

Giáo trình

Hệ điều hành mạng Linux

 2

MỤC LỤC
BẢNG TỪ VIẾT TẮT ... 5
CHƯƠNG 1: TỔNG QUAN VỀ UNIX/ LINUX 6

1. Lịch sử phát triển của Unix ... 6
2. Lịch sử phát triển của Linux ... 8

2.1 Một số đặc điểm chính của Linux .. 10
2.2 Các thành phần chính của hệ điều hành Linux ... 13

CHƯƠNG 2: HỆ THỐNG FILE TRONG LINUX 20
1. Các kiểu file có trong Linux ... 20
2. Quy ước tên file trong Linux ... 21
3. Cấu trúc hệ thống file của Linux ... 22
4. Cấu trúc cây thư mục của hệ thống file trong Linux 26
5. Các file chuẩn vào /ra trên Linux .. 30

CHƯƠNG 3: THAO TÁC TRÊN HỆ THỐNG FILE CỦA UNIX . 32
1. Quản lý quyền thâm nhập hệ thống file .. 32
2. Nhóm lệnh quản lý quyền thâm nhập file .. 35

2.1 Lệnh chmod .. 35
2.2 Lệnh chown .. 37
2.3 Lệnh chgrp .. 37

3. Các lệnh thao tác trên thư mục ... 39
3.1 Thay đổi thư mục làm việc hiện thời với lệnh cd 39
3.2 Xem nội dung thư mục với lệnh ls ... 39
3.3 Tạo thư mục với lệnh mkdir ... 40
3.4 Xóa thư mục với lệnh rmdir ... 40
3.5 Xem đường dẫn thư mục hiện thời với lệnh pwd 41
3.6 Lệnh đổi tên thư mục với lệnh mv ... 41

4. Các lệnh thao tác trên file .. 41
4.1 Tạo file với lệnh touch .. 41
4.2 Tạo file với lệnh cat .. 41
4.3 Xem nội dung các file lớn với lệnh more ... 42
4.4 Thêm số thứ tự của các dòng trong file với lệnh nl 44
4.5 Xem nội dung file với lệnh head .. 45
4.6 Xem nội dung file với lệnh tail ... 45
4.7 Sử dụng lệnh file để xác định kiểu file ... 46
4.8 Lệnh wc dùng để đếm số ký tự, số từ, hay số dòng trong một file 47
4.9 So sánh nội dung hai file sử dụng lệnh diff .. 47
4.10 Xóa file với lệnh rm .. 48
4.11 Sao chép tập tin với lệnh cp.. 48
4.12 Đổi tên file với lệnh mv .. 50
4.13 Lệnh uniq loại bỏ những dòng không quan trọng trong file 50
4.14 Sắp xếp nội dung file với lệnh sort ... 52
4.15 Tìm theo nội dung file bằng lệnh grep ... 53
4.16 Tìm theo các đặc tính của file với lệnh find ... 58
4.17 Nén và sao lưu các file ... 61

 3

4.18 Liên kết (link) tập tin .. 66
5. Các lệnh và tiện ích hệ thống ... 67

5.1 Các lệnh đăng nhập và thoát khỏi hệ thống .. 67
5.2 Lệnh thay đổi mật khNu passwd ... 70
5.4 Lệnh date xem, thiết đặt ngày, giờ ... 72
5.5 Lệnh xem lịch cal ... 74
5.6 Xem thông tin hệ thống uname .. 75
5.7 Thay đổi nội dung dấu nhắc shell ... 75
5.8 Lệnh gọi ngôn ngữ tính toán số học ... 76
5.9 Tiện ích mc ... 79
5.10 Sử dụng trình soạn thảo VI ... 89
5.11 Sử dụng tài liệu giúp đỡ man .. 93

CHƯƠNG 4: LẬP TRÌNH TRONG LINUX 96
1. LẬP TRÌNH SHELL .. 96

1.1 Khái niệm shell ... 96
1.2 Một số đặc điểm của Shell .. 96
1.3 Lập trình đường ống ... 98
1.4 Lập trình Shell Script .. 99
1.5 Điều khiển luồng .. 109
1.6 Hàm .. 122
1.7 Mảng ... 123
1.8 Một số các lệnh thường dùng trong lập trình Shell 130
1.8 Đệ quy.. 132
1.9 Lập trình hội thoại .. 133
1.10 Một số ví dụ về Shell .. 135

2. Lập trình C trên Linux ... 149
2.1 Trình biên dịch gcc ... 149
2.2 Công cụ GN U make ... 152
2.3 Sử dụng nhãn file (mô tả file – file descriptor) .. 153
2.4 Thư viện liên kết ... 159
2.5 Các công cụ cho thư viện ... 167
2.6 Biến môi trường và file cấu hình .. 169
2.7 Sử dụng gdb để gỡ lỗi ... 169

CHƯƠNG 5: QUẢN LÝ TÀI NGUYÊN VÀ TRUYỀN THÔNG
TRONG LINUX ... 171

1. Quản lý tiến trình .. 171
2. Các lệnh cơ bản trong quản lý tiến trình .. 173

2.1 Sử dụng lệnh ps trong quản lý tiến trình .. 173
2.2 Hủy một tiến trình sử dụng lệnh kill .. 174
2.3 Cho máy ngừng hoạt động một thời gian với lệnh sleep 176
2.4 Xem cây tiến trình với lệnh pstree.. 176
2.5 Lệnh thiết đặt lại độ ưu tiên của tiến trình nice và lệnh renice 178
2.6 Lệnh fg và lệnh bg .. 178

3. Quản lý trị hệ thống .. 181
3.1 Khởi động và đóng tắt hệ thống ... 181
3.2 Tìm hiểu về trình nạp Linux ... 181

 4

3.3 Tìm hiểu GRUB, trình nạp Linux. ... 183
3.4 Quá trình khởi động ... 183

4. Quản trị người dùng ... 184
4.1 Superuser (root) .. 184
4.2 Tài khoản người dùng ... 185
4.3 Thêm người dùng với lệnh useradd .. 187
4.4 Thay đổi thông tin của user .. 188
4.5 Hủy user .. 189
4.6 Tạo nhóm người dùng groupadd .. 189
4.7 Xác định người dùng đang đăng nhập (lệnh who) 190
4.8 Để xác định thông tin người dùng với lệnh id .. 191

5. Quản trị tài nguyên ... 192
5.1 Quản lý tài nguyên với lệnh quota ... 192
5.2 Lệnh quản lý đĩa với lệnh du và df ... 193

6 Truyền thông trong Linux .. 196
6.1. Lệnh đặt tên máy ... 196
6.2. Lệnh ifconfig ... 196
6.3 Lệnh write ... 197
6.4 Lệnh mail .. 198
6.5 Lệnh talk ... 200

TÀI LIỆU THAM KHẢO ... 202
PHỤ LỤC ... 203

1. Giới thiệu một số phiên bản hệ điều hành Linux thông dụng hiện nay và
cách cài đặt .. 203

1.1 Hướng dẫn cài đặt hệ điều hành Redhat Linux 7.1 203
1.2 Hướng dẫn sử dụng hệ điều hành Ubuntu và các phiên bản của nó 220

2. Cài đặt WEBMIN ... 220
3. Cài đặt WEBSERVER ... 220
4. Cài đặt FILE SERVER .. 220

 5

BẢNG TỪ VIẾT TẮT
Hệ điều hành HĐH

Multiplexed Information and Computing Service
Multics

Berkley Software Distribution BSD
Midnight Commander mc

 6

CHƯƠNG 1: TỔNG QUAN VỀ UNIX/ LINUX

1. Lịch sử phát triển của Unix
Giữa năm 1960, AT&T Bell Laboratories và một số trung tâm khác tham gia

vào một cố gắng tạo ra một hệ điều hành mới được đặt tên là Multics.

Đến năm 1969, chương trình Multics bị bãi bỏ vì đó là một dự án quá nhiều

tham vọng. Thậm trí nhiều yêu cầu đối với Multics thời đó đến nay vẫn chưa có

được trên các Unix mới nhất. N hưng Ken Thompson, Dennis Ritchie, và một số

đồng nghiệp của Bell Labs đã không bỏ cuộc.

Thay vì xây dựng một HĐH làm nhiều việc một lúc, họ quyết định phát triển

một HĐH đơn giản chỉ làm tốt một việc là chạy chương trình (run program). HĐH

sẽ có rất nhiều các công cụ (tool) nhỏ, đơn giản, gọn nhẹ (compact) và chỉ làm tốt

một công việc. Bằng cách kết hợp nhiều công cụ lại với nhau, họ sẽ có một chương

trình thực hiện một công việc phức tạp. Đó cũng là cách thức người lập trình viết ra

chương trình. Peter N eumann đặt tên Unix cho HĐH đơn giản này tiếp tục phát

triển theo mô hình ban đầu và đặt ra một hệ thống tập tin mà sau này được phát

triển thành hệ thống tập tin của UN IX.

N ăm 1973, Riche và Thompson viết lại nhân của hệ điều hành UN IX trên

ngôn ngữ C, và hệ điều hành đã trở nên dễ dàng cài đặt tới các loại máy tính khác

nhau; tính chất như thế được gọi là tính khả chuyển của UN IX. Trước đó, khoảng

 7

năm 1971, hệ điều hành được thể hiện trên ngôn ngữ B (mà dựa trên ngôn ngữ B,

Ritche đã phát triển thành ngôn ngữ C).

Khoảng năm 1977 bản quyền của Unix được giải phóng và HĐH Unix trở

thành một sản phNm thương mại.

 Hai dòng UN IX: System V của AT&T, N ovell và Berkeley Software

Distribution (BSD) của Đại học Berkeley.

+ System V: Các phiên bản UN IX cuối cùng do AT&T xuất bản là System III

và một vài phát hành (releases) của System V. Hai bản phát hành gần đây

của System V là Release 3 (SVR3.2) và Release 4.2 (SVR4.2). Phiên bản

SYR 4.2 là phổ biến nhất cho từ máy PC cho tới máy tính lớn.

+ BSD: Từ 1970 Computer Science Research Group của University of

California tại Berkeley (UCB) xuất bản nhiều phiên bản UN IX, được biết

đến dưới tên Berkeley Software Distribution, hay BSD. Cải biến của PDP-

11 được gọi là 1BSD và 2BSD. Trợ giúp cho các máy tính của Digital

Equipment Corporation VAX được đưa vào trong 3BSD. Phát triển của

VAX được tiếp tục với 4.0BSD, 4.1BSD, 4.2BSD, và 4.3BSD

 Trước 1992, UN IX là tên thuộc sở hữu của AT&T. Từ năm 1992, khi AT&T

bán bộ phận Unix cho N ovell, tên Unix thuộc sở hữu của X/Open foundation. Tất

cả các hệ điều hành thỏa mãn một số yêu cầu đều có thể gọi là Unix. N goài ra,

Institute of Electrical and Electronic Engineers (IEEE) đã thiết lập chuNn "An

Industry-Recognized Operating Systems Interface Standard based on the UN IX

Operating System." Kết quả cho ra đời POSIX.1 (cho giao diện C) và POSIX.2

(cho hệ thống lệnh trên Unix)

 Tóm lại, vấn đề chuNn hóa UN IX vẫn còn rất xa kết quả cuối cùng. N hưng

đây là quá trình cần thiết có lợi cho sự phát triển của ngành tin học nói chung và sự

sống còn của HĐH UN IX nói riêng.

 8

Hình 1.1 Các phiên bản của Unix

 Các nhóm nhà cung cấp khác nhau về UN IX đang hoạt động trong thời gian
hiện nay được kể đến như sau:

�+ Unix International (viết tắt là UI). UI là một tổ chức gồm các nhà cung cấp

thực hiện việc chuyển nhượng hệ thống UN IX-5 và cung cấp bản AT&T

theo các nhu cầu và thông báo phát hành mới, chẳng hạn như điều chỉnh bản

quyền. Giao diện đồ họa người dùng là Open Look.

�+ Open Software Foundation (OSF). OSF được hỗ trợ bởi IBM, DEC, HP ...

theo hướng phát triển một phiên bản của Unix nhằm tranh đua với hệ thống

UN IX-5 phiên bản 4. Phiên bản này có tên là OSF/1 với giao diện đồ họa

người dùng được gọi là MOTIF.

+ Free SoftWare Foundation (FSF): một cộng đồng do Richard Stallman khởi

xướng năm 1984 chủ trương phát hành các phần mềm sử dụng tự do, trên cơ

sở một hệ điều hành thuộc loại UN IX.

2. Lịch sử phát triển của Linux
Linux là một HĐH dạng UN IX (Unix-like Operating System) chạy trên máy

PC với bộ điều khiển trung tâm (CPU) Intel 80386 hoặc các thế hệ sau đó, hay các

bộ vi xử lý trung tâm tương thích như AMD, Cyrix. Linux ngày nay còn có thể chạy

trên các máy Macintosh hoặc SUN Sparc. Linux thỏa mãn chuNn POSIX.1.

Linux được viết lại toàn bộ từ con số không, tức là không sử dụng một dòng

lệnh nào của Unix, để tránh vấn đề bản quyền của Unix, tuy nhiên hoạt động của

Formatted: Bullets and Numbering

 9

Linux hoàn toàn dựa trên nguyên tắc của hệ điều hành Unix. Vì vậy nếu một người

nắm được Linux, thì sẽ nắm được UN IX. N ên chú ý rằng giữa các Unix sự khác

nhau cũng không kém gì giữa Unix và Linux.

N ăm 1991 Linus Torvalds - sinh viên của đại học tổng hợp Helsinki, Phần

lan, bắt đầu xem xét Minix, một phiên bản của Unix, làm ra với mục đích nghiên

cứu cách tạo ra một hệ điều hành Unix chạy trên máy PC với bộ vi xử lý Intel

80386.

N gày 25/8/1991, Linus cho ra version 0.01 và thông báo trên comp.os.minix

của Internet về chương trình của mình.

1/1992, Linus cho ra version 0.12 với shell và C compiler, Linus đặt tên

HĐH của mình là Linux. 1994, phiên bản chính thức 1.0 được phát hành.

Quá trình phát triển của Linux được tăng tốc bởi sự giúp đỡ của chương trình

GN U, đó là chương trình phát triển các Unix có khả năng chạy trên nhiều platform.

Đến hôm nay, cuối 2001, phiên bản mới nhất của Linux kernel là 2.4.2-2, có khả

năng điều khiển các máy đa bộ vi xử lý và rất nhiều các tính năng khác.

Hiện nay, Linux là một hệ điều hành giống Unix đầy đủ và độc lập. N ó có

thể chạy X-Window, TCP/IP, Emacs, Web, thư điện tử và các phần mềm khác. Hầu

hết các phần mềm miễn phí và thương mại đều được chuyển lên Linux. Rất nhiều

các nhà phát triển phần mềm bắt đầu chuyển sang viết trên Linux. N gười ta thực

hiện các phép đo benchmarks trên Linux và thấy rằng chúng thực hiện nhanh hơn

khi thực hiện trên các máy trạm của Sun Microystem và Compaq, thậm chí nhiều

khi còn nhanh hơn cả trên Windows 98 và WindowN T. Thật khó có thể hình dung

được hệ điều hành “Unix” tí hon này phát triển nhanh thế nào!

Bây giờ, sau khi đã trải qua 1 thời gian rất dài phát triển và hoàn thiện bởi

cộng đồng thế giới, Linux càng ngày càng trở nên mạnh mẽ, ổn định và độ tin cậy

cao, và được chọn để sử dụng trong các cơ quan chính phủ. Các nước như Trung

Quốc, N hật Bản, Đức và một số các nước châu Âu đều cũng đã có kế họach phát

triển riêng Linux cho đất nước của họ. Ở Việt N am trong những năm gần đây đã có

nhiều nhóm nghiên cứu và phát triển Linux sử dụng tiếng Việt là ngôn ngữ chính.

Trong giáo trình này Linux được sử dụng như một ví dụ cho việc tìm hiểu kỹ

hơn về hệ điều hành Unix.

 10

Vấn đề phân phối và giấy phép Linux

 Về lý thuyết, mọi người có thể khởi tạo một hệ thống Linux bằng cách tiếp

cận bản mới nhất các thành phần cần thiết từ các site ftp và biên dịch chúng. Trong

thời kỳ đầu tiên, người dùng Linux phải tiến hành toàn bộ các thao tác này và vì vậy

công việc là khá vất vả. Tuy nhiên, do có sự tham gia đông đảo của các cá nhân và

nhóm phát triển Linux, đã tiến hành thực hiện nhiều giải pháp nhằm làm cho công

việc khởi tạo hệ thống đỡ vất vả. Một trong những giải pháp điển hình nhất là cung

cấp tập các gói chương trình đã tiền dịch, chuNn hóa.

 N hững tập hợp như vậy hay những bản phân phối là lớn hơn nhiều so với hệ

thống Linux cơ sở. Chúng thường bao gồm các tiện ích bổ sung cho khởi tạo hệ

thống, các thư viện quản lý, cũng như nhiều gói đã được tiền dịch, sẵn sàng khởi tạo

của nhiều bộ công cụ UN IX dùng chung, chẳng hạn như phục vụ tin, trình duyệt

web, công cụ xử lý, soạn thảo văn bản và thậm chí các trò chơi.

 Cách thức phân phối ban đầu rất đơn giản song ngày càng được nâng cấp và

hoàn thiện bằng phương tiện quản lý gói tiên tiến. Các bản phân phối ngày nay bao

gồm các cơ sở dữ liệu tiến hóa gói, cho phép các gói dễ dàng được khởi tạo, nâng

cấp và loại bỏ.

 N hà phân phối đầu tiên thực hiện theo phương châm này là Slakware, và

chính họ là những chuyển biến mạnh mẽ trong cộng đồng Linux đối với công việc

quản lý gói khởi tạo Linux.

 Tiện ích quản lý gói RPM (RedHat Package Manager) của công ty RedHat là

một trong những phương tiện điển hình.

 N hân Linux là phần mềm tự do được phân phối theo Giấy phép sở hữu công

cộng phần mềm GN U GPL.

2.1 Một số đặc điểm chính của Linux

Đa nền

 Linux ban đầu được xem là bản sao của Unix và vận hành trên các máy tính

cá nhân được trang bị bộ xử lý 386, 486 hoặc các bộ xử lý cấp cao hơn. Mặc dù ban

đầu nó được phát triển cho các cấu trúc x86 nhưng hiện nay nó có thể vận hành trên

các nền khác nhau như Alpha, Sparc, Dec, Sun, Power PC và một số nền 68000 như

 11

Atari, Amiga...N goài ra Linux còn chạy trên một số máy MIPS và các máy tính cá

nhân mạnh.

Đa chương trình

 Một thời điểm một người sử dụng có thể thực hiện đồng thời nhiều tác vụ.

Với hệ điều hành đơn chương trình như MS-DOS một lệnh thực hiện sẽ chiếm toàn

bộ thời gian CPU xử lý, ta chỉ có thể thực hiện lệnh kế khi lệnh trước đó đã được

thực hiện xong. Còn trong hệ điều hành UN IX ta có thể đặt lệnh chạy ở chế độ nền

(background) đồng thời khi đó có thể thực hiện các lệnh kế.

Nhiều người sử dụng

 N hiều người sử dụng có thể sử dụng máy tính có cài UN IX tại một thời

điểm.

Độc lập phần cứng

 Vì hệ điều hành UN IX được viết bằng ngôn ngữ cấp cao cho nên nó rất dễ

cài đặt trên các cấu hình phần cứng khác. Hơn nữa với cách tổ chức các thiết bị là

các tập tin đặc biệt nên việc thêm vào hay loại bỏ các thiết bị rất dễ dàng.

Dùng chung thiết bị

 Vì Unix là môi trường nhiều người sử dụng do đó các thiết bị ngoại vi như

máy in,v.v... có thể được dùng chung bởi nhiều người sử dụng.

Tính ổn định

 Linux có tính ổn định cao, đây là một trong những ưu điểm của Linux so với

các hệ điều hành khác. Tính ổn định ở đây có nghĩa là nó ít bị lỗi khi sử dụng so với

hầu hết các hệ điều hành khác. N gười sử dụng Linux sẽ không phải lo lắng đến

chuyện máy tính của mình bị hiện tượng “treo cứng” khi đang sử dụng nữa. Thông

thường lý do để ta bắt buộc phải khởi động lại hệ thống là do mất điện, nâng cấp

phần cứng hoặc phần mểm.

Tính bảo mật

 Khi làm việc trên Linux người dùng có thể an tâm hơn về tính bảo mật của

hệ điều hành. Linux là hệ điều hành đa nhiệm, đa người dùng, điều này có nghĩa là

có thể có nhiều người dùng vào phiên làm việc của mình trên cùng một máy tại

cùng một thời điểm. Linux cung cấp các mức bảo mật khác nhau cho người sử

 12

dụng. Mỗi người sử dụng chỉ làm việc trên một không gian tài nguyên riêng, chỉ có

người quản trị hệ thống mới có quyền thay đổi trong máy.

Tính hoàn chỉnh

 Bản thân Linux đã kèm theo các trình tiện ích cần thiết. Tất cả các trình tiện

ích mà ta mong đợi đều có sẵn hoặc ở một dạng tương đương rất giống. Trên Linux,

các trình biên dịch như C, C++, …, đều được chuNn hoá.

Tính tương thích

 Linux tương thích hầu như hoàn toàn với hầu hết các chuNn Unix như IEEE

POSIX.1, UN IX System V và BSD Unix. Trên Linux ta cũng có thể tìm thấy các

trình giả lập DOS và Windows cho phép ta chạy các ứng dụng quen thuộc trên DOS

và Windows. Linux cũng hỗ trợ hầu hết các phần cứng PC như đã nói phía trên.

Hệ điều hành 32-bit đầy đủ

 N gay từ đầu Linux đã là hệ điều hành 32 bit đầy đủ. Điều đó có nghĩa là ta

không còn phải lo về giới hạn bộ nhớ, các trình điều khiển EMM hay các bộ nhớ

mở rộng,… khi sử dụng Linux.

 Linux hỗ trợ tốt cho tính toán song song và máy tính cụm (PC-cluster) là một

hướng nghiên cứu triển khai ứng dụng nhiều triển vọng hiện nay.

Linux có giao diện đồ hoạ (GUI):

 Thừa hưởng từ hệ thống X-Window. Linux hỗ trợ nhiều giao thức mạng, bắt

nguồn và phát triển từ dòng BSD. Thêm vào đó, Linux còn hỗ trợ tính toán thời

gian thực

Dễ cấu hình

 Ta không còn phải bận tâm về giới hạn 640K và tiến hành tối ưu hoá bộ nhớ

mỗi lần cài đặt một trình điều khiển mới. Linux cho ta toàn quyền điều khiển về

cách làm việc của hệ thống.

N hư vậy, qua phần giới thiệu ban đầu này ta có thể thấy rằng Linux là một hệ

Unix đủ mạnh. N ó có thể được ứng dụng dễ dàng. N goài ra, việc sử dụng công cộng

rộng rãi đang làm đà để Linux phát triển nhanh. Các quy trình thiết lập cho phép cài

đặt trực tiếp hệ thống đã làm nó trở nên ngày càng phổ biến đối với những người sử

dụng.

 13

Tuy nhiên cũng tồn tại một số khó khăn làm cho Linux chưa thực sự trở

thành một hệ điều hành phổ dụng, dưới đây là một số khó khăn điển hình:

+ Tuy đã có công cụ hỗ trợ cài đặt, tuy nhiên, việc cài đặt Linux còn tương đối

phức tạp và khó khăn. Khả năng tương thích của Linux với một số loại thiết

bị phần cứng còn thấp do chưa có các trình điều khiển cho nhiều thiết bị,

+ Phần mềm ứng dụng chạy trên nền Linux tuy đã phong phú song so với một

số hệ điều hành khác, đặc biệt là khi so sánh với MS Windows, thì vẫn còn

có khoảng cách.

Với sự hỗ trợ của nhiều công ty tin học hàng đầu thế giới (IBM, SUN , HP ...)

và sự tham gia phát triển của hàng vạn chuyên gia trên toàn thế giới thuộc cộng

đồng Linux, các khó khăn của Linux chắc chắn sẽ nhanh chóng được khắc phục.

Chính vì lẽ đó đã hình thành một số nhà cung cấp Linux trên thế giới. Bảng

dưới đây là tên của một số nhà cung cấp Linux có tiếng nhất và địa chỉ website của

họ.

Đáng chú ý nhất là Red Hat Linux (tại Mỹ) và Red Flag Linux (tại Trung

Quốc). Red Hat được coi là lâu đời và tin cậy, còn Red Flag là một công ty Linux

của Trung quốc, có quan hệ với cộng đồng Linux Việt nam và chúng ta có thể học

hỏi một cách trực tiếp kinh nghiệm cho quá trình đưa Linux vào Việt nam.

