái và đa dạng sinh học cần thiết cho Trái Đất và nhân loại của chúng ta!

KIỂM TRA KIẾN THỨC CỦA BẠN

Kết hợp thuật ngữ với định nghĩa đúng:

1. Tái chế
2. Ủ phân
3. Nhiên liệu hóa thạch
4. Mưa axit
5. Khí nhà kính
6. Tài nguyên có thể tái tạo
7. Bãi rác
8. Khu vực chết
9. Tài nguyên không thể tái tạo
10. Ba dạng bảo tồn
11. Khí CFCs

- A. Than, khí tự nhiên và dầu thô - tất cả các nguồn năng lượng
- B. Thu thập chất hữu cơ và cho phép phân hủy vào đất
- C. Khí như CO_2 giữ nhiệt trong khí quyển
- D. Khu vực đất nơi rác thải được tích lại
- E. Nhiên liệu hóa thạch, kim loại và phi kim - nguồn tài nguyên phải mất hàng triệu năm để thay thế
- F. Hóa chất được tìm thấy trong tủ đông, điều hòa và bình xịt sol khí làm thủng tầng ozone
- G. Khu vực nước thiếu oxy nơi mà không loài thủy sinh nào có thể sống được (Do dòng chảy của phân bón và rác thải thô)
- H. Ô nhiễm không khí phản ứng với nước trong khí quyển sản sinh ra mưa có thể phá hủy cây cối, sinh vật và thậm chí là cả những tòa nhà
- I. Các vật liệu xử lý lại để tái sử dụng
- J. Tài nguyên có thể thay thế hoặc tái chế như ánh sáng, nước, gió và cây cối
- K. Giảm thiểu, tái sử dụng, tái chế

KIỂM TRA ĐÁP ÁN CỦA BẠN

- 1 I
- 2 B
- 3 A
- 4 H
- 5 C
- 6 J
- 7 D
- 8 G
- 9 E
- 10 K
- 11 F