Tên công ty Địa chỉ website

Caldera OpenLinux www.caldera.com

Corel Linux www.corel.com

Debian GN U/Linux www.debian.com

Linux Mandrake www.mandrake.com

Red Hat Linux www.redhat.com

Red Flag Linux www.redflag-linux.com

Slackware Linux www.slackware.com

SuSE Linux www.suse.com

TurboLinux www.turbolinux.com

 www.ubuntu.com

2.2 Các thành phần chính của hệ điều hành Linux

- Kernel (N hân hệ điều hành).

 14

- Các bộ điều khiển thiết bị.

- Lệnh và tiện ích.

- Shell.

- Windows & Graphic User Interface.

Hình1.2 Các thành phần chính của HĐH Unix

Kernel

 Là thành phần chủ yếu hay trái tim của hệ điều hành. N ó nắm nhiệm vụ điều

khiển giao dịch giữa chương trình người sử dụng với các thiết bị phần cứng, xếp

lịch các tiến trình để có thể thực hiện đa nhiệm, và nhiều tác vụ khác của hệ thống,

và một tập các trình đơn nằm trong bộ nhớ, mọi tiến trình đều gọi chúng. N hân hệ

điều hành chịu trách nhiệm duy trì các đối tượng trừu tượng quan trọng của hệ điều

hành, bao gồm bộ nhớ ảo và quá trình. Các mô đun chương trình trong nhân được

đặc quyền trong hệ thống, bao gồm đặc quyền thường trực ở bộ nhớ trong.

 N hân (còn được gọi là hệ lõi) của Linux, là một bộ các môdun chương trình

có vai trò điều khiển các thành phần của máy tính, phân phối các tài nguyên cho

người dùng (các quá trình người dùng). N hân chính là cầu nối giữa chương trình

ứng dụng với phần cứng. N gười dùng sử dụng bàn phím gõ nội dung yêu cầu của

mình và yêu cầu đó được nhân gửi tới shell, Shell phân tích lệnh và gọi các chương

trình tương ứng với lệnh để thực hiện.

 15

 Một trong những chức năng quan trọng nhất của nhân là giải quyết bài toán

lập lịch, tức là hệ thống cần phân chia CPU cho nhiều quá trình hiện thời cùng tồn

tại. Đối với Linux, số lượng quá trình có thể lên tới con số hàng nghìn. Với số

lượng quá trình đồng thời nhiều như vậy, các thuật toán lập lịch cần phải đủ hiệu

quả: Linux thường lập lịch theo chế độ Round Robin (RR) thực hiện việc luân

chuyển CPU theo lượng tử thời gian.

 Thành phần quan trọng thứ hai trong nhân là hệ thống các môđun chương

trình (được gọi là lời gọi hệ thống) làm việc với hệ thống file. Linux có hai cách

thức làm việc với các file: làm việc theo byte (kí tự) và làm việc theo khối. Một đặc

điểm đáng chú ý là file trong Linux có thể được nhiều người cùng truy nhập tới nên

các lời gọi hệ thống làm việc với file cần đảm bảo việc file được truy nhập theo

quyền và được chia xẻ cho người dùng.

Các bộ điều khiển thiết bị

 UN IX thể hiện các thiết bị vật lý như các tập tin đặc biệt. Một tập tin đặc biệt

sẽ có một điểm vào trong thư mục và có một tên tập tin. Do đó Unix cho phép

người sử dụng định nghĩa tên thiết bị.

 Các thiết bị được chia làm hai loại: ký tự và khối.

- Thiết bị ký tự đọc và ghi dòng các ký tự (ví dụ các thiết bị đầu cuối).

- Thiết bị khối đọc và ghi dữ liệu trong các khối có kích thước cố định (ví dụ ổ

đĩa).

 Thiết bị có thể đổi tên như đổi tên tập tin. Thư mục chứa các bộ điều khiển

thiết bị là /dev.

Lệnh và tiện ích

 Tiện ích hệ thống là các chương trình thi hành các nhiệm vụ quản lý riêng rẽ,

chuyên biệt. Một số tiện ích hệ thống được gọi ra chỉ một lần để khởi động và cấu

hình phương tiện hệ thống, một số tiện ích khác, theo thuật ngữ UN IX được gọi là

trình chạy ngầm (daemon), có thể chạy một cách thường xuyên (thường theo chu

kỳ), điều khiển các bài toán như hưởng ứng các kết nối mạng mới đến, tiếp nhận

yêu cầu logon, hoặc cập nhật các file log.

 16

 Tiện ích (hay lệnh) có sẵn trong hệ điều hành (dưới đây tiện ích được coi là

lệnh thường trực). N ội dung chính yếu của tài liệu này giới thiệu chi tiết về một số

lệnh thông dụng nhất của Linux.

 Các lệnh và tiện ích của Unix rất đa dạng.

- Một lệnh UN IX có dạng: $lệnh [các chọn lựa] [các đối số] lệnh thường là

chữ nhỏ.

- Unix phân biệt chữ lớn, nhỏ. Ví dụ: $ls -c /dev

 Ta có thể chia lệnh thành các nhóm sau:

Các lệnh khởi tạo:

 exit thoát khỏi hệ thống (Bourne-Shell)

 logout thoát khỏi hệ thống C-Shell

 id chỉ danh của người sử dụng

 logname tên người sử dụng login

 man giúp đỡ

 newgrp chuyển người sử dụng sang một nhóm mới

 psswd thay đổi password của người sử dụng

 set xác định các biến môi trường

 tty đặt các thông số terminal

 uname tên của hệ thống (host)

 who cho biết những ai đang thâm nhập hệ thống

Trình báo màn hình:

 echo hiển thị dòng ký tự hay biến

 setcolor đặt màu nền và chữ của màn hình

Desktop:

 bc tính biểu thức số học

 cal máy tính cá nhân

 date hiển thị và đặt ngày

 mail gửi - nhận thư tín điện tử

 mesg cấm/cho phép hiển thị thông báo trên màn hình(bởi

 write/hello)

 spell kiểm tra lỗi chính tả

 17

 vi soạn thảo văn bản

 write/hello cho phép gửi dòng thông báo đến những người sử

 dụng trong hệ thống.

Thư mục:

 cd đổi thư mục

 copy sao chép 2 thư mục

 mkdir tạo thư mục

 rmdir loại bỏ thư mục

 pwd trình bày thư mục hiện hành

Tập tin:

 cas/more trình bày nội dung tập tin

 cp sao chép một hay nhiều tập tin

 find tìm vị trí của tập tin

 grep tìm vị trí của chuỗi ký tự trong tập tin

 ls, l, lf, lc trình bày tên và thuộc tính của các tập tin trong

 thư mục

 mv chuyển/ đổi tên một tập tin

 sort sắp thứ tự nội dung tập tin

 wc đếm số từ trong tập tin

Quản lý tiến trình:

 kill hủy bỏ một quá trình

 ps trình bày tình trạng của các quá trình

 sleep ngưng hoạt động một thời gian

Kiểm soát chủ quyền:

 chgrp chuyển chủ quyền tập tin, thư mục từ một nhóm sang

một nhóm khác

 chmod thay đổi quyền sở hữu của tập tin hay thư mục

 chown thay đổi người sở hữu tập tin hay thư mục

Kiểm soát in:

 cancel ngưng in

 lp in tài liệu ra máy in

 18

 lpstat trạng thái của hàng chờ in

Shell

 Là bộ xử lý lệnh của người sử dụng hay nó đơn giản chỉ là một chương trình

cho phép hệ thống hiểu các lệnh của người dùng.

 Chức năng chính của Shell là:

- Sử lý tương tác: Khi Shell được sử dụng một cách tương tác, hệ thống đợi

người dùng gõ vào một lệnh tại dấu nhắc lệnh. Lệnh có thể bao gồm các ký

hiệu đặc biệt cho phép ta viết tắt các tên file hoặc tái định hướng nguồn vào

và nguồn ra.

- Lập trình: Các shell cung cấp một bộ các lệnh đặc biệt (có sẵn), cho phép ta

tạo ra các chương trình có tên Shell Script. Các Shell Script rất hữu ích khi

sử dụng cho việc thực thi một chuỗi các lệnh riêng biệt giống như thực thi

các file BATCH trong MS-Dos. Các script cũng có thể thực thi các lệnh lặp

lại nhiều lần (trong vòng lặp) hoặc có điều kiện (if-else) giống như trong

nhiều ngôn ngữ lập trình cao cấp khác.

 Hiện nay người ta sử dụng ba loại shell, tùy theo loại mà có cú pháp khác

nhau:

- Bourne-Shell : là shell cơ bản nhất, nhanh, hiệu quả, nhưng ít lệnh.

- C-Shell: là shell sử dụng cú pháp giống như C và nó thuận tiện hơn cho

người sử dụng tương tác Bourne-Shell, nó giống như Bourne-Shell nhưng

cung cấp thêm các cấu trúc điều khiển, history, bí danh.

- Korn-Shell: Kết hợp cả Bourne-Shell và C-Shell.

 Mỗi người dùng khi đăng nhập hệ thống thì thường có một chương trình mặc

định khởi động cùng, có thể nhận biết dạng Shell ta đang sử dụng là gì thông qua

file /etc/passwd.

Tên chương trình Shell của ta là

/bin/sh Bourne - Shell

/bin/rsh Bourne – Shell

/bin/jsh Bourne – Shell

/bin/ksh Korn-Shell

/usr/dt/bin/dtksh Korn-Shell Desktop, một phiên bản chỉ dùng cho Solaris

 19

/bin/rksh Korn-Shell

/bin/csh C Shell

Windows & Graphic User Interface:

 Giao tiếp đồ hoạ và cửa sổ là một khả năng rất mạnh của hệ điều hành Linux,

nó cho phép hệ điều hành giao tiếp thân thiện hơn với người sử dụng.

Hình 1.3 Giao diện Gnome của Linux

Tóm lại: Đứng về phía người sử dụng ta có thể hình dung hệ điều hành Linux như

sau:

N gười sử dụng - lệnh Linux - biên dịch Shell - Kernel - Máy tính (phần cứng).

 20

CHƯƠNG 2: HỆ THỐNG FILE TRONG LINUX

1. Các kiểu file có trong Linux
 Có rất nhiều file khác nhau trong Linux, nhưng bao giờ cũng tồn tại một số

kiểu file cần thiết cho hệ điều hành và người dùng, dưới đây giới thiệu lại một số

các kiểu file cơ bản.

�- File người dùng (user data file): là các file tạo ra do hoạt động của người

dùng khi kích hoạt các chương trình ứng dụng tương ứng. Ví dụ như các file

thuần văn bản, các file cơ sở dữ liệu hay các file bảng tính.

�- File hệ thống (system data file): là các file lưu trữ thông tin của hệ thống

như: cấu hình cho khởi động, tài khoản của người dùng, thông tin thiết bị ...

thường được cất trong các tệp dạng văn bản để người dùng có thể can thiệp,

sửa đổi theo ý mình.

�- File thực hiện hay thực thi (executable file): là các file chứa mã lệnh hay chỉ

thị cho máy tính thực hiện. File thực hiện lưu trữ dưới dạng mã máy mà ta

khó có thể tìm hiểu được ý nghĩa của nó, nhưng tồn tại một số công cụ để

"hiểu" được các file đó. Khi dùng trình ứng dụng mc, file thực hiện được bắt

đầu bởi dấu (*) và thường có màu xanh lục.

�- Thư mục hay còn gọi là file bao hàm (directory): là file bao hàm các file

khác và có cấu tạo hoàn toàn tương tự như file thông thường khác nên có thể

gọi là file. Trong mc, file bao hàm thường có màu trắng và bắt đầu bằng dấu

ngã (~) hoặc dấu chia (/). Ví dụ: /, /home, /bin, /usr, /usr/man, /dev ...

�- File thiết bị (device file): là file mô tả thiết bị, dùng như là định danh để chỉ

ra thiết bị cần thao tác. Theo quy ước, file thiết bị được lưu trữ trong thư mục

/dev. Các file thiết bị hay gặp trong thư mục này là tty (teletype - thiết bị

truyền thông), ttyS (teletype serial - thiết bị truyền thông nối tiếp), fd0, fd1,

... (floppy disk- thiết bị ổ đĩa mềm), hda1, hda2, ... hdb1, hdb2, ... (hardisk -

thiết bị ổ cứng theo chuNn IDE; a, b,... đánh số ổ đĩa vật lý; 1, 2, 3... đánh số

ổ logic). Trong mc, file thiết bị có màu tím và bắt đầu bằng dấu cộng (+).

�- File liên kết (linked file): là những file chứa tham chiếu đến các file khác

trong hệ thống tệp tin của Linux. Tham chiếu này cho phép người dùng tìm

Formatted: Bullets and Numbering

 21

nhanh tới file thay vì tới vị trí nguyên thủy của nó. Hơn nữa, người ta có thể

gắn vào đó các thông tin phụ trợ làm cho file này có tính năng trội hơn so với

tính năng nguyên thủy của nó. Ta thấy loại file này giống như khái niệm

shortcut trong MS-Windows98.

 Không giống một số hệ điều hành khác (như MS-DOS chẳng hạn), Linux

quản lý thời gian của tệp tin qua các thông số thời gian truy nhập (accesed time),

thời gian kiến tạo (created time) và thời gian sửa đổi (modified time).

2. Quy ước tên file trong Linux
 Một đối tượng điển hình trong các hệ điều hành đó là file. File là một tập hợp

dữ liệu có tổ chức được hệ điều hành quản lý theo yêu cầu của người dùng. Cách tổ

chức dữ liệu trong file thuộc về chủ của nó là người đã tạo ra file. File có thể là một

văn bản (trường hợp đặc biệt là chương trình nguồn trên C, PASCAL, shell script

...), một chương trình ngôn ngữ máy, một tập hợp dữ liệu ...

 Hệ điều hành quản lý file theo tên gọi của file (tên file) và một số thuộc tính

liên quan đến file. Trước khi giới thiệu một số nội dung liên quan đến tên file và tên

thư mục, chúng ta giới thiệu sơ bộ về khái niệm thư mục.

 Để làm việc được với các file, hệ điều hành không chỉ quản lý nội dung file

mà còn phải quản lý các thông tin liên quan đến các file. Thư mục (directory) là đối

tượng được dùng để chứa thông tin về các file, hay nói theo một cách khác, thư mục

chứa các file. Các thư mục cũng được hệ điều hành quản lý vì vậy, thư mục cũng

được coi là file song trong một số trường hợp để phân biệt với "file" thư mục, chúng

ta dùng thuật ngữ file thông thường. Khác với file thông thường, hệ điều hành lại

quan tâm đến nội dung của thư mục.

� Tên file trong Linux có thể dài tới 256 ký tự, bao gồm các chữ cái, chữ số,

dấu gạch nối, gạch chân, dấu chấm. Tên thư mục/file trong Linux có thể có nhiều

hơn một dấu chấm, ví dụ: This_is.a.VERY_long.filename. N ếu trong tên file có dấu

chấm "." thì xâu con của tên file từ dấu chấm cuối cùng được gọi là phần mở rộng

của tên file (hoặc file). Ví dụ, tên file trên đây có phần mở rộng là .filename.

� Chúng ta nên lưu ý rằng, không phải ký tự nào cũng có nghĩa. N ếu có hai file

chỉ khác nhau ở ký tự cuối cùng, thì đối với Linux, đó là hai file có thể trùng tên.

Bởi lẽ, Linux chỉ lấy 32 hay 64 ký tự đầu tiên trong tên file mà thôi (tùy theo phiên

Formatted: Bullets and Numbering

 22

bản Linux), phần tên file còn lại dành cho chủ của file, Linux theo dõi thông tin,

nhưng thường không xem các ký tự đứng sau ký tự thứ 33 hay 65 là quan trọng đối

với nó.

� Xin nhắc lại lưu ý về phân biệt chữ hoa và chữ thường đối với tên thư

mục/file, ví dụ hai file FILENAME.tar.gz và filename.tar.gz là hai file khác nhau.

� N ếu trong tên thư mục/file có chứa khoảng trống, sẽ phải đặt tên thư mục/file

vào trong cặp dấu nháy kép để sử dụng thư mục/file đó. Ví dụ, để tạo thư mục có

tên là “My document” chẳng hạn, hãy đánh dòng lệnh sau:

 # mkdir "My document"

� Một số ký tự sau không được sử dụng trong tên thư mục/file: !, *, $, &, # ...

� Khi sử dụng chương trình mc, việc hiển thị tên file sẽ bổ sung một kí tự theo

nghĩa: dấu "*" cho file khả thi trong Linux, dấu "~" cho file sao lưu, dấu "." cho file

Nn, dấu "@" cho file liên kết...

 Tập hợp tất cả các file có trong hệ điều hành được gọi là hệ thống file là một

hệ thống thống nhất. Bởi chính từ cách thức sử dụng thư mục, hệ thống file được tổ

chức lôgic theo dạng hình cây: Hệ thống file được xuất phát từ một thư mục gốc

(được kí hiệu là "/") và cho phép tạo ra thư mục con trong một thư mục bất kỳ.

Thông thường, khi khởi tạo Linux đã có ngay hệ thống file của nó.

3. Cấu trúc hệ thống file của Linux
 Hệ thống file của linux gồm bốn thành phần chính là Boot block (dùng để khởi động hệ

thống), Siêu khối (Super block), Danh sách inode và Vùng dữ liệu.

 Boot Super I-nodes Data Blocks

 Block Block

Block 0

 Thường không được sử dụng và thường chứa mã để nạp HĐH (boot the computer). N ó

chứa một đoạn chương trình sẽ được đọc vào máy khi khởi động hệ điều hành Mặc dù Boot

block chỉ cần thiết khi khởi động máy nhưng tương tự với Boot record của DOS, tất cả các hệ

thống file UN IX đều có một Boot block (block này có thể để trống).

Formatted: Bullets and Numbering

 23

Block 1:

 Là Super Block (siêu khối), trình bày trạng thái của hệ thống File (số lượng I-node, số

Disk Block, điểm bắt đầu của danh danh sách của khối đĩa trống (free disk blocks)). Là một

dạng bản ghi mô tả tình trạng của hệ thống file. N ó gồm các thông tin sau:

- Kích thước hệ thống file.

- Số khối còn trống trong hệ thống file.

- Danh sách khối trống trong hệ thống file.

- Chỉ số của khối tiếp theo trong danh sách khối trống.

- Kích thước của danh sách inode.

- Số inode còn trống trong hệ thống file.

- Danh sách inode còn trống trong hệ thống file.

- Chỉ số inode tiếp theo trong danh sách inode trống trong hệ thống file.

- Trường khoá của danh sách khối và inode trống.

- Cờ báo hiệu super block đã bị thay đổi.

I-nodes

 Tương ứng bảng FAT trong MS-DOS, trình bày bên trong của một File được cho bởi

một I-node, chứa đựng các thông tin mô tả về lưu trữ file trên đĩa và một số thông tin khác như:

người chủ sở hữu, quyền truy nhập, thời gian truy nhập file. Mỗi I-node dài 64 byte và miêu tả

chính xác một file. Inode là một bảng chứa các thông tin chi tiết về một file. Mỗi file đều được

gắn với một inode qua số hiệu inode. Khi file được sử dụng bởi một tiến trình nào đó thì inode

sẽ được đọc vào bộ nhớ và quản lý bởi kernel. Mỗi inode bao gồm các thông tin sau:

- Quyền sở hữu file: Quyền sở hữu được chia làm hai phần là người sở hữu file và nhóm

người sở hữu. N gười sở hữu thường là người tạo ra file đó. N hóm người sở hữu file,

trong UN IX System V thì thường thuộc về nhóm của người tạo ra file đó, còn trong BSD

UN IX thì file thuộc về nhóm sở hữu thư mục mà file được tạo ra. Quyền sở hữu của

người sử dụng và của nhóm đối với mỗi file có thể thay đổi được (ví dụ lệnh chown,

chgrp của shell). Quyền sở hữu này cùng với quyền truy nhập của file sẽ quyết dịnh xem

ai có thể truy nhập tới tập tin và có thể truy nhập như thế nào.

- Loại file: Khái niệm file của UN IX có khác so với file trong DOS, ta có thể kể tới một

số loại file sau.

 Kiểu file thường: Đó là các file văn bản , các file nhị phân, file dữ liệu hay là các

file chương trình...

 24

 Thư mục con: Là những file tạo ra cấu trúc phân cấp cho hệ thống file gồm danh

sách các file trong nó và có thể chứa cả các thư mục khác. N ó có một vai trò quan

trọng trong việc biến đổi tên file thành số hiệu inode. Thư mục là một file mà toàn

bộ dữ liệu là chuỗi các phần tử (entry), mỗi phần tử chứa một số hiệu inode và tên

file tương ứng trong thư mục. Đối với hệ UN IX System V chỉ cho phép tên file tối

đa dài 14 ký tự còn đối với các hệ khác chiều dài này có thể lớn hơn. Do thư mục

là các file đặc biệt nên tuy các file có thể đọc dữ liệu trong thư mục như đối với

các file thường nhưng kernel giành quyền ghi thư mục để đảm bảo tính chính xác

của cấu trúc.

 Kiểu file đặc biệt: Đây là cơ chế mà UN IX sử dụng để truy nhập tới các thiết bị

vào ra. Mỗi thiết bị vào ra trong UN IX đều được coi như là một file trong hệ

thống file. Ta có thể truy nhập tới thiết bị vật lý thông qua việc truy nhập các file

này. N gười ta chia kiểu này làm hai loại dựa trên cách truy nhập tới chúng, đó là

kiểu ký tự (character, ví dụ như file ứng với cổng nối tiếp) và kiểu khối (block, ví

dụ như file ứng với ổ đĩa).

 Kiểu file móc nối(symbolic link): Đây là file chứa đường dẫn tới một file khác. Cơ

chế này cho phép ta truy nhập tới một tập tin bằng nhiều tên khác nhau. Thực chất

của nó là định nghĩa một file với một tên khác.

 Kiểu FIFO: là một hàng đợi (queue) theo kiểu first-in-first-out hay còn được gọi

là named pipe. FIFO được dùng để trao đổi dữ liệu giữa các tiến trình. Loại file

này chỉ có trong hệ UN IX System V mà không có trong BSD UN IX.

 Kiểu socket: là một cơ chế tạo ra các đầu cuối (endpoint) cho phép các tiến trình

liên hệ với nhau. Khái niệm socket sẽ được đề cập tới trong phần sau.

- Quyền truy nhập file: Hệ thống bảo vệ file theo 3 lớp người sử dụng là chủ sở hữu,

nhóm sở hữu và các người sử dụng khác. Mỗi lớp người sử dụng đều có 3 quyền đọc,

ghi, và thực hiện. Các quyền này được thiết lập tách biệt nhau. Do thư mục là một kiểu

file đặc biệt nên quyền truy nhập tới thư mục có thay đổi. Quyền đọc cho phép tiến trình

được đọc thư mục, quyền ghi cho phép tạo ra hoặc xoá bỏ các phần tử của thư mục

(thông qua lệnh creat, mknod, link hay unlink), quyền thực hiện cho phép tiến trình tìm

kiếm tên file trong thư mục.

- Thời gian: Lưu trữ thời gian mà file bị thay đổi gần nhất, thời gian file được truy cập

gần nhất và thời gian inode bị thay đổi gần nhất.

- Số file liên kết: Thể hiện số file có trong cấu trúc cây thư mục.

 25

- Bảng địa chỉ các khối dữ liệu: Mặc dù người sử dụng xử lý file như một chuỗi liên tiếp

các byte nhưng trong kernel lưu trữ dữ liệu trên những khối không liên tiếp. inode phải

xác định các khối chứa dữ liệu của file. Bảng này được mã hoá khá phức tạp để có thể

chứa một số lượng địa chỉ thay đổi nhưng kích thước bảng lại không thay đổi.

- Kích thước file: Lưu giữ chính xác kích thước thực của file.

Chú ý : Inode hoàn toàn không lưu giữ tên file và không thể xác định đường dẫn tới file thông

qua inode. Khi inode được đọc vào bộ nhớ, một số trường được thêm vào làm cho inode trong

bộ nhớ (in-core inode) khác với inode trên đĩa.

- Trường trạng thái inode báo hiệu:

 Inode bị khoá.

 Có một tiến trình đang đợi cho đến khi inode được mở khoá.

 In-core inode khác với inode trên đĩa do bị thay đổi.

 File trong bộ nhớ đã thay đổi so với file trên đĩa.

 File này là một điểm kết nốt với một hệ thống file khác (mount point).

- Số hiệu thiết bị logic của hệ thống file chứa file này.

- Số hiệu inode.

- Con trỏ tới in-core inode khác.

- Số đếm : Ghi nhận số file đang được mở.

Ghi chú: Danh sách inode đứng ngay sau super block. N gười quản trị hệ thống sẽ quyết định

kích thước của danh sách này khi thiết lập cấu hình hệ thống. Kernel của hệ điều hành tham

chiếu tới vùng này bằng cách đánh chỉ số cho danh sách. Trong danh sách inode tồn tại một

inode là inode gốc của hệ thống file (tương tự thư mục gốc trong hệ điều hành DOS). Inode này

là điểm đầu tiên của cấu trúc thư mục trong hệ thống file và làm cho hệ thống file có thể truy

nhập bình thường sau khi thực hiện lệnh "mount".

Khối dữ liệu (data block)

 Tất cả các file và thư mục được lưu trữ tại đây. Hệ thống file trong Unix là một cấu trúc

phân cấp có bảo mật cao. File có thể được tổ chức lưu trữ theo một vùng liên tục hay nhiều

vùng liên tục. Bắt đầu từ sau danh sách inode cho tới khối cuối cùng của hệ thống file. Phần này

chỉ chứa dữ liệu và thông tin quản trị hệ thống. Một khối dữ liệu chỉ được cấp phát cho một và

chỉ một file duy nhất trong hệ thống file.

 26

Hình 2.1 Inodes

4. Cấu trúc cây thư mục của hệ thống file trong Linux
 Đối với hệ điều hành linux, không có khái niệm các ổ đĩa khác nhau. Sau quá trình khởi

động, toàn bộ các thư mục và tập tin được “gắn” (mount) lên và tạo thành một hệ thống tập tin

thống nhất, bắt đầu từ gốc ‘/’.

 Hình dưới là cây thư mục của đa số các Linux. Với cây thư mục trên ta không thể nào

biết được số lượng ổ đĩa cứng, các phân mảnh (partition) của mỗi đĩa và sự tương ứng giữa các

phân mảnh và thư mục như thế nào.

 Chúng ta có thể chia đĩa cứng thành nhiều phân mảnh (partition). Mỗi partition là một hệ

thống tập tin độc lập. Sau đó, các hệ thống tập tin này được ‘gắn ‘ (mount) vào hệ thống tập tin

thống nhất của toàn hệ thống.

 Chúng ta hoàn toàn có thể gắn thêm một đĩa cứng mới, format rồi mount vào hệ thống

tập tin dưới tên một thư mục nào đó tại một điểm (mount point) nào đó.

 27

/-----+

 !-------/bin

 !-------/sbin

 !-------/usr------/usr/bin

 ! !------/usr/sbin

 ! !------/usr/local

 ! !------/usr/doc

 !-------/dev

 !-------/etc

 !-------/lib

 !-------/var-------/var/adm

 !-------/var/log

 !-------/var/spool

 Đối với các chương trình chạy trên Linux, không hề có khái niệm một thư mục nằm ở ổ

đĩa nào hay partition nào. Hình sau đây cho thấy sự tương quan giữa vị trí vật lý trên đĩa và vị

trí logic trong cây tập tin.
!-----------------------------------!

! / ! ! /

! ! ! |

!------------------! ! -----------

! ! < == > | |

 | |

! /usr ! /usr /squid

!-----------------------------------! |

! ! /usr/home

! /usr/home !

!-----------------------------------!

! /squid !

!-----------------------------------!

 Thư mục /usr/home là thư mục con của /usr trong cây thư mục, nhưng trên đĩa vật lý,

đây là hai phân mảnh (partition) cạnh nhau.

Một số thư mục quan trọng trong Unix/Linux

Thư mục gốc /

 Đây là thư mục gốc chứa đựng tất cả các thư mục con có trong hệ thống.

Thư mục /root

 28

 N hư đã được giới thiệu thư mục /root có thể được coi là "thư mục riêng" của người quản

trị hệ thống. Thư mục này được sử dụng để lưu trữ các file tạm thời, nhân Linux và ảnh khởi

động, các file nhị phân quan trọng (những file được sử dụng đến trước khi Linux có thể gắn kết

đến phân vùng /user), các file đăng nhập quan trọng, bộ đệm in cho việc in ấn, hay vùng lưu

tạm cho việc nhận và gửi email. N ó cũng được sử dụng cho các vùng trống tạm thời khi thực

hiện các thao tác quan trọng, ví dụ như khi xây dựng (build) một gói RPM từ các file RPM

nguồn.

Thư mục /bin

 Trong Linux, chương trình được coi là khả thi nếu nó có thể thực hiện được. Khi một

chương trình được biên dịch, nó sẽ có dạng là file nhị phân. N hư vậy, chương trình ứng dụng

trong Linux là một file nhị phân khả thi. Vì vậy, những nhà phát triển Linux đã quyết định phải

tổ chức một thư mục "binaries" để lưu trữ các chương trình khả thi có trên hệ thống, đó chính là

thư mục /bin. Ban đầu, thư mục /bin (bin là viết tắt của từ binary) là nơi lưu trữ các file nhị

phân khả thi. N hưng theo thời gian, ngày càng có nhiều hơn các file khả thi có trong Linux, do

đó, có thêm các thư mục như /sbin, /usr/bin được sử dụng để lưu trữ các file đó.

Thư mục /dev

 Một phần không thể thiếu trong bất kỳ máy tính nào đó là các trình điều khiển thiết bị.

Không có chúng, sẽ không thể có được bất kỳ thông tin nào trên màn hình của (các thông tin có

được do trình điều khiển thiết bị hiển thị đưa ra). Cũng không thể nhập được thông tin (những

thông tin do trình điều khiển thiết bị bàn phím đọc và chuyển tới hệ thống), và cũng không thể

sử dụng đĩa mềm của (được quản lý bởi trình điều khiển đĩa mềm).

 Tất cả các trình điều khiển thiết bị đều được lưu trữ trong thư mục /dev.

Thư mục /etc

 Quản trị hệ thống trong Linux không phải là đơn giản, chẳng hạn như việc quản lý tài

khoản người dùng, vấn đề bảo mật, trình điều khiển thiết bị, cấu hình phần cứng, v.v.. Để giảm

bớt độ phức tạp, thư mục /etc đã được thiết kế để lưu trữ tất cả các thông tin hay các file cấu

hình hệ thống.

Thư mục /lib

 Linux có một trung tâm lưu trữ các thư viện hàm và thủ tục, đó là thư mục /lib.

Thư mục /lost+found

 Một file được khôi phục sau khi có bất kỳ một vấn đề hoặc gặp một lỗi về ghi đĩa trên hệ

thống đều được lưu vào thư mục này.

 29

Thư mục /mnt
 Thư mục /mnt là nơi để kết nối các thiết bị (ví dụ đĩa cứng, đĩa mềm...) vào hệ thống file

chính nhờ lệnh mount. Thông thường các thư mục con của /mnt chính là gốc của các hệ thống

file được kết nối: /mnt/floppy: đĩa mềm, /mnt/hda1: vùng đầu tiên của đĩa cứng thứ nhất (hda),

/mnt/hdb3: vùng thứ ba của đĩa cứng thứ 2 (hdb)..

Thư mục /tmp

 Thư mục /tmp được rất nhiều chương trình trong Linux sử dụng như một nơi để lưu trữ

các file tạm thời. Ví dụ, nếu đang soạn thảo một file, chương trình sẽ tạo ra một file là bản sao

tạm thời (bản nháp) của file đó và lưu vào trong thư mục /tmp.

 Việc soạn thảo thực hiện trực tiếp trên file tạm thời này và sau khi soạn thảo xong, file

tạm thời sẽ được ghi đè lên file gốc. Cách thức như vậy bảo đảm sự an toàn đối với file cần

soạn thảo.

Thư mục /usr
 Thông thường thì thư mục /usr là trung tâm lưu trữ tất cả các lệnh hướng đến người dùng

(user-related commands). Tuy nhiên, ngày nay thật khó xác định trong thư mục này có những

thứ gì, bởi vì hầu hết các file nhị phân cần cho Linux đều được lưu trữ ở đây, trong đó đáng chú

ý là thư mục con /usr/src bao gồm các thư mục con chứa các chương trình nguồn của nhân

Linux.

Thư mục /home
 Thư mục này chứa các thư mục cá nhân của người dùng: mỗi người dùng tương ứng với

một thư mục con ở đây, tên người dùng được lấy làm tên của thư mục con.

Thư mục /var
 Thư mục /var được sử dụng để lưu trữ các file chứa các thông tin luôn luôn thay đổi, bao

gồm bộ đệm in, vùng lưu tạm thời cho việc nhận và gửi thư (mail), các khóa tiến trình, v.v..

Thư mục /boot
 Là thư mục chứa nhân của hệ thống (Linux-*.*.), System.map (file ánh xạ đến các driver

để nạp các hệ thống file khác), ảnh (image) của hệ thống file dùng cho initrd (ramdisk), trình

điều khiển cho các thiết bị RAID (một thiết bị gồm một mảng các ổ đĩa cứng để tăng tốc độ và

độ an toàn khi ghi dữ liệu), các bản sao lưu boot record của các phân vùng đĩa khác. Thư mục

này cho phép khởi động và nạp lại bất kỳ trình điều khiển nào được yêu cầu để đọc các hệ thống

file khác.

 30

Thư mục /proc
 Đây là thư mục dành cho nhân (kernel) của hệ điều hành và thực tế đây là một hệ thống

file độc lập do nhân khởi tạo.

Thư mục /misc và thư mục /opt
 Cho phép lưu trữ mọi đối tượng vào hai thư mục này.
Thư mục /sbin
 Thư mục lưu giữ các file hệ thống thường tự động chạy.

5. Các file chuẩn vào /ra trên Linux
 Khi chạy chương trình Linux, nó giao tiếp với chúng ta qua việc hiển thị thông tin ra

màn hình. Thông tin hiển thị màn hình có thể là dữ liệu của chương trình hay lỗi phát sinh khi

có lỗi xảy ra. Chúng ta giao tiếp với chương trình qua các kí tự gõ vào bàn phím. Luồng dữ liệu

vào từ bàn phím gọi là chuNn input. Luồng dữ liệu ra màn hình gọi là chuNn output còn luồng

dữ liệu thông báo lỗi là chuNn error.

 Trong Linux các luồng giao tiếp chuNn được xem như các file dữ liệu và được đánh số

theo thứ tự, khi cho một file chạy, Shell tự động mở 3 file vào/ra chuNn:

− Vào chuNn (stdin) fd = 0.

− Ra chuNn (stdout) fd = 1.

− Lỗi chuNn(stderror) fd = 2.

Các số fd này được gọi là file descriptor.

Hình 2.2 Các chuẩn vào ra

 Ví dụ về các file ra vào chuNn: Sử dụng chương trình cat để soạn thảo, chúng ta gõ
 $ cat <enter>

 du lieu vao tu ban phim <enter>

 dong du lieu thu hai

 31

 Để kết thúc luồng dữ liệu vào chúng ta gõ <Ctrl + d>. Tất cả các dữ liệu chúng ta đưa

vào từ bàn phím được xem là file input chuNn. Dùng lệnh ls chúng ta sẽ nhận được dữ liệu ra

màn hình, đó là file output chuNn.

 Một thông báo lỗi xuất hiện ở màn hình khi chúng ta gõ lệnh sai hoặc truy xuất vào các

tập tin hay thư mục không có quyền chính là file error chuNn. Ví dụ như chúng ta gõ lệnh listn

thì sẽ xuất hiện lỗi invalid command.

Chuyển tiếp (redirection)

 Chuyển tiếp là hình thức thay đổi luồng dữ liệu của các input, output chuNn và error. Khi

dùng chuyển tiếp, input chuNn có thể lấy dữ liệu từ file thay vì bàn phím, output chuNn hoặc

error có thể chuyển vào tập tin hay ra máy in.

Có 3 loại chuyển hướng :

− Input redirection.

− Output redirection.

− Error redirection.

Input direction

 Theo qui ước thì các lệnh lấy dữ liệu từ input chuNn (bàn phím). Để lệnh lấy dữ liệu từ

file chúng ta dùng ký hiệu < :
 $lệnh < input

 Ta có thể hình dung < chỉ hướng dữ liệu.

Ví dụ:
 $cat < abc.txt hoặc

 $cat 0< abc.txt

Output redirection

 Dữ liệu ra của các lệnh thông thường được hiển thị trên màn hình. để dữ liệu ra được đưa

vào file chúng ta dùng dấu >
 $lệnh > tên_file

Ví dụ Liệt kê nội dung thư mục và chuyển vào file : $ls –l > tm.txt

 Để thêm vào dữ liệu có sẵn trên file, chúng ta dùng dấu >> thay cho dấu >
 $lệnh >> tên_file hoặc $cat a.txt >> sum.txt

 32

CHƯƠNG 3: THAO TÁC TRÊN HỆ THỐNG FILE CỦA UNIX

1. Quản lý quyền thâm nhập hệ thống file
 Mỗi file và thư mục trong Linux đều có một chủ sở hữu và một nhóm sở hữu, cũng như

một tập hợp các quyền thâm nhập (truy cập). Cho phép thay đổi các quyền thâm nhập và quyền

sở hữu file và thư mục nhằm cung cấp thâm nhập nhiều hơn hay ít hơn.

Người sử dụng

 Một người sử dụng được mô tả bằng các thông tin sau:

- Tên.

- [mật khNu (nếu có].

- số nhận dạng (uid : user identify number).

- số của nhóm (gid : group identify number).

- [chú thích].

- thư mục tiếp nhận (HOME directory).

- [tên chương trình cho chạy lúc bắt đầu tên làm việc].

 Các thông tin trên được chứa trong file /etc/passwd.

mail:x:8:12:mail:/var/spool/mail:
games:x:12:100:games:/usr/games:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
duonglk:x:500:0:Le Khanh Duong:/home/duonglk:/bin/bash
anhth:x:17:100:Tran Hong Anh:/home/anhth:/bin/bash

Nhóm người dùng

 Một nhóm người sử dụng là tập hợp của một số người sử dụng có thể dùng chung các

file của nhau. Một nhóm người sử dụng được mô tả bằng các thông tin sau:

- tên của nhóm.

- [mật khNu].

- số của nhóm (gid : group identify number).

- [danh sách những người khách (guest)].

 Các thông tin trên được chứa trong file /etc/group.

 Do Unix là một hệ điều hành đa người dùng và đa nhiệm, nhiều người cùng có thể sử

dụng một máy Unix và một người có thể cho chạy nhiều chương trình khác nhau.

 Có hai vấn đề lớn được đặt ra: quyền sở hữu các dữ liệu trên đĩa và phân chia tài nguyên

hệ thống như CPU, RAM ... giữa các tiến trình. Chúng ta sẽ bàn về sở hữu các tập tin và các

quyền truy xuất tập tin.

 33

 Tất cả các tập tin và thư mục của Linux đều có người sở hữu và quyền truy nhập. Ta có

thể đổi các tính chất này cho phép nhiều hay ít quyền truy nhập hơn đối với một tập tin hay thư

mục.

 Quyền của tập tin còn cho phép xác định tập tin có là một chương trình (application) hay

không (khác với MSDOS và MSWindows xác định tính chất này qua phần mở rộng của tên tập

tin)

 Thuộc tính thâm nhập file bao gồm các thuộc tính: Đọc (R), Ghi (W), thực thi (X). N hư

vậy, một file có 9 thuộc tính thâm nhập ngoài ra có thêm thuộc tính chỉ định nó là file hay thư

mục.
1 2 3 4 5 6 7 8 9 10

 1 : kiểu file

 2, 3, 4 : quyền thâm nhập của USER

 5, 6, 7 : quyền thâm nhập của GROUP

 8, 9, 10: quyền thâm nhập của OTHER

 Có một số kiểu file trong Linux. Ký tự đầu tiên mô tả kiểu file và quyền thâm nhập sẽ

cho biết file thuộc kiểu nào (chữ cái đó được gọi là chữ cái biểu diễn).

Chữ cái biểu diễn Kiểu file
d
b
c
l
p
s
-

Thư mục (directory)
File kiểu khối (block-type special file)
File kiểu ký tự (character-type special file)
Liên kết tượng trưng (symbolic link)
File đường ống (pipe)
Socket
File bình thường (regular file)

 Trong mỗi nhóm quyền thâm nhập có 3 thuộc tính: (R) được đọc, (W) được ghi, (X)

được thực thi, (-) rỗng.
 - r w -r--r--1 van_a group 166 Oct 4 08:02 thu.txt

 - : chỉ rằng đây là File

 r w - : USER có quyền đọc ghi

 r - - : GROUP có quyền đọc

 r - - : OTHER có quyền đọc

 1 : số liên kết

 van_a : tên người sở hữu

 group : tên nhóm sử dụng

 34

 166 : độ dài file

 Oct 4 08: 02 : thời gian tạo file

 Thu.txt : tên file

 Để hiểu được chính xác quyền thâm nhập có ý nghĩa như thế nào đối với hệ thống máy

tính, phải nhớ rằng Linux xem mọi thứ đều là file. N ếu cài đặt một ứng dụng, nó cũng sẽ được

xem như mọi chương trình khác, trừ một điều: hệ thống nhận biết rằng một ứng dụng là một

chương trình khả thi, tức là nó có thể chạy được. Một bức thư gửi cho mẹ là một dạng file văn

bản bình thường, nhưng nếu thông báo cho hệ thống biết đó là một chương trình khả thi, hệ

thống sẽ cố để chạy chương trình (và tất nhiên là lỗi).

 Quyền đọc: cho phép người dùng có thể xem nội dung của file với rất nhiều chương trình

khác nhau, nhưng họ sẽ không thể thay đổi, sửa chữa hoặc xóa bất kỳ thông tin nào trong đó.

Tuy nhiên, họ có thể sao chép file đó thành file của họ và sửa chữa file bản sao.

 Quyền ghi: là quyền thâm nhập tiếp theo. N gười sử dụng với quyền ghi khi truy nhập

vào file có thể thêm thông tin vào file. N ếu có quyền ghi và quyền đọc đối với một file, có thể

soạn thảo lại file đó - quyền đọc cho phép xem nội dung, và quyền ghi cho phép thay đổi nội

dung file. N ếu chỉ có quyền ghi, sẽ thêm được thông tin vào file, nhưng lại không thể xem được

nội dung của file.

 Quyền thực hiện hay thực thi: quyền này cho phép người dùng có thể chạy được file, nếu

đó là một chương trình khả thi. Quyền thực hiện độc lập với các quyền truy nhập khác, vì thế

hoàn toàn có thể có một chương trình với quyền đọc và quyền thực hiện, nhưng không có quyền

ghi. Cũng có trường hợp một chương trình chỉ có quyền thực hiện, có nghĩa là người dùng có

thể chạy ứng dụng, nhưng họ không thể xem được cách nó làm việc hay sao chép nó.

Quyền thâm nhập Ý nghĩa

r--

r-x

rw-

rwx

Không cho phép một quyền truy nhập nào

Chỉ được quyền đọc

Quyền đọc và thực hiện (cho chương trình và shell script)

Quyền đọc và ghi

Cho phép tất cả các quyền truy nhập (cho chương trình)

 Song song với cách ký hiệu miêu tả bằng ký tự như ở trên, quyền thâm nhập tập tin còn

có thể cho dưới dạng chữ số hệ 8. Đối với file thu.txt ở trên có quyền là 644.

 35

 Điều quan trọng là phải hiểu cách ký hiệu bằng số vì nó liên quan đến việc thay đổi các

quyền sau này. Các số có thể nhận tất cả các giá trị từ 0 đến 7.

 Số đầu tiên miêu tả quyền của USER, số thứ hai cho GROUP và số thứ ba cho OTHER.

 Mỗi số là tổng của các quyền theo quy tắc sau :

read permission (QUYỀN ĐỌC) 4

Write permission (QUYỀN GHI) 2

Execute permission (QUYỀN THỰC THI) 1

 Vì vậy, một tập tin với quyền 751 có nghĩa là USER có quyền read, write, và execute

bằng 4+2+1=7, GROUP có quyền read và execute bằng 4+1=5, và OTHER có quyền execute

bằng 1.

 N ếu ta xem kỹ, ta sẽ thấy mọi số từ 0 đến 7 đều tương ứng với một tổ hợp duy nhất các

quyền thâm nhập tập tin.

Quyền Chữ số hệ 8 Quyền Chữ số hệ 8

Chỉ đọc 4 Chỉ đọc và ghi 6

Chỉ ghi 2 Chỉ đọc và thực hiện 5

Chỉ thực hiện 1 Chỉ ghi và thực hiện 3

Không có quyền nào 0 Đọc, ghi và thực hiện 7

 N ếu ta quen với hệ nhị phân, hãy suy nghĩ bằng hệ thống nhị phân. Khi đó, rwx sẽ như

số nhị phân 3 bit. N ếu quyền được cho, số nhị phân tương ứng sẽ bằng 1, ngược lại, nó sẽ bằng

0. Ví dụ r-x sẽ là số nhị phân 101, và theo hệ thập phân sẽ là 4+0+1, hay 5. --x sẽ tương ứng

001, hay 0+0+1 = 1 …

2. Nhóm lệnh quản lý quyền thâm nhập file
 N hóm lệnh chown, chgrp và chmod được sử dụng rất phổ biến, cho phép thay quyền

thâm nhập của tập tin hay thư mục. Chỉ có chủ sở hữu và superuser mới có quyền thực hiện các

lệnh này.

2.1 Lệnh chmod

 Cho phép thay đổi quyền thâm nhập các file và thư mục. Có thể chạy lệnh theo 2 cách:

Theo thông số tuyệt đối
 chmod mode tên_file

 trong đó thông số mode là một số cơ số 8 (octal)

 36

 r w x r - x r - -

 1 1 1 1 0 1 1 0 0

 7 5 4

 $chmod 754 tên_file

 Cách thay đổi tuyệt đối này có một số ưu điểm vì nó là cách định quyền tuyệt đối, kết

quả cuối cùng không phụ thuộc vào quyền thâm nhập trước đó của tập tin. Đồng thời, dễ nói

“thay quyền tập tin thành bảy-năm-năm” thì dễ hơn là “thay quyền tập tin thành đọc-viết-thực

hiện, đọc-thực hiện, đọc-thực hiện”

Dùng các ký hiệu tượng trưng

 Ta cũng có thể thay đổi quyền truy nhập một cách tương đối và dễ nhớ. Để chỉ ra nhóm

quyền nào cần thay đổi, ta có thể sử dụng u (user), g (group), o (other), hay a (all). Tiếp theo đó

là dấu + để thêm quyền và – để bớt quyền. Cuối cùng là bản thân các quyền viết tắt bởi r,w,x.

 Ví dụ như để bổ sung quyền thực hiện cho group và other, ta nhập vào dòng lệnh:
 chmod who [operation] [right] filename

 who : u có nghĩa user

 g group

 o other

 a all

 operation:

 + thêm quyền

 - bớt quyền

 = gán giá trị khác

 right:

 r reading

 w writing

 x execution

 s đặt suid hoặc guid

Ví dụ: $ chmod go+x tenfile

 Đây là cách thay đổi tương đối vì kết quả cuối cùng phụ thuộc vào quyền đã có trước đó

mà lệnh này không liên quan đến. Trên quan điểm bảo mãt hệ thống, cách thay đổi tuyệt đối

dẫn đến ít sai sót hơn.

 Thay đổi quyền thâm nhập của một thư mục cũng được thực hiện giống như đối với một

tập tin. Chú ý là nếu ta không có quyền thực hiện (execute) đối với một thư mục, ta không thể

thay đổi thư mục cd vào thư mục đó. Mọi người sử dụng có quyền viết vào thư mục đều có

quyền xóa tập tin trong thư mục đó, không phụ thuộc vào quyền của người đó đối với tập tin.

 37

 Vì vậy, đa số các thư mục có quyền drwxr-xr-x. N hư vậy chỉ có người sở hữu của thư

mục mới có quyền tạo và xóa tập tin trong thư mục. N goài ra, thư mục còn có một quyền đặc

biệt, đó là cho phép mọi người đều có quyền tạo tập tin trong thư mục, mọi người đều có quyền

thay đổi nội dung tập tin trong thư mục, nhưng chỉ có người tạo ra mới có quyền xóa tập tin. Đó

là sticky bit (bít đính kèm) cho thư mục. Thư mục /tmp thường có sticky bit bật lên
 drwxrwxrw 7 root root 16384 Oct 21 15:33 tmp

2.2 Lệnh chown

 Để thay đổi quyền sở hữu đối với một file, hãy sử dụng lệnh chown với cú pháp như sau:
 chown [tùy chọn] [chủ][.nhóm] <file ...>

 Lệnh này cho phép thay chủ sở hữu file. N ếu chỉ có tham số về chủ, thì người dùng chủ

sẽ có quyền sở hữu file và nhóm sở hữu không thay đổi.

 N ếu theo sau tên người chủ là dấu "." và tên của một nhóm thì nhóm đó sẽ nhóm sở hữu

file.

 N ếu chỉ có dấu "." và nhóm mà không có tên người chủ thì chỉ có quyền sở hữu nhóm

của file thay đổi, lúc này, lệnh chown có tác dụng giống như lệnh chgrp (lệnh chgrp được trình

bày dưới đây).

 Các tùy chọn của lệnh chown:
�- c, --changes : hiển thị dòng thông báo chỉ với các file mà lệnh làm thay đổi sở hữu

(số thông báo hiện ra có thể ít hơn trường hợp -v, -verbosr).

�- f, --silent, --quiet : bỏ qua hầu hết các thông báo lỗi.

�- R, --recursive : thực hiện đổi quyền sở hữu đối với thư mục và file theo đệ quy.

�- v, --verbose : hiển thị dòng thông báo với mọi file liên quan mà chown tác động

tới (có hoặc không thay đổi sở hữu).

�- - help : đưa ra trang trợ giúp và thoát.

 Ví dụ, thư mục vidu có thông tin về các quyền truy nhập như sau:
 drwxr-xr-x 11 duonglk root 4000 Oct 21 2008 vidu

 N gười sở hữu hiện tại thư mục vidu là người dùng duonglk. Để người dùng anhth là chủ

sở hữu thư mục trên, hãy gõ lệnh: # chown anhth vidu

 Khi chuyển quyền sở hữu file cho một người khác, người chủ cũ mất quyền sở hữu file

đó.

2.3 Lệnh chgrp

 Các file (và người dùng) còn thuộc vào các nhóm, đây là phương thức truy nhập file

thuận tiện cho nhiều người dùng nhưng không phải tất cả người dùng trên hệ thống. Khi đăng

Formatted: Bullets and Numbering

 38

nhập, mặc định sẽ là thành viên của một nhóm được thiết lập khi người dùng root tạo tài khoản

người dùng. Cho phép một người dùng thuộc nhiều nhóm khác nhau, nhưng mỗi lần đăng nhập

chỉ là thành viên của một nhóm.

 Để thay đổi quyền sở hữu nhóm đối với một hoặc nhiều file, hãy sử dụng lệnh chgrp với

cú pháp như sau:
 chgrp [tùy-chọn] {nhóm|--reference=nhómR} <file...>

 Lệnh này cho phép thay thuộc tính nhóm sở hữu của file theo tên nhóm được chỉ ra trực

tiếp theo tham số nhóm hoặc gián tiếp qua thuộc tính nhóm của file có tên là nhómR.

 Các tùy chọn của lệnh là (một số tương tự như ở lệnh chown):

�- c, --changes : hiển thị dòng thông báo chỉ với các file mà lệnh làm thay đổi sở hữu

(số thông báo hiện ra có thể ít hơn trường hợp -v, -verbosr).

�- f, --silent, --quiet : bỏ qua hầu hết các thông báo lỗi.

�- R, --recursive : thực hiện đổi quyền sở hữu đối với thư mục và file theo đệ quy.

�- v, --verbose : hiển thị dòng thông báo với mọi file liên quan mà chgrp tác động tới

(có hoặc không thay đổi sở hữu).

�- - help : hiển thị trang trợ giúp và thoát

 Tham số --reference=nhómR cho thấy cách gián tiếp thay nhóm chủ của file theo nhóm

chủ của một file khác (tên là nhómR) là cách thức được ưa chuộng hơn.

Ví dụ: Cho phép thay đổi nhóm sở hữu.
 $echo Hello > file1

 $chmod 700 file1

 $ls -l file1

 -rwx------ 1 user1 stagiair 6 Apr 5 14:06 file1

 $cat file1

 Hello

 $chgrp animator file1

 $ls -l file1

 -rwx------ 1 user1 animator 6 Apr 5 14:06 file1

 $chown user2 file1

 $ls -l file1

 -rwx------ 1 user2 animator 6 Apr 5 14:06 file1

 $cat file1

 cat: cannot open file1

Formatted: Bullets and Numbering

 39

3. Các lệnh thao tác trên thư mục

3.1 Thay đổi thư mục làm việc hiện thời với lệnh cd

 Cú pháp lệnh: cd

 Chuyển đến thư mục /usr/include : $cd /usr/include

 Chuyển trở lại thư mục “home”: $cd

 Chuyển đến thư mục cha: $cd..

3.2 Xem nội dung thư mục với lệnh ls

 Sử dụng lệnh ls và một số các tùy chọn của nó là có thể biết được mọi thông tin về một

thư mục.

 Cú pháp lệnh: # ls [tùy-chọn] [file]

 Lệnh này đưa ra danh sách các file liên quan đến tham số file trong lệnh. Trường hợp

phổ biến tham số file là một thư mục, tuy nhiên trong một số trường hợp khác, tham số file xác

định nhóm (khi sử dụng các mô tả nhóm *, ? và cặp [và]); nếu không có tham số file, mặc định

danh sách các file có trong thư mục hiện thời sẽ được hiển thị.

 Các tùy chọn của lệnh:

�- a : liệt kê tất cả các file, bao gồm cả file Nn.

�- l : đưa ra thông tin đầy đủ nhất về các file và thư mục.

�- s : chỉ ra kích thước của file, tính theo khối (1 khối = 1204 byte).

�- F : xác định kiểu file (/ = thư mục, * = chương trình khả thi).

�- m : liệt kê các file được ngăn cách nhau bởi dấu ",".

�- C : đưa ra danh sách các file và thư mục theo dạng cột (hai thư mục gần nhau

được xếp vào một cột).

�- 1 : hiển thị mỗi file hoặc thư mục trên một dòng.

�- t : sắp xếp các file và thư mục trong danh sách theo thứ tự về thời gian được sửa

đổi gần đây nhất.

�- x : đưa ra danh sách các file và thư mục theo dạng cột (hai thư mục gần nhau

được xếp trên hai dòng đầu của hai cột kề nhau).

�- r : sắp xếp danh sách hiển thị theo thứ tự ngược lại.

�- R : liệt kê lần lượt các thư mục và nội dung của các thư mục.

Ví dụ: khi gõ lệnh ls [is]* cho danh sách các file và thư mục con có tên bắt đầu bằng hoặc chữ

cái i hoặc chữ cái s có trong thư mục hiện thời:
id* sed* sh@ sha256sum* shred* sln* stat* sulogin@

install* seq* sha1sum* sha384sum* shuf* sort* stty* sum*

Formatted: Bullets and Numbering

 40

ipmask* setterm* sha224sum* sha512sum* sleep* split* su* sync*

3.3 Tạo thư mục với lệnh mkdir

 Lệnh mkdir tạo một thư mục, cú pháp: mkdir [tùy-chọn] <thư-mục>

 Lệnh này cho phép tạo một thư mục mới nếu thư mục đó chưa thực sự tồn tại. Để tạo

một thư mục, cần đặc tả tên và vị trí của nó trên hệ thống file (vị trí mặc định là thư mục hiện

thời). N ếu thư mục đã tồn tại, hệ thống sẽ thông báo cho biết.

 Các tùy chọn:

�- m, --mode=Mod : thiết lập quyền truy nhập Mod như trong lệnh chmod nhưng

không cho quyền rwxrwxrwx.

�- p, --parents : tạo các thư mục cần thiết mà không thông báo lỗi khi nó đã tồn tại.

�- - verbose : hiển thị các thông báo cho mỗi thư mục được tạo.

�- - help : đưa ra trang trợ giúp và thoát.

 N ếu muốn tạo thư mục có khoảng cách giữa các từ ta phải sử dụng dấu “ ”. N ếu muốn

tạo thư mục My Documents ta sử dụng lệnh: mkdir “ My Documents”

Ví dụ: nếu muốn tạo thư mục test trong thư mục home, hãy gõ lệnh sau: mkdir /home/test

3.4 Xóa thư mục với lệnh rmdir

 Lệnh rmdir được dùng để xóa bỏ một thư mục.

 Cú pháp lệnh: rmdir [tùy-chọn[<thư-mục>

 Có thể xóa bỏ bất kỳ thư mục nào nếu có quyền đó. Lưu ý rằng, thư mục chỉ bị xóa khi

nó "rỗng", tức là không tồn tại file hay thư mục con nào trong đó.

 Không có cách gì khôi phục lại các thư mục đã bị xóa, vì thế hãy suy nghĩ cNn thận trước

khi quyết định xóa một thư mục.

 Các tùy chọn của lệnh:

�- - ignore-fail-on-non-empty : bỏ qua các lỗi nếu xóa một thư mục không rỗng.

�- p, --parents : xóa bỏ một thư mục, sau đó lần lượt xóa bỏ tiếp các thư mục có trên

đường dẫn chứa thư mục vừa xóa. Ví dụ, dòng lệnh rmdir -p /a/b/c sẽ tương đương với

ba dòng lệnh rmdir /a/b/c, rmdir /a/b, rmdir /a (với điều kiện các thư mục là rỗng).

�- - verbose : đưa ra thông báo khi xóa một thư mục.

�- - help : hiển thị trang trợ giúp và thoát.

Ví dụ:
 # rmdir -p /test/test1/test2

 rmdir: /: No such file or directory

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 41

 Dòng lệnh trên sẽ lần lượt xóa ba thư mục test2, test1, test và hiển thị thông báo trên màn

hình kết quả của lệnh.

3.5 Xem đường dẫn thư mục hiện thời với lệnh pwd

 Cú pháp lệnh: pwd

 Lệnh này cho biết hiện người dùng đang ở trong thư mục nào và hiện ra theo dạng một

đường dẫn tuyệt đối.

Ví dụ: gõ lệnh pwd tại dấu nhắc lệnh sau khi người dùng duonglk vừa đăng nhập thì màn hình

hiển thị như sau:
 # pwd

 /home/duonglk

3.6 Lệnh đổi tên thư mục với lệnh mv

 Cú pháp lệnh: mv <tên-cũ> <tên-mới>

 Lệnh này cho phép đổi tên một thư mục từ tên-cũ thành tên-mới.

Ví dụ: # mv Tongket thongke sẽ đổi tên thư mục Tongket thành thongke .

 N ếu sử dụng lệnh mv để đổi tên một thư mục với một cái tên đã được đặt cho một file thì

lệnh sẽ gặp lỗi. N ếu tên mới trùng với tên một thư mục đang tồn tại thì nội dung của thư mục

được đổi tên sẽ ghi đè lên nội dung của thư mục trùng tên.

4. Các lệnh thao tác trên file

4.1 Tạo file với lệnh touch

 Lệnh touch có nhiều chức năng, trong đó một chức năng là giúp tạo file mới trên hệ

thống: touch rất hữu ích cho việc tổ chức một tập hợp các file mới.

 Cú pháp lệnh: touch <file>

 Thực chất lệnh này có tác dụng dùng để cập nhật thời gian truy nhập và sửa chữa lần

cuối của một file. Vì lý do này, các file được tạo bằng lệnh touch đều được sắp xếp theo thời

gian sửa đổi. N ếu sử dụng lệnh touch đối với một file chưa tồn tại, chương trình sẽ tạo ra file

đó. Sử dụng bất kỳ trình soạn thảo nào để soạn thảo file mới.

Ví dụ: dùng lệnh touch để tạo file newfile: # touch newfile

4.2 Tạo file với lệnh cat

 Lệnh cat tuy đơn giản nhưng rất hữu dụng trong Linux. Chúng ta có thể sử dụng lệnh

này để lấy thông tin từ đầu vào (bàn phím...) rồi kết xuất ra file hoặc các nguồn khác, hay để

xem nội dung của một file ... Phần này trình bày tác dụng của lệnh cat đối với việc tạo file.

 Cú pháp lệnh: cat > filename

 42

 Theo ngầm định, lệnh này cho phép lấy thông tin đầu vào từ bàn phím rồi xuất ra màn

hình. Soạn thảo nội dung của một file bằng lệnh cat tức là đã đổi hướng đầu ra của lệnh từ màn

hình vào một file. N gười dùng gõ nội dung của file ngay tại dấu nhắc màn hình và gõ CTRL+d

để kết thúc việc soạn thảo.

 N hược điểm của cách tạo file này là nó không cho phép sửa lỗi, ví dụ nếu muốn sửa một

lỗi chính tả trên một dòng, chỉ có cách là xóa đến vị trí của lỗi và gõ lại nội dung vừa bị xóa.

Ví dụ: tạo file newfile trong thư mục /home/vd bằng lệnh cat.
cat > /home/vd/newfile

This is a example of cat command

^D

 Sau khi soạn thảo xong, gõ Enter và CTRL+d để trở về dấu nhắc lệnh, nếu không gõ

Enter thì phải gõ CTRL+d hai lần. Khi sử dụng lệnh này, nếu file chưa tồn tại thì sẽ tạo file

mới, nếu file đó đã tồn tại thì sẽ xóa file cũ và tạo file mới. Có thể sử dụng luôn lệnh cat để xem

nội dung của file vừa soạn thảo:
cat /home/vd/newfile

This is a example of cat command

 Để thêm nội dung vào phần cuối của file có sẵn dùng lệnh: cat >> filename.

 Để tổng hợp hai tập tin thành một ta sử dụng cú pháp lệnh sau: $cat file1 file2 > file3

4.3 Xem nội dung các file lớn với lệnh more

 Lệnh cat cho phép xem nội dung của một file, nhưng nếu file quá lớn, nội dung file sẽ

trôi trên màn hình và chỉ có thể nhìn thấy phần cuối của file. Linux có một lệnh cho phép có thể

xem nội dung của một file lớn theo từng trang màn hình, đó là lệnh more.

 Cú pháp lệnh: more [-tùy chọn] [-số] [+/xâumẫu] [+dòng-số] [file ...]

 Các tùy chọn:

�- số: xác định số dòng nội dung của file được hiển thị (số).

�- d: trên màn hình sẽ hiển thị các thông báo giúp người dùng cách sử dụng đối với

lệnh more, ví như [Press space to continue, "q" to quit .], hay hiển thị [Press "h" for

instructions .] thay thế cho tiếng chuông cảnh báo khi bấm sai một phím.

�- l: more thường xem ^L là một ký tự đặc biệt, nếu không có tùy chọn này, lệnh sẽ

dừng tại dòng đầu tiên có chứa ^L và hiển thị % nội dung đã xem được (^L không bị

mất), nhấn phím space (hoặc enter) để tiếp tục. N ếu có tùy chọn -l, nội dung của file sẽ

được hiển thị như bình thường nhưng ở một khuôn dạng khác, tức là dấu ^L sẽ mất và

trước dòng có chứa ^L sẽ có thêm một dòng trống.

Formatted: Bullets and Numbering

 43

�- p: không cuộn màn hình, thay vào đó là xóa những gì có trên màn hình và hiển thị

tiếp nội dung file.

�- c: không cuộn màn hình, thay vào đó xóa màn hình và hiển thị nội dung file bắt

đầu từ đỉnh màn hình.

�- s: xóa bớt các dòng trống liền nhau trong nội dung file chỉ giữ lại một dòng.

�- u: bỏ qua dấu gạch chân.

� +/xâumẫu : tùy chọn +/xâumẫu chỉ ra một chuỗi sẽ được tìm kiếm trước khi hiển thị

 mỗi file.

� +dòng-số : bắt đầu hiển thị từ dòng thứ dòng-số.

Ví dụ:
more -d vdmore

total 1424

drwxr-xr-x 6 root root 4096 Oct 31 2000 AfterStep-1.8.0

drwxr-xr-x 2 root root 4096 Oct 31 2000 AnotherLevel

drwxr-xr-x 2 root root 4096 Oct 31 2000 ElectricFence

drwxr-xr-x 2 root root 4096 Oct 31 2000 GXedit-1.23

drwxr-xr-x 3 root root 4096 Oct 31 2000 HTML

drwxr-xr-x 3 root root 4096 Oct 31 2000 ImageMagick

drwxr-xr-x 6 root root 4096 Oct 31 2000 LDP

drwxr-xr-x 3 root root 4096 Oct 31 2000 ORBit-0.5.0

drwxr-xr-x 2 root root 4096 Oct 31 2000 SVGATextMode

drwxr-xr-x 2 root root 4096 Oct 31 2000 SysVinit-2.78

drwxr-xr-x 2 root root 4096 Oct 31 2000 WindowMaker

--More--(9%) [Press space to continue, "q" to quit .]

 Đối với lệnh more, có thể sử dụng một số các phím tắt để thực hiện một số các thao tác

đơn giản trong khi đang thực hiện lệnh. Bảng dưới đây liệt kê các phím tắt đó:

Phím tắt Chức năng

[Space]

n

[Enter]

h

d hoặc CTRL+D

q hoặc CTRL+Q

s

N hấn phím space để hiển thị màn hình tiếp theo

Hiển thị n dòng tiếp theo

Hiển thị dòng tiếp theo

Hiển thị danh sách các phím tắt

Cuộn màn hình (mặc định là 11 dòng)

Thoát khỏi lệnh more

Bỏ qua n dòng (mặc định là 1)

 44

f

b hoặc CTRL+B

=

:n

:p

v

CTRL+L

:f

.

Bỏ qua k màn hình tiếp theo (mặc định là 1)

Trở lại k màn hình trước (mặc định là 1)

Hiển thị số dòng hiện thời

xem k file tiếp theo

Trở lại k file trước

Chạy chương trình soạn thảo vi tại dòng hiện thời

Vẽ lại màn hình

Hiển thị tên file hiện thời và số dòng

Lặp lại lệnh trước

4.4 Thêm số thứ tự của các dòng trong file với lệnh nl

 N hư đã biết lệnh cat với tham số -n sẽ đánh số thứ tự của các dòng trong file, tuy nhiên

Linux còn cho phép dùng lệnh nl để thực hiện công việc như vậy.

 Cú pháp lệnh: nl [tùy-chọn] <file>

 Lệnh này sẽ đưa nội dung file ra thiết bị ra chuNn, với số thứ tự của dòng được thêm vào.

N ếu không có file (tên file), hoặc khi file là dấu "-", thì đọc nội dung từ thiết bị vào chuNn.

 Các tuỳ chọn:

�- b, --body-numbering=STYLE: sử dụng kiểu STYLE cho việc đánh thứ tự các

dòng trong nội dung file. Có các kiểu STYLE sau:

�- a : đánh số tất cả các dòng kể cả dòng trống;

�- t : chỉ đánh số các dòng không trống;

�- n : không đánh số dòng.

�- d, --section-delimiter=CC : sử dụng CC để đánh số trang logic (CC là hai ký tự

xác định phạm vi cho việc phân trang logic).

�- f, --footer-numbering=STYLE : sử dụng kiểu STYLE để đánh số các dòng trong

nội dung file (một câu có thể có hai dòng ...).

�- h, --header-numbering=STYLE : sử dụng kiểu STYLE để đánh số các dòng trong

nội dung file.

�- i, --page-increment=số : đánh số thứ tự của dòng theo cấp số cộng có công sai là

số.

�- l, --join-blank-lines=số :nhóm số dòng trống vào thành một dòng trống.

�- n, --number-format=khuôn: chèn số dòng theo khuôn (khuôn: ln - căn trái, không

có số 0 ở đầu; rn - căn phải, không có số 0 ở đầu; rz - căn phải và có số 0 ở đầu).

Formatted: Bullets and Numbering

 45

�- p, --no-renumber : không thiết lập lại số dòng tại mỗi trang logic.

�- s, --number-separator=xâu : thêm chuỗi xâu vào sau số thứ tự của dòng.

�- v, --first-page=số : số dòng đầu tiên trên mỗi trang logic.

�- w, --number-width=số : hiển thị số thứ tự của dòng trên cột thứ số.

�- - help : hiển thị trang trợ giúp và thoát.

Ví dụ:
cat > hello

noi dung trong file hello

noi dung trong file hello

^D

nl --body-numbering=a --number-format=rz hello

000001 noi dung trong file hello

000002 noi dung trong file hello

 Lệnh trong ví dụ trên cho thêm số thứ tự của các câu trong file hello theo dạng: đánh số

thứ tự tất cả các dòng, kể cả dòng trống, các số thứ tự được căn phải và có số 0 ở đầu (lưu ý

rằng có dòng trong file được hiện ra thành hai dòng trên giấy).

4.5 Xem nội dung file với lệnh head

 Các đoạn trước cho biết cách thức xem nội dung của một file nhờ lệnh cat hay more.

Trong Linux cũng có các lệnh khác cho nhiều cách thức để xem nội dung của một file. Trước

hết, chúng ta hãy làm quen với lệnh head.

 Cú pháp lệnh: head [tùy-chọn] [filename]...

 Lệnh này mặc định sẽ đưa ra màn hình 10 dòng đầu tiên của mỗi file. N ếu có nhiều hơn

một file, thì lần lượt tên của file và 10 dòng nội dung đầu tiên sẽ được hiển thị. N ếu không có

tham số filename, hoặc filename là dấu "-", thì ngầm định sẽ đọc từ thiết bị vào chuNn.

 Các tuỳ chọn:

�- c, --bytes=cỡ : hiển thị cỡ (số nguyên) ký tự đầu tiên trong nội dung file (cỡ có thể

nhận giá trị là b cho 512, k cho 1K, m cho 1 Meg)

�- n, --lines=n : hiển thị n (số nguyên) dòng thay cho 10 dòng ngầm định.

�- q, --quiet, --silent : không đưa ra tên file ở dòng đầu.

�- v, --verbose : luôn đưa ra tên file ở dòng đầu.

�- - help : hiển thị trang trợ giúp và thoát.

4.6 Xem nội dung file với lệnh tail

 Lệnh thứ hai cho phép xem qua nội dung của file là lệnh tail.

 Cú pháp lệnh: tail [tùy-chọn] [file]...

Formatted: Bullets and Numbering

 46

 Lệnh tail ngầm định đưa ra màn hình 10 dòng cuối trong nội dung của các file. N ếu có

nhiều hơn một file, thì lần lượt tên của file và 10 dòng cuối sẽ được hiển thị. N ếu không có

tham số file, hoặc file là dấu "-" thì ngầm định sẽ đọc từ thiết bị vào chuNn.

 Các tùy chọn:

�- - retry : cố gắng mở một file khó truy nhập khi bắt đầu thực hiện lệnh tail.

�- c, --bytes=n : hiển thị n (số) ký tự sau cùng.

�- f, --follow[={name | descritptor}] : sau khi hiện nội dung file sẽ hiện thông tin về

file: -f, --follow, và --follow=descriptor là như nhau.

�- n, --lines=n : hiển thị n (số) dòng cuối cùng của file thay cho 10 dòng ngầm định.

�- - max-unchanged-stats=n : hiển thị tài liệu về file (ngầm định n là 5).

�- - max-consecutive-size-changes=n : hiển thị tài liệu về file (ngầm định n là 200).

�- - pid=PID : kết hợp với tùy chọn -f, chấm dứt sau khi quá trình có chỉ số = PID

lỗi.

�- q, --quiet, --silent : không đưa ra tên file ở dòng đầu trong nội dung được hiển thị.

�- s, --sleep-interval=k : kết hợp với tùy chọn -f, dừng k giây giữa các hoạt động.

�- v, --verbose : luôn hiển thị tên của file.

�- - help : hiển thị trang trợ giúp và thoát.

4.7 Sử dụng lệnh file để xác định kiểu file

 Cú pháp lệnh file: file [tùy-chọn] [-f file] [-m <file-ảnh>...] <file>...

 Lệnh file cho phép xác định và in ra kiểu thông tin chứa trong file. Lệnh file sẽ lần lượt

kiểm tra từ kiểu file hệ thống, kiểu file magic (ví dụ file mô tả thiết bị) rồi đến kiểu file văn bản

thông thường.

 N ếu file được kiểm tra thỏa mãn một trong ba kiểu file trên thì kiểu file sẽ được in ra

theo các dạng cơ bản sau:

�- text: dạng file văn bản thông thường, chỉ chứa các mã ký tự ASCII.

�- executable: dạng file nhị phân khả thi.

�- data: thường là dạng file chứa mã nhị phân và không thể in ra được.

 Một số tuỳ chọn sau đây:

�- b : cho phép chỉ đưa ra kiểu file mà không đưa kèm theo tên file.

�- f tên-file : cho phép hiển thị kiểu của các file có tên trùng với nội dung trên mỗi

dòng trong file tên-file. Để kiểm tra trên thiết bị vào chuNn, sử dụng dấu "-".

�- z : xem kiểu của file nén.

Ghi chú: N hớ rằng kết quả của lệnh file không phải lúc nào cũng chính xác tuyệt đối.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 47

4.8 Lệnh wc dùng để đếm số ký tự, số từ, hay số dòng trong một file

 Cú pháp lệnh: wc [tùy-chọn] [file]...

 Lệnh hiện ra số lượng dòng, số lượng từ, số lượng ký tự có trong mỗi file, và một dòng

tính tổng nếu có nhiều hơn một file được chỉ ra. N ếu không có tùy chọn nào thì mặc định đưa ra

cả số dòng, số từ và số ký tự. N gầm định khi không có tên file trong lệnh thì sẽ đọc và đếm trên

thiết bị vào chuNn.

 Các tuỳ chọn:

�- c, --byte, --chars : đưa ra số ký tự trong file.

�- l, --lines : đưa ra số dòng trong file.

�- L, --max-line-length : đưa ra chiều dài của dòng dài nhất trong file.

�- w, --words : đưa ra số từ trong file.

�- - help : hiển thị trang trợ giúp và thoát.

 Khi gõ lệnh wc mà không có một tham số nào, mặc định sẽ soạn thảo trực tiếp nội dung

trên thiết bị vào chuNn. Dùng CTRL+d để kết thúc việc soạn thảo, kết quả sẽ hiển thị lên màn

hình.

� Bằng cách kết hợp lệnh wc với một số lệnh khác, có thể có nhiều cách để biết được

những thông tin cần thiết.

 Kết hợp với lệnh ls để xác định số file có trong một thư mục: # ls | wc -l

 Kết hợp với lệnh cat để biết số tài khoản cá nhân có trên máy của người dùng:
 # cat /etc/passwd | wc -l

4.9 So sánh nội dung hai file sử dụng lệnh diff

 Việc tìm ra sự khác nhau giữa hai file đôi khi là rất cần thiết. Linux có một lệnh có tác

dụng như vậy, đó là lệnh diff .

 Cú pháp: diff [tuỳ-chọn] <file1> <file2>

 Trong trường hợp đơn giản, lệnh diff sẽ so sánh nội dung của hai file. N ếu file1 là một

thư mục còn file2 là một file bình thường, diff sẽ so sánh file có tên trùng với file2 trong thư

mục file1 với file2.

 N ếu cả file1 và file2 đều là thư mục, diff sẽ thực hiện sự so sánh lần lượt các file trong cả

hai thư mục theo thứ tự từ a-z (sự so sánh này sẽ không đệ qui nếu tuỳ chọn -r hoặc --recursive

không được đưa ra). Tất nhiên so sánh giữa hai thư mục không thể chính xác như khi so sánh

hai file.

 Các tuỳ chọn:

�- a: xem tất cả các file ở dạng văn bản và so sánh theo từng dòng.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 48

�- b: bỏ qua sự thay đổi về số lượng của ký tự trống.

�- B: bỏ qua mọi sự thay đổi mà chỉ chèn hoặc xoá các dòng trống.

�- - brief: chỉ thông báo khi có sự khác nhau mà không đưa ra chi tiết nội dung khác

nhau.

�- d: tìm ra sự khác biệt nhỏ (tuỳ chọn này có thể làm chậm tốc độ làm việc của lệnh

diff).

�- - exclude-from=file: khi so sánh thư mục, bỏ qua các file và các thư mục con có

tên phù hợp với mẫu có trong file.

�- i: so sánh không biệt chữ hoa chữ thường.

�- r: thực hiện so sánh đệ qui trên thư mục.

�- s: thông báo khi hai file là giống nhau.

�- y: hiển thị hai file cạnh nhau để dễ phân biệt sự khác nhau.

4.10 Xóa file với lệnh rm

 Lệnh rm là lệnh rất "nguy hiểm" vì trong Linux không có lệnh khôi phục lại những gì đã

xóa, vì thế hãy cNn trọng khi sử dụng lệnh này. Lệnh rm cho phép xóa bỏ một file hoặc nhiều

file.

 Cú pháp lệnh: rm [tùy-chọn] <file> ...

 Các tùy chọn:

�- d, --directory : loại bỏ liên kết của thư mục, kể cả thư mục không rỗng. Chỉ có

siêu người dùng mới được phép dùng tùy chọn này.

�- f, --force : bỏ qua các file (xác định qua tham số file) không tồn tại mà không cần

nhắc nhở.

�- i, --interactive : nhắc nhở trước khi xóa bỏ một file.

�- r, -R, --recursive : xóa bỏ nội dung của thư mục một cách đệ quy.

�- v, --verbose : đưa ra các thông báo về quá trình xóa file.

�- - help : hiển thị trang trợ giúp và thoát.

 Lệnh rm cho phép xóa nhiều file cùng một lúc bằng cách chỉ ra tên của các file cần xóa

trong dòng lệnh (hoặc dùng kí kiệu mô tả nhóm). Dùng lệnh # rm bak/*.h xóa mọi file với tên

có hai kí hiệu cuối cùng là ".h" trong thư mục con bak.

4.11 Sao chép tập tin với lệnh cp

 Lệnh cp có hai dạng như sau:

cp [tùy-chọn] <file-nguồn> ... <file-đích>

Formatted: Bullets and Numbering

 49

cp [tùy-chọn] --target-directory=<thư-mục> <file-nguồn>...

 Lệnh này cho phép sao file-nguồn thành file-đích hoặc sao chép từ nhiều file-nguồn vào

một thư mục đích (tham số <file-đích> hay <thư-mục>). Dạng thứ hai là một cách viết khác đổi

thứ tự hai tham số vị trí.

 Các tùy chọn:

�- a, --archive : giống như -dpR (tổ hợp ba tham số -d, -p, -R, như dưới đây).

�- b, --backup[=CON TROL] : tạo file lưu cho mỗi file đích nếu như nó đang tồn tại.

�- d, --no-dereference : duy trì các liên kết.

�- f, --force : ghi đè file đích đang tồn tại mà không nhắc nhở.

�- i, --interactive : có thông báo nhắc nhở trước khi ghi đè.

�- l, --link : chỉ tạo liên kết giữa file-đích từ file-nguồn mà không sao chép.

�- p, --preserve : duy trì các thuộc tính của file-nguồn sang file-đích.

�- r : cho phép sao chép một cách đệ quy file thông thường.

�- R : cho phép sao chép một cách đệ quy thư mục.

�- s, --symbolic-link : tạo liên kết tượng trưng thay cho việc sao chép các file.

�- S, --suffix=<hậu-tố> : bỏ qua các hậu tố thông thường (hoặc được chỉ ra).

�- u, --update : chỉ sao chép khi file nguồn mới hơn file đích hoặc khi file đích chưa

có.

�- v, --verbose : đưa ra thông báo về quá trình sao chép.

�- - help : hiển thị trang trợ giúp và thoát.

 File đích được tạo ra có cùng kích thước và các quyền truy nhập như file nguồn, tuy

nhiên file đích có thời gian tạo lập là thời điểm thực hiện lệnh nên các thuộc tính thời gian sẽ

khác.

Ví dụ:
 # cp /home/ftp/vd /home/test/vd1

 N ếu ở vị trí đích, mô tả đầy đủ tên file đích thì nội dung file nguồn sẽ được sao chép

sang file đích. Trong trường hợp chỉ đưa ra vị trí file đích được đặt trong thư mục nào thì tên

của file nguồn sẽ là tên của file đích.
 # cp /home/ftp/vd /home/test/

 Trong ví dụ này, tên file đích sẽ là vd nghĩa là tạo một file mới /home/test/vd.

 N ếu sử dụng lệnh này để sao một thư mục, sẽ có một thông báo được đưa ra cho biết

nguồn là một thư mục và vì vậy không thể dùng lệnh cp để sao chép.
 # cp . newdir

 cp: .: omitting directory

Formatted: Bullets and Numbering

 50

Ví dụ: về việc lệnh cp cho phép sao nhiều file cùng một lúc vào một thư mục.
cp vd vd1 newdir

pwd

/newdir

ls -l

total 8

-rw-r--r-- 1 root ftp 15 Nov 14 11:00 vd

-rw-r--r-- 1 root ftp 12 Nov 14 11:00 vd1

 Đối với nhiều lệnh làm việc với file, khi gõ lệnh có thể sử dụng kí hiệu mô tả nhóm để

xác định một nhóm file làm cho tăng hiệu lực của các lệnh đó. Ví dụ, lệnh: # cp * bak thực hiện

việc sao chép mọi file có trong thư mục hiện thời sang thư mục con của nó có tên là bak.

 Dùng lệnh: # cp /usr/src/linux-2.2.14/include/linux/*.h bak cho phép sao chép mọi file

với tên có hai kí hiệu cuối cùng là ".h" sang thư mục con bak.

 Chính vì lí do nói trên, dù trong nhiều lệnh tuy không nói đến việc sử dụng kí hiệu mô tả

nhóm file nhưng chúng ta có thể áp dụng chúng nếu điều đó không trái với suy luận thông

thường. Do những tình huống như thế là quá phong phú cho nên không thể giới thiệu hết trong

tài liệu. Chúng ta chú ý một giải pháp là mỗi khi sử dụng một lệnh nào đó, nên thử nghiệm cách

thức hiệu quả này.

4.12 Đổi tên file với lệnh mv

 Cú pháp lệnh đổi tên file: mv <tên-cũ> <tên-mới>

 Lệnh này cho phép đổi tên file từ tên cũ thành tên mới.

Ví dụ:
mv vd newfile

 Lệnh này sẽ đổi tên file vd thành newfile. Trong trường hợp file newfile đã tồn tại, nội

dung của file vd sẽ ghi đè lên nội dung của file newfile

4.13 Lệnh uniq loại bỏ những dòng không quan trọng trong file

 Trong một số trường hợp khi xem nội dung một file, chúng ta thấy có một số các thông

tin bị trùng lặp, ví dụ các dòng trống hoặc các dòng chứa nội dung giống nhau. Để đồng thời

làm gọn và thu nhỏ kích thước của file, có thể sử dụng lệnh uniq để liệt kê ra nội dung file sau

khi đã loại bỏ các dòng trùng lặp.

 Cú pháp lệnh: uniq [tùy-chọn] [input] [output]

 Lệnh uniq sẽ loại bỏ các dòng trùng lặp kề nhau từ input (thiết bị vào chuNn) và chỉ giữ

lại một dòng duy nhất trong số các dòng trùng lặp rồi đưa ra output (thiết bị ra chuNn).

 Các tuỳ chọn:

 51

�- c, --count : đếm và hiển thị số lần xuất hiện của các dòng trong file.

�- d : hiển thị lên màn hình dòng bị trùng lặp.

�- u : hiển thị nội dung file sau khi xóa bỏ toàn bộ các dòng bị trùng lặp không giữ

lại một dòng nào.

�- i : hiển thị nội dung file sau khi xóa bỏ các dòng trùng lặp và chỉ giữ lại duy nhất

một dòng có nội dung bị trùng lặp.

�- D : hiển thị tất cả các dòng trùng lặp trên màn hình.

 N ếu sử dụng lệnh uniq trên một file không có các dòng trùng lặp thì lệnh không có tác

dụng.

Ví dụ: người dùng sử dụng lệnh cat để xem nội dung file vduniq
cat vduniq

Gnome có hai phương pháp để thoát ra ngoài.

Gnome có hai phương pháp để thoát ra ngoài.

Để thoát bằng cách sử dụng menu chính, hãy mở

menu chính, chọn mục Logout ở đáy menu.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

Nếu muốn thoát bằng cách sử dụng nút Logout trên Panel, trước hết phải

thêm nút này vào Panel.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

 Trong file vduniq có hai dòng bị trùng lặp và kề nhau là dòng thứ 1 và 2.
Gnome có hai phương pháp để thoát ra ngoài.

Gnome có hai phương pháp để thoát ra ngoài.

và dòng thứ 5 và 6
Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

 Dùng lệnh uniq để loại bỏ dòng trùng lặp:
uniq vduniq

Gnome có hai phương pháp để thoát ra ngoài.

Để thoát bằng cách sử dụng menu chính, hãy mở

menu chính, chọn mục Logout ở đáy menu.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

Nếu muốn thoát bằng cách sử dụng nút Logout trên Panel, trước hết phải

thêm nút này vào Panel.

Chọn YES/ NO để kết thúc phiên làm việc với Gnome.

 Dòng cuối cùng trong file vduniq có nội dung trùng với dòng thứ 5, nhưng sau lệnh uniq,

nó không bị xóa vì không kề với dòng có nội dung trùng lặp.

Formatted: Bullets and Numbering

 52

4.14 Sắp xếp nội dung file với lệnh sort

 Là lệnh đọc các thông tin và sắp xếp chúng theo thứ tự trong bảng chữ cái hoặc theo thứ

tự được quy định theo các tùy chọn của lệnh.

 Cú pháp lệnh: sort [tùy-chọn] [file] ...

 Hiển thị nội dung sau khi sắp xếp của một hoặc nhiều file ra thiết bị ra chuNn là tác dụng

của lệnh sort. N gầm định sắp xếp theo thứ tự từ điển của các dòng có trong các file (từng chữ

cái theo bảng chữ hệ thống (chẳng hạn ASCII) và kể từ vị trí đầu tiên trong các dòng).

� Các tùy chọn:

+<số1> [-<số2>] : Hai giá trị số1 và số2 xác định "khóa" sắp xếp của các dòng, thực chất

lấy xâu con từ vị trí số1 tới vị trí số2 của các dòng để so sánh lấy thứ tự sắp xếp các

dòng. N ếu số2 không có thì coi là hết các dòng; nếu số2 nhỏ hơn số1 thì bỏ qua lựa chọn

này. Chú ý, nếu có số2 thì phải cách số1 ít nhất một dấu cách.

�- b : bỏ qua các dấu cách đứng trước trong phạm vi sắp xếp.

�- c : kiểm tra nếu file đã sắp xếp thì thôi không sắp xếp nữa.

�- d : xem như chỉ có các ký tự [a-zA-Z0-9] trong khóa sắp xếp, các dòng có các kí

tự đặc biệt (dấu cách, ? ...) được đưa lên đầu.

�- f : sắp xếp không phân biệt chữ hoa chữ thường.

�- n : sắp xếp theo kích thước của file.

�- r : chuyển đổi thứ tự sắp xếp hiện thời.

Ví dụ: muốn sắp xếp file vdsort
cat vdsort

trước hết phải thêm nút này vào Panel.

21434

bạn xác nhận là có thực sự muốn thoát hay không.

menu chính, chọn mục Logout ở đáy menu.

Bạn có thể sử dụng mục Logout từ menu chính

Gnome có hai phương pháp để thoát ra ngoài.

hoặc nút Logout trên Panel chính để thoát ra ngoài.

Khi đó một hộp thoại Logout sẽ xuất hiện yêu cầu

57879

Lựa chọn YES hoặc NO để kết thúc phiên làm việc với Gnome.

Nó không cung cấp chức năng hoạt động nào khác ngoài chức năng này.

Nó không cung cấp chức năng hoạt động nào khác ngoài chức năng này.

Nếu muốn thoát bằng cách sử dụng nút Logout trên Panel,

sort -f vdsort

21434

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 53

57879

Bạn có thể sử dụng mục Logout từ menu chính

bạn xác nhận là có thực sự muốn thoát hay không.

Gnome có hai phương pháp để thoát ra ngoài.

hoặc nút Logout trên Panel chính để thoát ra ngoài.

Khi đó một hộp thoại Logout sẽ xuất hiện yêu cầu

Lựa chọn YES hoặc NO để kết thúc phiên làm việc với Gnome.

menu chính, chọn mục Logout ở đáy menu.

Nếu muốn thoát bằng cách sử dụng nút Logout trên Panel,

Nó không cung cấp chức năng hoạt động nào khác ngoài chức năng này.

Nó không cung cấp chức năng hoạt động nào khác ngoài chức năng này.

trước hết phải thêm nút này vào Panel.

 Có thể kết hợp lệnh sort với các lệnh khác, ví dụ: # ls -s | sort –n

 Lệnh này cho thứ tự sắp xếp của các file theo kích thước trong thư mục hiện thời

4.15 Tìm theo nội dung file bằng lệnh grep

 Lệnh grep cũng như lệnh ls là hai lệnh rất quan trọng trong Linux. Lệnh này có hai tác

dụng cơ bản, tác dụng thứ nhất là lọc đầu ra của một lệnh khác.

 Cú pháp là: <lệnh> | grep <mẫu lọc>

�tác dụng thứ hai, là tìm dòng chứa mẫu đã định trong file được chỉ ra.

 Cú pháp lệnh grep: grep [tùy-chọn] <mẫu-lọc> [file]

 Lệnh grep hiển thị tất cả các dòng có chứa mẫu-lọc trong file được chỉ ra (hoặc từ thiết

bị vào chuNn nếu không có file hoặc file có dạng là dấu "-")

 Các tùy chọn:

�- G, --basic-regexp : xem mẫu lọc như một biểu thức thông thường. Điều này là

ngầm định.

�- E, --extended-regexp : xem mẫu lọc như một biểu thức mở rộng.

�- F, --fixed-strings : xem mẫu như một danh sách các xâu cố định, được phân ra bởi

các dòng mới. N goài lệnh grep còn có hai lệnh là egrep và fgrep. egrep tương tự như

lệnh grep -E, fgrep tương tự với lệnh grep -F .

 Lệnh grep còn có các tùy chọn sau:

�- A N UM, --after-context=N UM : đưa ra N UM dòng nội dung tiếp theo sau dòng

có chứa mẫu.

�- B N UM, --before-context=N UM : đưa ra N UM dòng nội dung trước dòng có

chứa mẫu.

�- C [N UM], --context[=N UM] : hiển thị N UM dòng (mặc định là 2 dòng) nội dung.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 54

�- N UM : giống --context=N UM đưa ra các dòng nội dung trước và sau dòng có

chứa mẫu. Tuy nhiên, grep sẽ không đưa ra dòng nào nhiều hơn một lần.

�- b, --byte-offset : hiển thị địa chỉ tương đối trong file đầu vào trước mỗi dòng được

đưa ra

�- c, --count : đếm số dòng tương ứng chứa mẫu trong file đầu vào thay cho việc

hiển thị các dòng chứa mẫu.

�- d ACTION , --directories=ACTION : nếu đầu vào là một thư mục, sử dụng

ACTION để xử lý nó. Mặc định, ACTION là read, tức là sẽ đọc nội dung thư mục như

một file thông thường. N ếu ACTION là skip, thư mục sẽ bị bỏ qua. N ếu ACTION là

recurse, grep sẽ đọc nội dung của tất cả các file bên trong thư mục (đệ quy); tùy chọn

này tương đương với tùy chọn -r.

�- f file, --file=file : lấy các mẫu từ file, một mẫu trên một dòng. File trống chứa

đựng các mẫu rỗng, và các dòng đưa ra cũng là các dòng trống.

�- H, --with-file : đưa ra tên file trên mỗi dòng chứa mẫu tương ứng.

�- h, --no-filename : không hiển thị tên file kèm theo dòng chứa mẫu trong trường

hợp tìm nhiều file.

�- i : hiển thị các dòng chứa mẫu không phân biệt chữ hoa chữ thường.

�- l : đưa ra tên các file trùng với mẫu lọc.

�- n, --line-number : thêm số thứ tự của dòng chứa mẫu trong file.

�- r, --recursive : đọc tất cả các file có trong thư mục (đệ quy).

�- s, --no-messages : bỏ qua các thông báo lỗi file không đọc được hoặc không tồn

tại.

�- v, --invert-match : hiển thị các dòng không chứa mẫu.

�- w, --word-regexp : chỉ hiển thị những dòng có chứa mẫu lọc là một từ trọn vẹn.

�- x, --line-regexp : chỉ hiển thị những dòng mà nội dung trùng hoàn toàn với mẫu

lọc.

 Cũng có thể sử dụng các ký hiệu biểu diễn thông thường (regular - expression) trong

mẫu lọc để đưa ra được nhiều cách tìm kiếm file khác nhau.

� N goài các tùy chọn khác nhau, lệnh grep còn có hai dạng nữa trên Linux. Hai dạng đó là

egrep - sử dụng với các mẫu lọc phức tạp, và fgrep - sử dụng để tìm nhiều mẫu lọc cùng một

lúc. Thỉnh thoảng một biểu thức đơn giản không thể xác định được đối tượng cần tìm, ví dụ,

như đang cần tìm các dòng có một hoặc hai mẫu lọc. N hững lúc đó, lệnh egrep tỏ ra rất có ích.

Formatted: Bullets and Numbering

 55

egrep - expression grep - có rất nhiều các ký hiệu biểu diễn mạnh hơn grep. Dưới đây là các ký

hiệu hay dùng:

Ví dụ:

giả sử bây giờ muốn tìm các dòng có chứa một hoặc nhiều hơn ký tự b trên file passwk với lệnh

egrep.
egrep 'b+' /etc/passwd | head

cho ra các dòng kết quả sau:
root : x : 0 : 0 : root : /root : /bin/bash

bin : x : 1 : 1 : bin : /bin :

daemon : x : 2 : 2 : daemon : /sbin :

sync : x : 5 : 0 : sync : /sbin : /bin/sync

shutdown : x : 6 : 0 : shutdown : /sbin : /sbin/shutdown

halt : x : 7 : 0 : halt : /sbin : /sbin/halt

gopher : x : 13 : 30 : gopher : /usr/lib/gopher-data :

nobody : x : 99 : 99 : Nobody : / :

xfs : x : 43 : 43 : X Font Server : /etc/X11/fs : /bin/false

named : x : 25 : 25 : Named : /var/named : /bin/false

 Bất kỳ lúc nào muốn tìm các dòng có chứa nhiều hơn một mẫu lọc, egrep là lệnh tốt nhất

để sử dụng.

� Có những lúc cần phải tìm nhiều mẫu lọc trong một lúc. Ví dụ, có một file chứa rất nhiều

mẫu lọc và muốn sử dụng một lệnh trong Linux để tìm các dòng có chứa các mẫu đó. Lệnh

fgrep sẽ làm được điều này.

Ký hiệu Ý nghĩa

c

\c

^

$

.

[xy]

[^xy]

c*

c+

c?

a | b

(a)

- thay thế cho ký tự c

- hiển thị c như là một ký tự bình thường nếu c là một ký tự điều khiển

- bắt đầu một dòng

- kết thúc dòng

- thay cho một ký tự đơn

- chọn một ký tự trong tập hợp các ký tự được đưa ra

- chọn một ký tự không thuộc tập hợp các ký tự được đưa ra

- thay cho một mẫu có hoặc không chứa ký tự c

- thay cho một mẫu có chứa một hoặc nhiều hơn ký tự c

- thay cho một mẫu không có hoặc chỉ có chứa duy nhất một ký tự c

- hoặc là a hoặc là b

- a một biểu thức

Formatted: Bullets and Numbering

 56

Ví dụ: file thu có nội dung như sau:
cat thu

/dev/hda4: Linux/i386 ext2 filesystem

/dev/hda5: Linux/i386 swap file

/dev/hda8: Linux/i386 swap file

/dev/hda9: empty

/dev/hda10: empty

thutest

toithutest

và file mauloc có nội dung là:
cat mauloc

empty

test

 Bây giờ muốn sử dụng nội dung file mauloc làm mẫu lọc để tìm các câu trong file thu,

hãy gõ lệnh:
fgrep -i -f mauloc thu

/dev/hda9: empty

/dev/hda10: empty

thutest

toithutest

Một số ví dụ sử dụng lệnh grep

 Với file data file có nội dung sau: # cat datafile

northwest

western

southwest

southern

southeast

eastern

northeast

north

central

NW

WE

SW

SO

SE

EA

NE

NO

CT

Charles Main

Sharon Gray

Lewis Dalsass

Suan Chin

Patricia Hemenway

TB Savage

AM Main Jr

Margot Weber

Ann Stephens

3.0

5.3

2.7

5.1

4.0

4.4

5.1

4.5

5.7

.98

.97

.8

.95

.7

.84

.94

.89

.94

3

5

2

4

4

5

3

5

5

34

23

18

15

17

20

13

9

13

grep NW datafile

northwest NW Charles Main 3.0 .98 3 34

grep '^n' datafile

northwest NW Charles Main 3.0 .98 3 34

northeast NE AM Main Jr. 5.1 .94 3 13

 57

north NO Margot Weber 4.5 .89 5 9

grep '4$' datafile

northwest NW Charles Main 3.0 .98 3 34

grep TB Savage datafile

grep: Savage: No such file or directory

datafile: eastern EA TB Savage 4.4 .84 5 20

grep 'TB Savage' datafile

eastern EA TB Savage 4.4 .84 5 20

grep '5\..' datafile

western WE Sharon Gray 5.3 .97 5 23

southern SO Suan Chin 5.1 .95 4 15

northeast NE AM Main Jr. 5.1 .94 3 13

central CT Ann Stephens 5.7 .94 5 13

grep '\.5' datafile

north NO Margot Weber 4.5 .89 5 9

grep '^[we]' datafile

western WE Sharon Gray 5.3 .97 5 23

grep '[^0-9]' datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southwest SW Lewis Dalsass 2.7 .8 2 18

southern SO Suan Chin 5.1 .95 4 15

southeast SE Patricia Hemenway 4.0 .7 4 17

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main Jr. 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

central CT Ann Stephens 5.7 .94 5 13

eastern EA TB Savage 4.4 .84 5 20

grep '[A-Z][A-Z] [A-Z]' datafile

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main Jr. 5.1 .94 3 13

grep 'ss* ' datafile

northwest NW Charles Main 3.0 .98 3 34

southwest SW Lewis Dalsass 2.7 .8 2 18

grep '[a-z]\{9\}' datafile

northwest NW Charles Main 3.0 .98 3 34

southwest SW Lewis Dalsass 2.7 .8 2 18

southeast SE Patricia Hemenway 4.0 .7 4 17

northeast NE AM Main Jr. 5.1 .94 3 13

grep '\(3\)\.[0-9].*\1 *\1' datafile

 58

northwest NW Charles Main 3.0 .98 3 34

grep '\<north' datafile

northwest NW Charles Main 3.0 .98 3 34

northeast NE AM Main Jr. 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

grep '\<north\>' datafile

north NO Margot Weber 4.5 .89 5 9

grep '\<[a-z].*n\>' datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southern SO Suan Chin 5.1 .95 4 15

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main Jr. 5.1 .94 3 13

central CT Ann Stephens 5.7 .94 5 13

#grep –n '^south' datafile

3:southwest SW Lewis Dalsass 2.7 .8 2 18

4:southern SO Suan Chin 5.1 .95 4 15

5:southeast SE Patricia Hemenway 4.0 .7 4 17

grep –i 'pat' datafile

southeast SE Patricia Hemenway 4.0 .7 4 17

grep –v 'Suan Chin' datafile

northwest NW Charles Main 3.0 .98 3 34

western WE Sharon Gray 5.3 .97 5 23

southwest SW Lewis Dalsass 2.7 .8 2 18

southeast SE Patricia Hemenway 4.0 .7 4 17

eastern EA TB Savage 4.4 .84 5 20

northeast NE AM Main Jr. 5.1 .94 3 13

north NO Margot Weber 4.5 .89 5 9

central CT Ann Stephens 5.7 .94 5 13

grep –l 'SE' * (tìm file chứa xâu “SE”)

datafile

datebook

grep –w 'north' datafile

north NO Margot Weber 4.5 .89 5 9

echo $LOGNAME

lewis

grep -i "$LOGNAME" datafile

southwest SW Lewis Dalsass 2.7 .8 2 18

4.16 Tìm theo các đặc tính của file với lệnh find

 59

 Các đoạn trên đây đã giới thiệu cách thức tìm file theo nội dung với các lệnh grep, egrep

và fgrep. Linux còn cho phép người dùng sử dụng một cách thức khác đầy năng lực, đó là sử

dụng lệnh find, lệnh tìm file theo các thuộc tính của file. Lệnh này có một sự khác biệt so với

các lệnh khác, đó là các tùy chọn của lệnh là một từ chứ không phải một ký tự. Điều kiện cần

đối với lệnh này là chỉ ra được điểm bắt đầu của việc tìm kiếm trong hệ thống file và những quy

tắc cần tuân theo của việc tìm kiếm.

 Cú pháp của lệnh find: find [đường-dẫn] [biểu-thức]

 Lệnh find thực hiện việc tìm kiếm file trên cây thư mục theo biểu thức được đưa ra. Mặc

định đường dẫn là thư mục hiện thời, biểu thức là -print.

� Các toán tử:

 (EXPR); ! EXPR hoặc -not EXPR; EXPR1 -a EXPR2 hoặc EXPR1 -and EXPR2;

EXPR1 -o EXPR2 hoặc EXPR1 -or EXPR2; và EXPR1, EXPR2

� Các tùy chọn lệnh: tất cả các tùy chọn này luôn trả về giá trị true và được đặt ở đầu biểu

thức:

�- daystart : đo thời gian (-amin, -atime, -cmin, -ctime, -mmin, -mtime).

�- depth : thực hiện tìm kiếm từ nội dung bên trong thư mục trước (mặc định việc

tìm kiếm được thực hiện bắt đầu tại gốc cây thư mục có chứa file cần tìm).

�- follow : (tùy chọn này chỉ áp dụng cho thư mục) nếu có tùy chọn này thì các liên

kết tượng trưng có trong một thư mục liên kết sẽ được chỉ ra.

�- help, --help : hiển thị kết quả của lệnh find và thoát. các test

�- amin n : tìm file được truy nhập n phút trước.

�- atime n : tìm file được truy nhập n*24 giờ trước.

�- cmin n : trạng thái của file được thay đổi n phút trước đây.

�- ctime n : trạng thái của file được thay đổi n*24 giờ trước đây.

�- empty : file rỗng và hoặc là thư mục hoặc là file bình thường.

�- fstype kiểu : file thuộc hệ thống file với kiểu.

�- gid n : chỉ số nhóm của file là n.

�- group nhóm : file thuộc quyền sở hữu của nhóm.

�- links n : file có n liên kết.

�- mmin n : dữ liệu của file được sửa lần cuối vào n phút trước đây.

�- mtime n : dữ liệu của file được sửa vào n*24 giờ trước đây.

�- name mẫu : tìm kiếm file có tên là mẫu. Trong tên file có thể chứa cả các ký tự

đại diện như dấu "*", "?"...

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 60

�- type kiểu : tìm các file thuộc kiểu với kiểu nhận các giá trị:

�b: đặc biệt theo khối

�c: đặc biệt theo ký tự

�d: thư mục

�p: pipe

�f: file bình thường

�l: liên kết tượng trưng

�s: socket

�- uid n: chỉ số người sở hữu file là n.

�- user tên-người: file được sở hữu bởi người dùng tên-người.

� Các hành động:

�- exec lệnh : tùy chọn này cho phép kết hợp lệnh find với một lệnh khác để có được

thông tin nhiều hơn về các thư mục có chứa file cần tìm. Tùy chọn exec phải sử dụng

dấu {} - nó sẽ thay thế cho tên file tương ứng, và dấu '\' tại cuối dòng lệnh, (phải có

khoảng trống giữa {} và '\'). Kết thúc lệnh là dấu ';'

�- fprint file : hiển thị đầy đủ tên file vào trong file. N ếu file không tồn tại thì sẽ

được tạo ra, nếu đã tồn tại thì sẽ bị thay thế nội dung.

�- print : hiển thị đầy đủ tên file trên thiết bị ra chuNn.

�- ls : hiển thị file hiện thời theo khuôn dạng: liệt kê danh sách đầy đủ kèm cả số thư

mục, chỉ số của mỗi file, với kích thước file được tính theo khối (block).

Ví dụ:
find -name 'what*'

./usr/bin/whatis

./usr/bin/whatnow

./usr/doc/AfterStep-1.8.0/TODO/1.0ỴtoỴ1.5/whatsnew

./usr/doc/gnome-libs-devel-1.0.55/devel-docs/gnome-dev-info/gnome-dev-

info/what.html

./usr/doc/gnome-libs-devel-1.0.55/devel-docs/gnome-dev-info/gnome-dev-

info/whatis.html

find . -type f -exec grep -l -i mapping {} \ ;

./OWL/WordMap/msw-to-txt.c

./.elm/aliases.text

./Mail/mark

./News/usenet.alt

./bin/my.new.cmd: Permission denied

./src/fixit.c

 61

./temp/attach.msg

4.17 Nén và sao lưu các file

Sao lưu các file (lệnh tar)

 Dữ liệu rất có giá trị, sẽ mất nhiều thời gian và công sức nếu phải tạo lại, thậm chí có lúc

cũng không thể nào tạo lại được. Vì vậy, Linux đưa ra các cách thức để người dùng bảo vệ dữ

liệu của mình.

 Có bốn nguyên nhân cơ bản khiến dữ liệu có thể bị mất: lỗi phần cứng, lỗi phần mềm, lỗi

do con người hoặc do thiên tai.

 Sao lưu là cách để bảo vệ dữ liệu một cách kinh tế nhất. Bằng cách sao lưu dữ liệu, sẽ

không có vấn đề gì xảy ra nếu dữ liệu trên hệ thống bị mất.

 Một vấn đề rất quan trọng trong việc sao lưu đó là lựa chọn phương tiện sao lưu, cần

phải quan tâm đến giá cả, độ tin cậy, tốc độ, ích lợi cũng như tính khả dụng của các phương tiện

sao lưu.

 Có rất nhiều các công cụ có thể được sử dụng để sao lưu. Các công cụ truyền thống là

tar, cpio và dump (công cụ trong tài liệu này là tar). N goài ra còn rất nhiều các công cụ khác có

thể lựa chọn tùy theo phương tiện sao lưu có trong hệ thống.

 Có hai kiểu sao lưu là sao lưu theo kiểu toàn bộ (full backup) và sao lưu theo kiểu tăng

dần (incremental backup). Sao lưu toàn bộ thực hiện việc sao mọi thứ trên hệ thống file, bao

gồm tất cả các file. Sao lưu tăng dần chỉ sao lưu những file được thay đổi hoặc được tạo ra kể từ

đợt sao lưu cuối cùng.

 Việc sao lưu toàn bộ có thể được thực hiện dễ dàng với lệnh tar .

 Cú pháp: tar [tùy-chọn] [<file>, ...] [<thư-mục>, ...]

 Lệnh (chương trình) tar được thiết kế để tạo lập một file lưu trữ duy nhất. Với tar, có thể

kết hợp nhiều file thành một file duy nhất có kích thước lớn hơn, điều này sẽ giúp cho việc di

chuyển file hoặc sao lưu băng từ trở nên dễ dàng hơn nhiều.

 Lệnh tar có các lựa chọn:

�- c, --create : tạo file lưu trữ mới.

�- d, --diff, --compare : tìm ra sự khác nhau giữa file lưu trữ và file hệ thống được

lưu trữ.

�- - delete : xóa từ file lưu trữ (không sử dụng cho băng từ).

�- r, --append : chèn thêm file vào cuối file lưu trữ.

Formatted: Bullets and Numbering

 62

�- t, --list : liệt kê nội dung của một file lưu trữ.

�- u, --update : chỉ thêm vào file lưu trữ các file mới hơn các file đã có.

�- x, --extract, --get : tách các file ra khỏi file lưu trữ.

�- C, --directory tên-thư-mục : thay đổi đến thư mục có tên là tên-thư-mục.

�- - checkpoint : đưa ra tên thư mục khi đọc file lưu trữ.

�- f, --file [HOSTN AME:]file : tùy chọn này xác định tên file lưu trữ hoặc thiết bị

lưu trữ là file (nếu không có tùy chọn này, mặc định nơi lưu trữ là /dev/rmt0).

�- h, --dereference : không hiện các file liên kết mà hiện các file mà chúng trỏ tới.

�- k, --keep-old-files : giữ nguyên các file lưu trữ đang tồn tại mà không ghi đè file

lưu trữ mới lên chúng.

�- K, --starting-file file : bắt đầu tại file trong file lưu trữ.

�- l, --one-file-system : tạo file lưu trữ trên hệ thống file cục bộ.

�- M, --multi-volume : tùy chọn này được sử dụng khi dung lượng của file cần sao

lưu là lớn và không chứa hết trong một đơn vị lưu trữ vật lý.

�- N , --after-date DATE, --newer DATE : chỉ lưu trữ các file mới hơn các file được

lưu trữ trong ngày DATE.

�- - remove-files : xóa file gốc sau khi đã sao lưu chúng vào trong file lưu trữ.

�- - totals : đưa ra tổng số byte được tạo bởi tùy chọn --create.

�- v, --verbose : hiển thị danh sách các file đã được xử lý.

Ví dụ:
tar --create --file /dev/ftape /usr/src

tar: Removing leading / from absolute path names in the archive

 Lệnh trên tạo một file sao lưu của thư mục /usr/src trong thư mục /dev/ftape, (dòng

thông báo ở trên cho biết rằng tar sẽ chuyển cả dấu / vào trong file sao lưu).

 N ếu việc sao lưu không thể thực hiện gọn vào trong một băng từ, lúc đó hãy sử dụng tùy

chọn -M:
tar -cMf /dev/fd0H1440 /usr/src

tar: Removing leading / from absolute path names in the archive

Prepare volume #2 for /dev/fd0H1440 and hit return:

 Chú ý rằng phải định dạng đĩa mềm trước khi thực hiện việc sao lưu, có thể sử dụng một

thiết bị đầu cuối khác để thực hiện việc định dạng đĩa khi tar yêu cầu một đĩa mềm mới. Sau

khi thực hiện việc sao lưu, có thể kiểm tra kết quả của công việc bằng tùy chọn - - compare:
tar --compare --verbose -f /dev/ftape

usr/src/

 63

usr/src/Linux

usr/src/Linux-1.2.10-includes/

...

 Để sử dụng kiểu sao lưu tăng dần, hãy sử dụng tùy chọn -N :
tar --create --newer '8 Sep 1995' --file /dev/ftape /usr/src --

verbose

tar: Removing leading / from absolute path names in the archive

usr/src/

usr/src/Linux-1.2.10-includes/

usr/src/Linux-1.2.10-includes/include/

usr/src/Linux-1.2.10-includes/include/Linux/

usr/src/Linux-1.2.10-includes/include/Linux/modules/

usr/src/Linux-1.2.10-includes/include/asm-generic/

usr/src/Linux-1.2.10-includes/include/asm-i386/

usr/src/Linux-1.2.10-includes/include/asm-mips/

usr/src/Linux-1.2.10-includes/include/asm-alpha/

usr/src/Linux-1.2.10-includes/include/asm-m68k/

usr/src/Linux-1.2.10-includes/include/asm-sparc/

usr/src/patch-1.2.11.gz

 Lưu ý rằng, tar không thể thông báo được khi các thông tin trong inode của một file bị

thay đổi, ví dụ như thay đổi quyền truy nhập của file, hay thay đổi tên file chẳng hạn. Để biết

được những thông tin thay đổi sẽ cần dùng đến lệnh find và so sánh với trạng thái hiện thời của

file hệ thống với danh sách các file được sao lưu từ trước.

Nén dữ liệu với gzip

 Việc sao lưu rất có ích nhưng đồng thời nó cũng chiếm rất nhiều không gian cần thiết để

sao lưu. Để giảm không gian lưu trữ cần thiết, có thể thực hiện việc nén dữ liệu trước khi sao

lưu, sau đó thực hiện việc giải nén để nhận lại nội dung trước khi nén.

 Trong Linux có khá nhiều cách để nén dữ liệu, tài liệu này giới thiệu hai phương cách

phổ biến là gzip và compress.

 N én, giải nén và xem nội dung các file với lệnh gzip, gunzip và zcat.

 Cú pháp các lệnh này như sau:

gzip [tùy-chọn] [-S suffix] [< file>]

gunzip [tùy-chọn] [-S suffix] [<file>]

zcat [tùy-chọn] [<file>]

 Lệnh gzip sẽ làm giảm kích thước của file và khi sử dụng lệnh này, file gốc sẽ bị thay thế

bởi file nén với phần mở rộng là .gz, các thông tin khác liên quan đến file không thay đổi. N ếu

 64

không có tên file nào được chỉ ra thì thông tin từ thiết bị vào chuNn sẽ được nén và gửi ra thiết

bị ra chuNn. Trong một vài trường hợp, lệnh này sẽ bỏ qua liên kết tượng trưng.

 N ếu tên file nén quá dài so với tên file gốc, gzip sẽ cắt bỏ bớt, gzip sẽ chỉ cắt phần tên

file vượt quá 3 ký tự (các phần được ngăn cách với nhau bởi dấu chấm). N ếu tên file gồm nhiều

phần nhỏ thì phần dài nhất sẽ bị cắt bỏ. Ví dụ, tên file là gzip.msdos.exe, khi được nén sẽ có tên

là gzip.msd.exe.gz.

 File được nén có thể được khôi phục trở lại dạng nguyên thể với lệnh gzip -d hoặc

gunzip. Với lệnh gzip có thể giải nén một hoặc nhiều file có phần mở rộng là .gz, -gz, .z, -z, _z

hoặc .Z ... gunzip dùng để giải nén các file nén bằng lệnh gzip, zip, compress, compress -H.

 Lệnh zcat được sử dụng khi muốn xem nội dung một file nén trên thiết bị ra chuNn.

 Các tùy chọn:

�- c, --stdout --to-stdout : đưa ra trên thiết bị ra chuNn; giữ nguyên file gốc không có

sự thay đổi. N ếu có nhiều hơn một file đầu vào, đầu ra sẽ tuần tự là các file được nén

một cách độc lập.

�- d, --decompress --uncompress : giải nén.

�- f, --force : thực hiện nén hoặc giải nén thậm chí file có nhiều liên kết hoặc file

tương ứng thực sự đã tồn tại, hay dữ liệu nén được đọc hoặc ghi trên thiết bị đầu cuối.

�- h, --help : hiển thị màn hình trợ giúp và thoát.

�- l, --list : hiển thị những thông tin sau đối với một file được nén:

�compressed size: kích thước của file nén

�uncompressed size: kích thước của file được giải nén

�ratio: tỷ lệ nén (0.0% nếu không biết)

�uncompressed_name: tên của file được giải nén

 N ếu kết hợp với tùy chọn --verbose, các thông tin sau sẽ được hiển thị:

�method: phương thức nén

�crc: CRC 32-bit cho dữ liệu được giải nén

�date & time: thời gian các file được giải nén

 N ếu kết hợp với tùy chọn --name, tên file được giải nén, thời gian giải nén được lưu trữ

trong file nén.

 N ếu kết hợp với tùy chọn --verbose, tổng kích thước và tỷ lệ nén của tất cả các file sẽ

được hiển thị.

 N ếu kết hợp với tùy chọn --quiet, tiêu đề và tổng số dòng của các file nén không được

hiển thị.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 65

�- n, --no-name : khi nén, tùy chọn này sẽ không lưu trữ tên file gốc và thời gian

nén, (tên file gốc sẽ luôn được lưu nếu khi nén tên của nó bị cắt bỏ). Khi giải nén, tùy

chọn này sẽ không khôi phục lại tên file gốc cũng như thời gian thực hiện việc nén. Tùy

chọn này được ngầm định.

�- N , --name : tùy chọn này ngược với tùy chọn trên (-n), nó hữu ích trên hệ thống

có sự giới hạn về độ dài tên file hay khi thời điểm nén bị mất sau khi chuyển đổi file.

�- -q, --quiet : bỏ qua mọi cảnh báo.

�- r, --recursive : nén thư mục.

�- S .suf, --suffix .suf : sử dụng phần mở rộng .suf thay cho .gz. Bất kỳ phần mở

rộng nào cũng có thể được đưa ra, nhưng các phần mở rộng khác .z và .gz sẽ bị ngăn

chặn để tránh sự lộn xộn khi các file được chuyển đến hệ thống khác.

�- t, --test : tùy chọn này được sử dụng để kiểm tra tính toàn vẹn của file được nén

�- v, --verbose : hiển thị phần trăm thu gọn đối với mỗi file được nén hoặc giải nén

�- #, --fast, --best : điều chỉnh tốc độ của việc nén bằng cách sử dụng dấu #, nếu -# là

-1 hoặc --fast thì sử dụng phương thức nén nhanh nhất (less compression), nếu là -9 hoặc

--best thì sẽ dùng phương thức nén chậm nhất (best compression). N gầm định mức nén

là -6 (đây là phương thức nén theo tốc độ nén cao).

Ví dụ:
ls /home/test

Desktop data dictionary newt-0.50.8 rpm save vd1

gzip /home/test/vd1

ls /home/test

Desktop data dictionary newt-0.50.8 rpm save vd1.gz

zcat /home/test/vd1

PID TTY TIME CMD

973 pts/0 00:00:00 bash

996 pts/0 00:00:00 man

1008 pts/0 00:00:00 sh

1010 pts/0 00:00:00 less

1142 pts/0 00:00:00 cat

1152 pts/0 00:00:00 cat

1181 pts/0 00:00:00 man

1183 pts/0 00:00:00 sh

1185 pts/0 00:00:00 less

Nén, giải nén và xem file với các lệnh compress, uncompress, zcat

 Cú pháp các lệnh như sau:

Formatted: Bullets and Numbering

 66

compress [tùy-chọn] [<file>]

uncompress [tùy-chọn] [<file>]

zcat [tùy-chọn] [<file>]

 Lệnh compress làm giảm kích thước của file và khi sử dụng lệnh này, file gốc sẽ bị thay

thế bởi file nén với phần mở rộng là .Z, các thông tin khác liên quan đến file không thay đổi.

N ếu không có tên file nào được chỉ ra, thông tin từ thiết bị vào chuNn sẽ được nén và gửi ra thiết

bị ra chuNn. Lệnh compress chỉ sử dụng cho các file thông thường. Trong một vài trường hợp,

nó sẽ bỏ qua liên kết tượng trưng. N ếu một file có nhiều liên kết cứng, compress bỏ qua việc

nén file đó trừ khi có tùy chọn -f.

 Các tùy chọn:

�- f : nếu tùy chọn này không được đưa ra và compress chạy trong chế độ nền trước,

người dùng sẽ được nhắc khi các file đã thực sự tồn tại và có thể bị ghi đè. Các file được

nén có thể được khôi phục lại nhờ việc sử dụng lệnh uncompress.

�- c : tùy chọn này sẽ thực hiện việc nén hoặc giải nén rồi đưa ra thiết bị ra chuNn,

không có file nào bị thay đổi.

 Lệnh zcat tương đương với uncompress -c. zcat thực hiện việc giải nén hoặc là các file

được liệt kê trong dòng lệnh hoặc từ thiết bị vào chuNn để đưa ra dữ liệu được giải nén trên thiết

bị ra chuNn.

�- r : nếu tùy chọn này được đưa ra, compress sẽ thực hiện việc nén các thư mục.

�- v : hiển thị tỷ lệ giảm kích thước cho mỗi file được nén.

4.18 Liên kết (link) tập tin

 Trong Linux có 2 hình thức liên kết hoàn toàn khác nhau, đó là hard link và soft link

(hay symbolic link).

 Hard link cho phép tạo một tên mới cho tập tin. Các tên này có vai trò hoàn toàn như

nhau và tập tin chỉ bị hoàn toàn xóa bỏ khi hard link cuối cùng của nó bị xóa. Lệnh ls –l cho

phép hiển thị số hard link đến tập tin.

 Symbolic link có chức năng giống như shortcut của MS Windows. Khi ta đọc/ghi soft

link, ta đọc/ghi tập tin; khi ta xóa symbolic link, ta chỉ xóa symbolic link và tập tin được giữ

nguyên. Link được tạo bởi lệnh ln . Tự chọn ln –s cho phép tạo symbolic link. Ví dụ
[tnminh@pascal tnminh]$ls -l

-rw------- 1 tnminh pkt 517 Oct 27 12:00 mbox

drwxr-xr-x 2 tnminh pkt 4096 Aug 31 17:50 security

[tnminh@pascal tnminh]$ln –s mbox mybox

[tnminh@pascal tnminh]$ln –s security securproj

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 67

[tnminh@pascal tnminh]$ln –l

-rw------- 1 tnminh pkt 517 Oct 27 12:00 mbox

lrwxrwxrwx 1 tnminh pkt 4 Oct 27 17:57 mymail -> mbox

lrwxrwxrwx 1 tnminh pkt 8 Oct 27 17:57 secrproj -> security

drwxr-xr-x 2 tnminh pkt 4096 Aug 31 17:50 security

[tnminh@pascal tnminh]$

 Bạn đọc có thể thấy khá rõ kết quả của symbolic link qua thí dụ trên.

 Symbolic link rất có nhiều ứng dụng. Ví dụ như một tập tin XXX của một chương trình

YYY nằm trong thư mục /var/ZZZ. N ếu phân mảnh của /var/ZZZ bị quá đầy, ta có thể “sơ tán”

XXX qua một thư mục khác thuộc phân mảnh khác và tạo một link thế vào đó mà chương trình

YYY vẫn không hề “hay biết” vì nó vẫn truy cập đến /var/ZZZ/XXX như thường lệ.

5. Các lệnh và tiện ích hệ thống

5.1 Các lệnh đăng nhập và thoát khỏi hệ thống

Đăng nhập

 Sau khi hệ thống Linux (lấy Red Hat 6.2 làm ví dụ) khởi động xong, trên màn hình xuất

hiện những dòng sau:
Ret Hat Linux release 6.2 (Zoot)

Kernel 2.2.14-5.0 on an i686

May1 login:

 Chúng ta có thể thay đổi các dòng hiển thị như trình bày trên đây bằng cách sửa đổi file

/etc/rc.d/rc.local như sau:

 Thay đoạn chương trình sau:
echo "" > /etc/issue

echo "$R" >> /etc/issue

echo "Kernel $(uname -r) on $a SMP(uname -m)" >> /etc/issue

cp -f /etc/issue /etc/issue.net

echo >> /etc/issue

thành
echo "" > /etc/issue

echo "Thông báo muốn hiển thị" >> /etc/issue

Ví dụ: sửa thành:
echo "" > /etc/issue

echo "This is my computer" >> /etc/issue

thì trên màn hình đăng nhập sẽ có dạng sau:
This is my computer

hostname login:

 68

 Dòng thứ nhất và dòng thứ hai cho biết loại phiên bản Linux, phiên bản của nhân và kiến

trúc phần cứng có trên máy, dòng thứ ba là dấu nhắc đăng nhập để người dùng thực hiện việc

đăng nhập. Chú ý là các dòng trên đây có thể thay đổi chút ít tùy thuộc vào phiên bản Linux.

 Tại dấu nhắc đăng nhập, hãy nhập tên người dùng (còn gọi là tên đăng nhập): đây là tên

kí hiệu đã cung cấp cho Linux nhằm nhận diện một người dùng cụ thể. Tên đăng nhập ứng với

mỗi người dùng trên hệ thống là duy nhất, kèm theo một mật khNu đăng nhập.
May1 login: root

Password:

 Khi nhập xong tên đăng nhập, hệ thống sẽ hiện ra thông báo hỏi mật khNu và di chuyển

con trỏ xuống dòng tiếp theo để người dùng nhập mật khNu. Mật khNu khi được nhập sẽ không

hiển thị trên màn hình và chính điều đó giúp tránh khỏi sự "nhòm ngó" của người khác.

 N ếu nhập sai tên đăng nhập hoặc mật khNu, hệ thống sẽ đưa ra một thông báo lỗi:
May1 login: root

Password:

Login incorrect

Máy1 login:

 N ếu đăng nhập thành công, người dùng sẽ nhìn thấy một số thông tin về hệ thống, một

vài tin tức cho người dùng... Lúc đó, dấu nhắc shell xuất hiện để người dùng bắt đầu phiên làm

việc của mình.
May1 login: root

Password:

Last login: Fri Oct 27 14:16:09 on tty2

Root[may1 /root]#

 Dãy kí tự trong dòng cuối cùng chính là dấu nhắc shell. Trong dấu nhắc này, root là tên

người dùng đăng nhập, may1 là tên máy và /root tên thư mục hiện thời (vì đây là người dùng

root). Khi dấu nhắc shell xuất hiện trên màn hình thì điều đó có nghĩa là hệ điều hành đã sẵn

sàng tiếp nhận một yêu cầu mới của người dùng.

 Dấu nhắc shell có thể khác với trình bày trên đây, nhưng có thể hiểu nó là chuỗi kí tự bắt

đầu một dòng có chứa trỏ chuột và luôn xuất hiện mỗi khi hệ điều hành hoàn thành một công

việc nào đó.

Thoái khỏi hệ thống

 Để kết thúc phiên làm việc người dùng cần thực hiện thủ tục ra khỏi hệ thống. Có rất

nhiều cách cho phép thoát khỏi hệ thống, ở đây chúng ta xem xét một số cách thông dụng nhất.

 69

�Cách đơn giản nhất để đảm bảo thoát khỏi hệ thống đúng đắn là nhấn tổ hợp phím

CTRL+ALT+DEL. Khi đó, trên màn hình sẽ hiển thị một số thông báo của hệ thống và cuối

cùng là thông báo thoát trước khi tắt máy.

 Cần chú ý là: N ếu đang làm việc trong môi trường X Window System, hãy nhấn tổ hợp

phím CTRL+ALT+BACKSPACE trước rồi sau đó hãy nhấn CTRL+ALT+DEL.

 Hoặc sử dụng lệnh shutdown: shutdown [tùy-chọn] <time> [cảnh-báo]

 Lệnh này cho phép dừng tất cả các dịch vụ đang chạy trên hệ thống.

 Các tùy chọn của lệnh này như sau:

�- k : không thực sự shutdown mà chỉ cảnh báo.

�- r : khởi động lại ngay sau khi shutdown.

�- h : tắt máy thực sự sau khi shutdown.

�- f : khởi động lại nhanh và bỏ qua việc kiểm tra đĩa.

�- F : khởi động lại và thực hiện việc kiểm tra đĩa.

�- c : bỏ qua không chạy lệnh shutdown. Trong tùy chọn này không thể đưa ra tham

số thời gian nhưng có thể đưa ra thông báo giải thích trên dòng lệnh gửi cho tất cả các

người dùng.

�- t số-giây : qui định init(8) chờ khoảng thời gian số-giây tạm dừng giữa quá trình

gửi cảnh báo và tín hiệu kill, trước khi chuyển sang một mức chạy khác.

và hai tham số vị trí còn lại:

�time : đặt thời điểm shutdown. Tham số time có hai dạng. Dạng tuyệt đối là gg:pp (gg:

giờ trong ngày, pp: phút) thì hệ thống sẽ shutdown khi đồng hồ máy trùng với giá trị

tham số. Dạng tương đối là +<số> là hẹn sau thời khoảng <số> phút sẽ shutdown; coi

shutdown lập tức tương đương với +0.

�cảnh-báo : thông báo gửi đến tất cả người dùng trên hệ thống. Khi lệnh thực hiện tất cả

các máy người dùng đều nhận được cảnh báo.

Ví dụ: khi người dùng gõ lệnh: shutdown +1 Sau mot phut nua he thong se shutdown!

trên màn hình của tất cả người dùng xuất hiện thông báo "Sau mot phut nua he thong se

shutdown! " và sau một phút thì hệ thống shutdown thực sự.

 Cách thứ ba là sử dụng lệnh halt với cú pháp như sau: halt [tùy-chọn] Lệnh này tắt hẳn

máy.

 Các tuỳ chọn của lệnh halt:

�- w : không thực sự tắt máy nhưng vẫn ghi các thông tin lên file /var/log/wtmp (đây

là file lưu trữ danh sách các người dùng đăng nhập thành công vào hệ thống).

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 70

�- d : không ghi thông tin lên file /var/log/wtmp. Tùy chọn -n có ý nghĩa tương tự

song không tiến hành việc đồng bộ hóa.

�- f : thực hiện tắt máy ngay mà không thực hiện lần lượt việc dừng các dịch vụ có

trên hệ thống.

�- i : chỉ thực hiện dừng tất cả các dịch vụ mạng trước khi tắt máy.

 Chúng ta cần nhớ rằng, nếu thoát khỏi hệ thống không đúng cách thì dẫn đến hậu quả là

một số file hay toàn bộ hệ thống file có thể bị hư hỏng. Có thể sử dụng lệnh exit để trở về dấu

nhắc đăng nhập hoặc kết thúc phiên làm việc bằng lệnh logout.

Khởi động lại hệ thống

 N goài việc thoát khỏi hệ thống nhờ các cách thức trên đây (ấn tổ hợp ba phím

Ctrl+Alt+Del, dùng lệnh shutdown hoặc lệnh halt), khi cần thiết (chẳng hạn, gặp phải tình

huống một trình ứng dụng chạy quNn) có thể khởi động lại hệ thống nhờ lệnh reboot.

 Cú pháp lệnh reboot: reboot [tùy-chọn]

 Lệnh này cho phép khởi động lại hệ thống. N ói chung thì chỉ siêu người dùng mới được

phép sử dụng lệnh reboot, tuy nhiên, nếu hệ thống chỉ có duy nhất một người dùng đang làm

việc thì lệnh reboot vẫn được thực hiện song hệ thống đòi hỏi việc xác nhận mật khNu.

 Các tùy chọn của lệnh reboot như sau là -w, -d, -n, -f, -i có ý nghĩa tương tự như trong

lệnh halt.

5.2 Lệnh thay đổi mật khẩu passwd

 Mật khNu là vấn đề rất quan trọng trong các hệ thống đa người dùng và để đảm bảo tính

bảo mật tối đa, cần thiết phải chú ý tới việc thay đổi mật khNu. Thậm chí trong trường hợp hệ

thống chỉ có một người sử dụng thì việc thay đổi mật khNu vẫn là rất cần thiết.

 Mật khNu là một xâu kí tự đi kèm với tên người dùng để đảm bảo cho phép một người

vào làm việc trong hệ thống với quyền hạn đã được quy định. Trong quá trình đăng nhập, người

dùng phải gõ đúng tên và mật khNu, trong đó gõ mật khNu là công việc bắt buộc phải thực hiện.

Tên người dùng có thể được công khai song mật khNu thì tuyệt đối phải được đảm bảo bí mật.

 Việc đăng ký tên và mật khNu của siêu người dùng được tiến hành trong quá trình khởi

tạo hệ điều hành Linux. Việc đăng ký tên và mật khNu của một người dùng thông thường được

tiến hành khi một người dùng mới đăng ký tham gia sử dụng hệ thống. Thông thường siêu

người dùng cung cấp tên và mật khNu cho người dùng mới (có thể do người dùng đề nghị) và

dùng lệnh adduser (hoặc lệnh useradd) để đăng ký tên và mật khNu đó với hệ thống. Sau đó,

người dùng mới nhất thiết cần thay đổi mật khNu để bảo đảm việc giữ bí mật cá nhân tuyệt đối.

 Lệnh passwd cho phép thay đổi mật khNu ứng với tên đăng nhập người dùng.

 71

 Cú pháp lệnh passwd: passwd [tùy-chọn] [tên-người-dùng] với các tùy chọn như sau:

�- k : thay đổi mật khNu người dùng. Lệnh đòi hỏi phải xác nhận quyền bằng việc gõ

mật khNu đang dùng trước khi thay đổi mật khNu. Cho phép người dùng thay đổi mật

khNu của mình độc lập với siêu người dùng.

�- f : đặt mật khNu mới cho người dùng song không cần tiến hành việc kiểm tra mật

khNu đang dùng. Chỉ siêu người dùng mới có quyền sử dụng tham số này.

�- l : khóa một tài khoản người dùng. Việc khóa tài khoản thực chất là việc dịch bản

mã hóa mật khNu thành một xâu ký tự vô nghĩa bắt đầu bởi kí hiệu "!". Chỉ siêu người

dùng mới có quyền sử dụng tham số này.

�- stdin : việc nhập mật khNu người dùng chỉ được tiến hành từ thiết bị vào chuNn

không thể tiến hành từ đường dẫn (pipe). N ếu không có tham số này cho phép nhập mật

khNu cả từ thiết bị vào chuNn hoặc từ đường dẫn.

�- u : mở khóa (tháo bỏ khóa) một tài khoản (đối ngẫu với tham số -l). Chỉ siêu

người dùng mới có quyền sử dụng tham số này.

�- d : xóa bỏ mật khNu của người dùng. Chỉ siêu người dùng mới có quyền sử dụng

tham số này.

�- S : hiển thị thông tin ngắn gọn về trạng thái mật khNu của người dùng được đưa

ra. Chỉ siêu người dùng mới có quyền sử dụng tham số này.

 N ếu tên-người-dùng không có trong lệnh thì ngầm định là chính người dùng đã gõ lệnh

này. Ví dụ khi người dùng user1 gõ lệnh: # passwd user1 hệ thống thông báo:
Changing password for user user1

New UNIX password:

để người dùng nhập mật khNu mới của mình vào. Sau khi người dùng gõ xong mật khNu mới, hệ

thống cho ra thông báo:
BAD PASSWORD: it is derived from your password entry

Retype new UNIX password:

để người dùng khẳng định một lần nữa mật khNu vừa gõ dòng trên (nhớ phải gõ lại đúng hệt

như lần trước). Không nên quá phân vân vì thông báo ở dòng phía trên vì hầu hết khi gõ mật

khNu mới luôn gặp những thông báo kiểu đại loại như vậy, chẳng hạn như:
BAD PASSWORD: it is too simplistic/systematic

 Và sau khi chúng ta khẳng định lại mật khNu mới, hệ thống cho ra thông báo:
Passwd: all authentication tokens updated successfully.

cho biết việc thay đổi mật khNu thành công và dấu nhắc shell lại hiện ra.

 Khi siêu người dùng gõ lệnh:

Formatted: Bullets and Numbering

 72

passwd -S root

sẽ hiện ra thông báo
Changing password for user root

Password set, MD5 encryption

cho biết thuật toán mã hóa mật khNu mà Linux sử dụng là một thuật toán hàm băm có tên là

MD5.

�Chú ý: Có một lời khuyên đối với người dùng là nên chọn mật khNu không quá đơn giản quá

(nhằm tránh người khác dễ dò tìm ra) hoặc không quá phức tạp (tránh khó khăn cho chính

người dùng khi phải ghi nhớ và gõ mật khNu). Đặc biệt không nên sử dụng họ tên, ngày sinh, số

điện thoại ... của bản thân hoặc người thân làm mật khNu vì đây là một trong những trường hợp

mật khNu đơn giản nhất.

� N ếu thông báo mật khNu quá đơn giản được lặp đi lặp lại một vài lần và không có thông

báo mật khNu mới thành công đã quay về dấu nhắc shell thì nên gõ lại lệnh và chọn một mật

khNu mới phức tạp hơn đôi chút.

Lệnh xem, thiết đặt ngày, giờ hiện tại và xem lịch trên hệ thống

5.4 Lệnh date xem, thiết đặt ngày, giờ

 Lệnh date cho phép có thể xem hoặc thiết đặt lại ngày giờ trên hệ thống.

 Cú pháp của lệnh gồm hai dạng, dạng xem thông tin về ngày, giờ và dạng thiết đặt lại

ngày giờ cho hệ thống:

date [tùy-chọn] [+định-dạng]

date [tùy-chọn] [MMDDhhmm[[CC[YY]]-ss]]

 Các tùy-chọn như sau:

�- d, --date=xâu-văn-bản : hiển thị thời gian dưới dạng xâu-văn-bản, mà không lấy

"thời gian hiện tại của hệ thống” như theo ngầm định; xâu-văn-bản được đặt trong hai

dấu nháy đơn hoặc hai dấu nháy kép.

�- f, --file=file-văn-bản : giống như một tham số --date nhưng ứng với nhiều ngày

cần xem: mỗi dòng của file-văn-bản có vai trò như một xâu-văn-bản trong trường hợp

tham số --date.

�- I, --iso-8601[=mô-tả] : hiển thị ngày giờ theo chuNn ISO-8601 (ví dụ: 2000-11-8).

�- I tương đương với tham số --iso-8601='date'. Với --iso-8601: nếu mô-tả là 'date'

(hoặc không có) thì hiển thị ngày, nếu mô-tả là 'hours' hiển thị ngày+giờ, nếu mô-tả là

'minutes': ngày+giờ+phút; nếu mô-tả là 'seconds': ngày + giờ + phút + giây.

�- r, --reference= file : hiển thị thời gian sửa đổi file lần gần đây nhất.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 73

�- R, --rfc-822 : hiển thị ngày theo RFC-822 (ví dụ: Wed, 8 N ov 2000 09:21:46 -

0500).

�- s, --set=xâu-văn-bản : thiết đặt lại thời gian theo kiểu xâu-văn-bản.

�- u, --utc, --universal : hiển thị hoặc thiết đặt thời gian theo UTC (ví dụ: Wed N ov 8

14:29:12 UTC 2000).

�- - help : hiển thị thông tin trợ giúp và thoát.

 Trong dạng lệnh date cho xem thông tin ngày, giờ thì tham số định-dạng điều khiển cách

hiển thị thông tin kết quả. Định-dạng là dãy có từ một đến nhiều cặp gồm hai kí tự, trong mỗi

cặp kí tự đầu tiên là % còn kí tự thứ hai mô tả định dạng.

 Do số lượng định dạng là rất nhiều vì vậy chúng ta chỉ xem xét một số định dạng điển

hình (để xem đầy đủ các định dạng, sử dụng lệnh man date).

 Dưới đây là một số định dạng điển hình:

�%% : Hiện ra chính kí tự %.

�%a : Hiện ra thông tin tên ngày trong tuần viết tắt theo ngôn ngữ bản địa.

�%A : Hiện ra thông tin tên ngày trong tuần viết đầy đủ theo ngôn ngữ bản địa.

�%b : Hiện ra thông tin tên tháng viết tắt theo ngôn ngữ bản địa.

�%B : Hiện ra thông tin tên tháng viết đầy đủ theo ngôn ngữ bản địa.

 Trong dạng lệnh date cho phép thiết đặt lại ngày giờ cho hệ thống thì tham số

[MMDDhhmm[[CC[YY] [.ss]] mô tả ngày, giờ mới cần thiết đặt, trong đó:

MM: hai số chỉ tháng,

DD: hai số chỉ ngày trong tháng,

hh: hai số chỉ giờ trong ngày,

mm: hai số chỉ phút,

CC: hai số chỉ thế kỉ,

YY: hai số chỉ năm trong thế kỉ.

 Các dòng ngay dưới đây trình bày một số ví dụ sử dụng lệnh date, mỗi ví dụ được cho

tương ứng với một cặp hai dòng, trong đó dòng trên mô tả lệnh được gõ còn dòng dưới là thông

báo của Linux.
date

Wed Jan 3 23:58:50 ICT 2001

date -d='01/01/2000'

Sat Jan 1 00:00:00 ICT 2000

date -iso-8601='seconds'

2000-12-01T00:36:41-0500

Formatted: Bullets and Numbering

 74

date -d='01/01/2001'

Mon Jan 1 00:00:00 ICT 2001

date 010323502001.50

Wed Jan 3 23:50:50 ICT 2001

date +%a%A

Wed Wednesday

date +%a%A%b%B

Wed Wednesday Jan January

date +%D%%%j

01/05/01%005

5.5 Lệnh xem lịch cal

 Lệnh cal cho phép xem lịch trên hệ thống.

 Cú pháp như sau: cal [tùy-chọn] [<tháng> [<năm>]] nếu không có tham số, lịch của

tháng hiện thời sẽ được hiển thị.

 Các tùy chọn là:

�- m : chọn ngày Thứ hai là ngày đầu tiên trong tuần (mặc định là ngày Chủ nhật).

�- j : hiển thị số ngày trong tháng dưới dạng số ngày trong năm (ví dụ: ngày

1/11/2000 sẽ được hiển thị dưới dạng là ngày thứ 306 trong năm 2000, số ngày bắt đầu

được tính từ ngày 1/1).

�- y : hiển thị lịch của năm hiện thời.

Ví dụ: # cal 1 2001
January 2001

 Su sMo Tu We Th Fr Sa

 1 2 3 4 5 6

 7 8 9 10 11 12 13

 14 15 16 17 18 19 20

 21 22 23 24 25 26 27

 28 29 30 31

 Khi nhập dòng lệnh trên, trên màn hình sẽ hiển thị lịch của tháng 1 năm 2001, mặc định

chọn ngày chủ nhật là ngày bắt đầu của tuần. Dưới đây là ví dụ hiển thị số ngày trong tháng 3

dưới dạng số ngày trong năm 2001.
cal -j 3 2001

 March 2001

 Su Mo Tu We Th Fr Sa

 60 61 62

 63 64 65 66 67 68 69

 70 71 72 73 74 75 76

Formatted: Bullets and Numbering

 75

 77 78 79 80 81 82 83

 84 85 86 87 88 89 90

5.6 Xem thông tin hệ thống uname

 Lệnh uname cho phép xem thông tin hệ thống với cú pháp là: uname [tùy-chọn]

 N ếu không có tuỳ chọn thì hiện tên hệ điều hành.

 Các tùy chọn là:

�- a, --all : hiện tất cả các thông tin.

�- m, --machine : kiểu kiến trúc của bộ xử lý (i386, i486, i586, i686...).

�- n, --nodename : hiện tên của máy.

�- r, --release : hiện nhân của hệ điều hành.

�- s, --sysname : hiện tên hệ điều hành.

�- p, --processor : hiện kiểu bộ xử lý của máy chủ.

Ví dụ: # uname -a thì màn hình sẽ hiện ra như sau:
Linux linuxsrv.linuxvn.net 2.2.14-5.0 #1 Tue Mar 7 21:07:39 EST 2000

i686 unknown

 Thông tin hiện ra có tất cả 6 trường là:

Tên hệ điều hành: Linux

Tên máy: linuxsrv.linuxvn.net

Tên nhân của hệ điều hành: 2.2.14-5.0

N gày sản xuất: #1 Tue Mar 7 21:07:39 EST 2000

Kiểu kiến trúc bộ xử lý: i686

Kiểu bộ xử lý của máy chủ: unknown

Ví dụ : nếu gõ lệnh: # uname -spr thì màn hình sẽ hiện ra như sau:
Linux 2.2.14-5.0 unknown

là tên hệ điều hành, tên nhân và kiểu bộ xử lý của máy chủ.

5.7 Thay đổi nội dung dấu nhắc shell

 Trong Linux có hai loại dấu nhắc: dấu nhắc cấp một (dấu nhắc shell) xuất hiện khi nhập

lệnh và dấu nhắc cấp hai (dấu nhắc nhập liệu) xuất hiện khi lệnh cần có dữ liệu được nhập từ

bàn phím và tương ứng với hai biến nhắc tên là PS1 và PS2.

 PS1 là biến hệ thống tương ứng với dấu nhắc cấp 1: Giá trị của PS1 chính là nội dung

hiển thị của dấu nhắc shell. Để nhận biết thông tin hệ thống hiện tại, một nhu cầu đặt ra là cần

thay đổi giá trị của các biến hệ thống PS1 và PS2.

Formatted: Bullets and Numbering

 76

 Linux cho phép thay đổi giá trị của biến hệ thống PS1 bằng lệnh gán trị mới cho nó.

 Lệnh này có dạng: # PS1='<dãy kí tự>'

 N ăm (5) kí tự đầu tiên của lệnh gán trên đây (PS1=') phải được viết liên tiếp nhau. Dãy

kí tự nằm giữa cặp hai dấu nháy đơn (có thể sử dụng cặp hai dấu kép ") và không được phép

chứa dấu nháy. Dãy kí tự này bao gồm các cặp kí tự điều khiển và các kí tự khác, cho phép có

thể có dấu cách. Cặp kí tự điều khiển gồm hai kí tự, kí tự đầu tiên là dấu sổ xuôi "\" còn kí tự

thứ hai nhận một trong các trường hợp liệt kê trong bảng dưới đây. Bảng dưới đây giới thiệu

một số cặp ký tự điều khiển có thể được sử dụng khi muốn thay đổi dấu nhắc lệnh:

Cặp ký tự

điều khiển

Ý nghĩa

\! Hiển thị thứ tự của lệnh trong lịch sử

\# Hiển thị thứ tự của lệnh

\$ Hiển thị dấu đô-la ($). Đối với siêu người dùng (super user), thì

hiển thị dấu số hiệu (#)

\\ Hiển thị dấu sổ (\)

\d Hiển thị ngày hiện tại

\h Hiển thị tên máy (hostname)

\n Ký hiệu xuống dòng

\s Hiển thị tên hệ shell

\t Hiển thị giờ hiện tại

\u Hiển thị tên người dùng

\W Hiển thị tên thực sự của thư mục hiện thời (ví dụ thư mục hiện thời

là /mnt/hda1 thì tên thực sự của nó là /hda1)

\w Hiển thị tên đầy đủ của thư mục hiện thời (ví dụ /mnt/hda1)

Ví dụ: hiện thời dấu nhắc shell có dạng: root[may1 /hda1]#

 Sau khi gõ lệnh: root@may1 /hda1]# PS1='[\h@\u \w : \d]\$'

thì dấu nhắc shell được thay đổi là: [may1@root /mnt/hda1 : Fri Oct 27]# ngoài việc đổi thứ

tự giữa tên người dùng và máy còn cho chúng ta biết thêm về ngày hệ thống quản lý và tên đầy

đủ của thư mục hiện thời.

 Linux cung cấp cách thức hoàn toàn tương tự như đối với biến PS1 để thay đổi giá trị

biến hệ thống PS2 tương ứng với dấu nhắc cấp hai.

5.8 Lệnh gọi ngôn ngữ tính toán số học

 77

 Linux cung cấp một ngôn ngữ tính toán với độ chính xác tùy ý thông qua lệnh bc. Khi

yêu cầu lệnh này, người dùng được cung cấp một ngôn ngữ tính toán (và cho phép lập trình tính

toán có dạng ngôn ngữ lập trình C) hoạt động theo thông dịch.

 Trong ngôn ngữ lập trình được cung cấp (tạm thời gọi là ngôn ngữ bc), tồn tại rất nhiều

công cụ hỗ trợ tính toán và lập trình tính toán: kiểu phép toán số học phong phú, phép toán so

sánh, một số hàm chuNn, biến chuNn, cấu trúc điều khiển, cách thức định nghĩa hàm, cách thức

thay đổi độ chính xác, đặt lời chú thích ... Chỉ cần sử dụng một phần nhỏ tác động của lệnh bc,

chúng ta đã có một "máy tính số bấm tay" hiệu quả.

 Cú pháp lệnh bc: bc [tùy-chọn] [file...] với các tuỳ chọn sau đây:

�- l, --mathlib: thực hiện phép tính theo chuNn thư viện toán học (ví dụ:

5/5=1.00000000000000000000).

�- w, --warn : khi thực hiện phép tính không tuân theo chuNn POSIX (POSIX là một

chuNn trong Linux) thì một cảnh báo xuất hiện.

�- s, --standard : thực hiện phép tính chính xác theo chuNn của ngôn ngữ POSIX bc.

�- q, --quiet : không hiện ra lời giới thiệu về phần mềm GN U khi dùng bc.

 Tham số file là tên file chứa chương trình viết trên ngôn ngữ bc, khi lệnh bc thực hiện sẽ

tự động chạy các file chương trình này (N ếu có nhiều tham số thì có nghĩa sẽ chạy nhiều

chương trình liên tiếp nhau).

Ví dụ: Từ dấu nhắc lệnh gõ: # bc sẽ xuất hiện dấu nhắc, sau đó ta gõ biểu thức vào:

(4+5)*(12-10) ↵

18

Formatted: Bullets and Numbering

 78

1000000000000*1000000000000↵

1000000000000000000000000

để ấn định số chữ số thập phân dùng lệnh scale = n

scale=3 ↵

1/6 ↵

.166

Ví dụ: Lập trình trong bc:
define giaithua(n)

{

 if (n<=1) return (1);

 else return (gt(n-1)*n);

}

gt(5)

120

để chuyển sang các cơ số khác nhau dùng lệnh ibase và obase

ibase=cơ số Định dạng cơ số đầu vào

obase=cơ số Định dạng cơ số đầu ra

ibase và obase ngầm định là cơ số 10.

ibase=16↵

FF↵

255

obase=2↵

FF↵

11111111

ibase↵

obase↵

 Để kết thúc bc gõ CTRL + D.

�Chú ý: N gôn ngữ lập trình tính toán bc là một ngôn ngữ rất mạnh có nội dung hết sức phong

phú cho nên trong khuôn khổ của tài liệu này không thể mô tả hết các nội dung của ngôn ngữ đó

được. Chúng ta cần sử dụng lệnh man bc để nhận được thông tin đầy đủ về lệnh bc và ngôn ngữ

tính toán bc.

� Ở đây trình bày sơ bộ một số yếu tố cơ bản nhất của ngôn ngữ đó (bt là viết tắt của biểu

thức, b là viết tắt của biến).

Formatted: Bullets and Numbering

 79

 Các phép tính: - bt: lấy đối; ++ b, --b, b ++, b --: phép toán tăng, giảm b; các phép toán

hai ngôi cộng +, trừ -, nhân *, chia /, lấy phần dư %, lũy thừa nguyên bậc ^; gán =; gán sau khi

thao tác <thao tác>=; các phép toán so sánh <, <=, >, >=, bằng ==, khác != ...

Phép so sánh cho 1 nếu đúng, cho 0 nếu sai.

 Bốn biến chuNn là scale số lượng chữ số phần thập phân, last giá trị tính toán cuối cùng;

ibase cơ số hệ đếm đối với input và obase là cơ số hệ đếm với output (ngầm định hai biến này

có giá trị 10).

 Các hàm chuNn sin s (bt); cosin c (bt); arctg a (bt); lôgarit tự nhiên l (bt); mũ cơ số tự

nhiên e (bt); hàm Bessel bậc nguyên n của bt là j (n, bt).

5.9 Tiện ích mc

 Tiện ích mc trong Linux cũng giống như N C Command của MS-DOS.

 N gười sử dụng hệ điều hành MS-DOS đều biết tính năng tiện ích N orton Commander

(N C) rất mạnh trong quản lý, điều khiển các thao tác về file, thư mục, đĩa cũng như là môi

trường trực quan trong chế độ văn bản (text). Dù trong hệ điều hành Windows sau này đã có sự

hỗ trợ của tiện ích Explorer nhưng không vì thế mà vai trò của N C giảm đi: N hiều người dùng

vẫn thích dùng N C trong các thao tác với file và thư mục. Linux cũng có một tiện ích mang tên

Midnight Commander (viết tắt là MC) có chức năng và giao diện gần giống với N C của MS-

DOS và sử dụng MC trong Linux tương tự như sử dụng N C trong MS-DOS.

Khởi động MC

 Lệnh khởi động MC: # mc [Tùy-chọn]

 Có một số tuỳ chọn khi dùng tiện ích này theo một số dạng thông dụng sau:

-a Không sử dụng các ký tự đồ hoạ để vẽ các đường thẳng khung.

-b Khởi động trong chế độ màn hình đen trắng.

-c Khởi động trong chế độ màn hình màu.

-d Không hỗ trợ chuột

-P Với tham số này, Midnight Commander sẽ tự động chuyển thư mục

hiện hành tới thư mục đang làm việc. N hư vậy, sau khi kết thúc, thư

mục hiện hành sẽ là thư mục cuối cùng thao tác.

-v file Sử dụng chức năng View của MC để xem nội dung của file được chỉ ra.

-V Cho biết phiên bản chương trình đang sử dụng.

 80

 N ếu chỉ ra đường dẫn (path), đường dẫn đầu tiên là thư mục được hiển thị trong panel

chọn (selected panel), đường dẫn thứ hai được hiển thị panel còn lại.

Giao diện của MC

 Giao diện của MC được chia ra làm bốn phần. Phần lớn màn hình là không gian hiển thị

của hai panel. Panel là một khung cửa sổ hiển thị các file thư mục cùng các thuộc tính của nó

hoặc một số nội dung khác. Theo mặc định, dòng thứ hai từ dưới lên sẽ là dòng lệnh còn dòng

dưới cùng hiển thị các phím chức năng. Dòng đầu tiên trên đỉnh màn hình là thực đơn ngang

(menu bar) của MC. Thanh thực đơn này có thể không xuất hiện nhưng nếu kích hoạt bằng cả

hai chuột tại dòng đầu tiên hoặc nhấn phím <F9> thì nó sẽ hiện ra và được kích hoạt.

 Midnight Commander cho phép hiển thị cùng một lúc cả hai panel. Một trong hai panel

là panel hiện hành (panel chọn). Thanh sáng chọn nằm trên panel hiện hành. Hầu hết các thao

tác đều diễn ra trên Panel này. Một số các thao tác khác về file như Rename hay Copy sẽ mặc

định sử dụng thư mục ở Panel còn lại làm thư mục đích. Tuy nhiên ta vẫn có thể sửa được thư

mục này trước khi thao tác vì các thao tác này đầu tiên bao giờ cũng yêu cầu nhập đường dẫn.

 Trên panel sẽ hiển thị hầu hết các file và thư mục con của thư mục hiện hành. Midnight

Commander có cơ chế hiển thị các kiểu file khác nhau bằng các ký hiệu và màu sắc khác nhau,

ví dụ như các file biểu tượng liên kết sẽ có ký hiệu ‘@’ ở đầu, các file thiết bị sẽ có màu đỏ tím,

các file đường ống có màu đen, các thư mục có ký hiệu ‘/’ ở đầu, các thư mục liên kết có ký

hiệu ‘~’...

 Cho phép thi hành một lệnh hệ thống từ MC bằng cách gõ chúng lên màn hình. Tất cả

những gì có gõ vào đều được hiển thị ở dòng lệnh phía dưới trừ một số ký tự điều khiển và khi

nhấn Enter, Midnight Commander sẽ thi hành lệnh gõ vào.

 81

Dùng chuột trong MC

 Midnight Commander sẽ hỗ trợ chuột trong trường hợp không gọi với tham số -d. Khi

kích chuột vào một file trên Panel, file đó sẽ được chọn, có nghĩa là thanh sáng chọn sẽ nằm tại

vị trí file đó và panel chứa file đó sẽ trở thành panel hiện hành. Còn nếu kích chuột phải vào

một file, file đó sẽ được đánh dấu hoặc xoá dấu tuỳ thuộc vào trạng thái kích trước đó.

N ếu kích đôi chuột tại một file, file đó sẽ được thi hành nếu đó là file thi hành được (executable

program) hoặc nếu có một chương trình đặc trưng cho riêng phần mở rộng đó thì chương trình

đặc trưng này sẽ được thực hiện.

 N gười dùng cũng có thể thực hiện các lệnh của các phím chức năng bằng cách nháy

chuột lên phím chức năng đó.

 N ếu kích chuột tại dòng đầu tiên trên khung panel, toàn bộ panel sẽ bị kéo lên. Tương tự

kích chuột tại dòng cuối cùng trên khung panel, toàn bộ panel sẽ bị kéo xuống.

 Có thể bỏ qua các thao tác chuột của MC và sử dụng các thao tác chuột chuNn bằng cách

giữ phím <Shift>

Các thao tác bàn phím

 Một số thao tác của Midnight Commander cho phép sử dụng nhanh bằng cách gõ các

phím tắt (hot key). Để tương thích với một số hệ thống khác, trong các bảng dưới đây về

Midnight Commander, viết tắt phím CTRL là “C”, phím ALT là “M” (Meta), phím SHIFT là

“S”.

 Các ký hiệu tổ hợp phím có dạng như sau:

C-<chr> Có nghĩa là giữ phím CTRL trong khi gõ phím <char>.

Ví dụ C -f có nghĩa là giữ CTRL và nhấn <f>.

C-<chr1><char2> Có nghĩa là giữ phím CTRL trong khi gõ phím <char1> sau đó nhả tất

cả ra và gõ phím <char2>.

M-<chr> Có nghĩa là giữ phím ALT trong khi gõ phím <char>. N ếu không có

hiệu lực thì có thể thực hiện bằng cách gõ phím <Esc> nhả ra rồi gõ

phím <char>.

S-<chr> Có nghĩa là giữ phím SHIFT trong khi gõ phím <char>.

 Sau đây là chức năng một số phím thông dụng. Các phím thực hiện lệnh:

Enter N ếu có dòng lệnh, lệnh đó sẽ được thi hành. Còn nếu không thì sẽ

tuỳ vào vị trí của thanh sáng trên panel hiện hành là file hay thư

 82

mục mà hoặc việc chuyển đổi thư mục hoặc thi hành file hay thi

hành một chương trình tương ứng sẽ diễn ra.

C-l Cập nhật lại các thông tin trên Panel.

 Các phím thao tác trên dòng lệnh:

M-Enter hay

C-Enter
chép tên file ở vị trí thanh sáng chọn xuống dòng lệnh

M-Tab hoàn thành tên file, lệnh, biến, tên người dùng hoặc tên máy giúp

C-x t, C-x C-t
sao các file được đánh dấu (mặc định là file hiện thời) trên panel chọn (C-x

t) hoặc trên panel kia (C-x C-t) xuống dòng lệnh

C-x p, C-x C-p
đưa tên đường dẫn hiện thời trên panel chọn (C-x p) hoặc trên panel kia

(C-x C-p) xuống dòng lệnh

M-p, M-n

sử dụng để hiện lại trên dòng lệnh các lệnh đã được gọi trước đó. M-p sẽ

hiện lại dòng lệnh được thi hành gần nhất, M-n hiện lại lệnh được gọi trước

lệnh đó

C-a đưa dấu nhắc trỏ về đầu dòng

C-e đưa dấu nhắc trỏ về cuối dòng

C-b, Left đưa dấu nhắc trỏ di chuyển sang trái một ký tự

C-f, Right đưa dấu nhắc trỏ di chuyển sang phải một ký tự

M-f đưa dấu nhắc trỏ đến từ tiếp theo

M-b đưa dấu nhắc trỏ ngược lại một từ

C-h, Space xoá ký tự trước đó

C-d, Delete xoá ký tự tại vị trí dấu nhắc trỏ

C-@ đánh dấu để cắt

C-k xoá các ký tự từ vị trí dấu nhắc trỏ đến cuối dòng

M-C-h,

M-Backspace
xoá ngược lại một từ

 Các phím thao tác trên panel:

Up,Down,

PgUp, PgDown,

Home, End

sử dụng các phím này để di chuyển trong một panel

b, C-b, C-h,

Backspace, Delete
di chuyển ngược lại một trang màn hình

 83

Space di chuyển tiếp một trang màn hình

u, d di chuyển lên/ xuống 1/2 trang màn hình

g, G di chuyển đến điểm đầu hoặc cuối của một màn hình

Tab, C-i
hoán đổi panel hiện hành. Thanh sáng chọn sẽ chuyển từ panel cũ sang

panel hiện hành

Insert, C-t chọn đánh dấu một file hoặc thư mục

M-g, M-h, M-j lần lượt chọn file đầu tiên, file giữa và file cuối trên panel hiển thị

C-s, M-s

tìm kiếm file trong thư mục. Khi kích hoạt chế độ này, những ký tự gõ

vào sẽ được thêm vào xâu tìm kiếm thay vì hiển thị trên dòng lệnh. N ếu

tuỳ chọn Show mini-status trong option được đặt thì xâu tìm kiếm sẽ

được hiển thị ở dòng trạng thái.

Khi gõ các kí tự, thanh sáng chọn sẽ di chuyển đến file đầu tiên có

những ký tự đầu giống những ký tự gõ vào. Sử dụng phím Backspace

hoặc Del để hiệu chỉnh sai sót. N ếu nhấn C-s lần nữa, việc tìm kiếm sẽ

được tiếp tục

M-t chuyển đổi kiểu hiển thị thông tin về file hoặc thư mục

C-\ thay đổi thư mục hiện thời

+
sử dụng dấu cộng để lựa chọn đánh dấu một nhóm file. Có thể sử dụng

các ký tự đại diện như ‘*’, ‘?’... để biểu diễn các file sẽ chọn

ữ
sử dụng dấu trừ để xoá đánh dấu một nhóm file. Có thể sử dụng các ký

tự dại diện như ‘*’, ‘?’ để biểu diễn các file sẽ xoá

* sử dụng dấu * để đánh dấu hoặc xoá đánh dấu tất cả các file trong panel

M-o
một panel sẽ hiển thị nội dung thư mục hiện thời hoặc thư mục cha của

thư mục hiện thời của panel kia

M-y di chuyển đến thư mục lúc trước đã được sử dụng

M-u di chuyển đến thư mục tiếp theo đã được sử dụng

Thực đơn thanh ngang (menu bar)

 Thực đơn thanh ngang trong Midnight Commander được hiển thị ở dòng đầu tiên trên

màn hình. Mỗi khi nhấn <F9> hoặc kích chuột tại dòng dầu tiên trên màn hình thực đơn ngang

sẽ được kích hoạt. Thực đơn ngang của MC có năm mục “Left”, “File”, “Command”, “Option”

và “Right”.

 84

 Thực đơn Left và Right giúp ta thiết lập cũng như thay đổi kiểu hiển thị của hai panel

left và right. Các thực đơn mức con của chúng gồm:

Listing Mode ...

thực đơn này được dùng khi muốn thiết lập kiểu hiển thị của các

file. Có bốn kiểu hiển thị:

Full - hiển thị thông tin về tên , kích thước, và thời gian sử đổi

của file;

Brief - chỉ hiển thị tên của file;

Long - hiển thị thông tin đầy đủ về file (tương tự lệnh ls -l);

User - hiển thị các thông tin do tự chọn về file;

Quick view C-x q xem nhanh nội dung của một file

Info C-x i xem các thông tin về một thư mục hoặc file

Tree hiển thị dưới dạng cây thư mục

Sort order...

thực hiện sắp xếp nội dung hiển thị theo tên, theo tên mở rộng,

thời gian sửa chữa, thời gian truy nhập, thời gian thay đổi, kích

thước, inode

Filter ... thực hiện việc lọc file theo tên

N etwork link ... thực hiện liên kết đến một máy tính

FTP link ... thực hiện việc lấy các file trên các máy từ xa

Rescan C-r quét lại

 Thực đơn File chứa một danh sách các lệnh mà có thể thi hành trên các file đã được đánh

dấu hoặc file tại vị trí thanh chọn. Các thực đơn mức con:

User menu F2 thực đơn dành cho người dùng

View F3 xem nội dung của file hiện thời

View file ... mở và xem nội dung của một file bất kì

Filtered view M-!
thực hiện một lệnh lọc với tham số là tên file và hiển

thị nội dung của file đó

Edit F4
soạn thảo file hiện thời với trình soạn thảo mặc định

trên hệ thống

Copy F5 thực hiện copy

cHmod C-x c
thay đổi quyền truy nhập đối với một thư mục hay

một file

 85

Link C-x l tạo một liên kết cứng đến file hiện thời

Symlink C-x s tạo một liên kết tượng trưng đến file hiện thời

edit sYimlink C-x C-s hiệu chỉnh lại một liên kết tượng trưng

chOwn C-x o thay đổi quyền sở hữu đối với thư mục hay file

Advanced chown
thay đổi quyền sở hữu cũng như quyền truy nhập của

file hay thư mục

Rename/Move F6 thực hiện việc đổi tên hay di chuyển đối với một file

Mkdir F7 tạo một thư mục

Delete F8 xoá một hoặc nhiều file

Quick cd M-c chuyển nhanh đến một thư mục

select Group M-+ thực hiện việc chọn một nhóm các file

Unselect group M-ữ ngược với lệnh trên

reverse selecTion M-* chọn các file trong thư mục hiện thời

Exit F10 thoát khỏi MC

 Thực đơn Command cũng chứa một danh sách các lệnh.

Directory tree hiển thị thư mục dưới dạng cây thư mục

Find file M-? tìm một file

Swap panels C-u thực hiện tráo đổi nội dung giữa hai panel hiển thị

Switch panels on/of C-o
đưa ra lệnh shell được thực hiện lần cuối (chỉ sử dụng trên

xterm, trên console SCO và Linux)

Compare

directories
C-x d

thực hiện so sánh thư mục hiện tại trên panel chọn với các thư

mục khác

Command history đưa ra danh sách các lệnh đã thực hiện

Directory hotlist C-\ thay đổi thư mục hiện thời

External panelize C-x !

thực hiện một lệnh trong MC và hiển thị kết quả trên panel chọn

(ví dụ: nếu muốn trên panel chọn hiển thị tất cả các file liên kết

trong thư mục hiện thời, hãy chọn mục thực đơn này và nhập

lệnh find . -type l -print sẽ thấy kết quả thật tuyệt vời)

Show directory size hiển thị kích thước của thư mục

Command history hiển thị danh sách các lệnh đã thực hiện

Directory hotlist C-\ chuyển nhanh đến một thư mục

Background C-x j thực hiện một số lệnh liên quan đến các quá trình nền

 86

Extension file edit

cho phép hiệu chỉnh file ~/.mc/ext để xác định chương trình sẽ

thực hiện khi xem, soạn thảo hay làm bất cứ điều gì trên các file

có tên mở rộng

 Thực đơn Options cho phép thiết lập, huỷ bỏ một số tuỳ chọn có liên quan đến hoạt động

của chương trình MC.

Configuration ... thiết lập các tuỳ chọn cấu hình cho MC

Lay-out ... xác lập cách hiển thị của MC trên màn hình

Confirmation ... thiết lập các hộp thoại xác nhận khi thực hiện một thao tác nào đó

Display bits ... thiết lập cách hiển thị của các ký tự

Learn keys ... xác định các phím không được kích hoạt

Virtual FS ... thiết lập hệ thống file ảo

Save setup ghi mọi sự thiết lập được thay đổi

Các phím chức năng

 Các phím chức năng của Midnight Commander được hiển thị tại dòng cuối cùng của

màn hình. Có thể thực hiện các chức năng đó bằng cách kích chuột lên nhãn của các chức năng

tương ứng hoặc nhấn trên bàn phím chức năng đó.

F1 hiển thị trang trợ giúp

F2 đưa ra thực đơn người dùng

F3 xem nội dung một file

F4 soạn thảo nội dung một file

F5 thực hiện sao chép file

F6 thực hiện di chuyển hoặc đổi tên file

F7 tạo thư mục mới

F8 xoá thư mục hoặc file

F9 đưa trỏ soạn thảo lên thanh thực đơn nằm ngang

F10 thoát khỏi MC

Bộ soạn thảo của Midnight Commander

 Midnight Commander cung cấp một bộ soạn thảo khá tiện dụng trong việc soạn thảo các

văn bản ASCII. Bộ soạn thảo này có giao diện và thao tác khá giống với tiện ích Edit của DOS

hay N cEdit của N orton Commander. Để hiệu chỉnh một số file văn bản, hãy di chuyển thanh

 87

sáng chọn đến vị trí file đó rồi nhấn F4, nội dung của file đó sẽ hiện ra trong vùng soạn thảo.

Sau khi hiệu chỉnh xong, nhấn F2 để ghi lại. Bộ soạn thảo này có một thực đơn ngang cung cấp

các chức năng đầy đủ như một bộ soạn thảo thông thường.

 N ếu đã từng là người dùng DOS và mới dùng Linux thì nên dùng bộ soạn thảo này để

hiệu chỉnh và soạn thảo văn bản thay vì bộ soạn thảo Vim. Sau đây là bảng liệt kê các phím

chức năng cũng như các mức thực đơn trong bộ soạn thảo này:

Thực đơn File các thao tác liên quan đến file.

Open/load C-o mở hoặc nạp một file

N ew C-n tậo một file mới

Save F2 ghi nội dung file đã được soạn thảo

Save as ... F12 tạo một file khác tên nhưng có nội dung trùng với nội

dung file hiện thời

Insert file ... F15 chèn nội dung một file vào file hiện thời

Copy to file ... C-f sao đoạn văn bản được đánh dấu đến một file khác

About .. thông tin về bộ soạn thảo

Quit F10 thoát khỏi bộ soạn thảo

Thực đơn Edit: các thao tác liên quan đến việc soạn thảo nội dung file.

Toggle Mark F3 thực hiện đánh dấu một đoạn văn bản

Mark Columns S-F3 đánh dấu theo cột

Toggle Ins/overw Ins chuyển đổi giữa hai chế độ chèn/đè

Copy F5 thực hiện sao chép file

Move F6 thực hiện di chuyển file

Delete F8 xoá file

Undo C-u trở về trạng thái trước khi thực hiện một sự thay đổi

Beginning C-PgUp di chuyển đến đầu màn hình

End C-PgDn di chuyển đến cuối màn hình

Thực đơn Sear/Repl: các thao tác liên quan đến việc tìm kiếm và thay thế

Search .. F7 thực hiện tìm kiếm một xâu văn bản

Search again F17 tìm kiếm tiếp

Replace ... F4 tìm và thay thế xâu văn bản

 88

Thực đơn Command: các lệnh có thể được thực hiện trong khi soạn thảo.

Goto line ... M-l di chuyển trỏ soạn thảo đến một dòng

Insert Literal ... C-q chèn vào trước dấu nhắc trỏ một ký tự

Refresh screen C-l làm tươi lại màn hình

Insert Date/time chèn ngày giờ hiện tại vào vị trí dấu nắhc trỏ

Format paragraph M-p định dạng lại đoạn văn bản

Sort M-t thực hiện sắp xếp

Thực đơn Options: các tuỳ chọn có thể thiết lập cho bộ soạn thảo.

General ... thiết lập các tuỳ chọn cho bộ soạn thảo

Save mode ... ghi lại mọi sự thiết lập được thay đổi

Các phím chức năng

F1 hiển thị trang trợ giúp

F2 ghi nội dung file

F3 thực hiện việc đánh dấu đoạn văn bản

F4 tìm và thay thế xâu văn bản

F5 thực hiện việc sao chép

F6 di chuyển file

F7 tìm kiếm xâu văn bản

F8 xoá đoạn văn bản được đánh dấu

F9 hiển thị thanh thực đơn ngang

F10 thoát khỏi bộ soạn thảo

 89

5.10 Sử dụng trình soạn thảo VI

 VI là chương trình soạn thảo văn bản theo trang màn hình:

− Màn hình được xem như một cửa sổ mở trên file.

− Có khả năng di chuyển cursor tới bất kỳ nơi nào trên màn hình.

− Cửa sổ có thể di chuyển tự do trên file.

 Để hiển thị đúng, VI cần biết kiểu terminal đang dùng. Ta có thể định nghĩa được kiểu

terminal bằng cách gán gía trị cho biến môi trường TERM: $TERM=tws2103; export TERM

 Phần lớn các phím được dùng độc lập hoặc kết hợp với phím SHIFT và CTRL để tạo các

lệnh của VI. Khi một lệnh bị gõ sai, vi báo hiệu bằng nháy màn hình, kêu beep hoặc thông báo

lỗi.

 Chương trình VI được xây dựng từ chương trình soạn thảo dòng ex. Các lệnh của ex có

thể được gọi khi có dấu “:” ở dòng cuối màn hình.

 Ta có thể gọi vi với tên file văn bản: $ vi tên_file

 Cửa sổ soạn thảo sẽ được mở tại đầu file. N ếu file chưa tồn tại, nó sẽ được tạo bởi lệnh

ghi. Dòng cuối cùng trên màn hình được dùng cho những việc sau:

− vào các lệnh.

− thống kê.

− báo lỗi.

 Đối với những người mới dùng vi, có thể dùng version khác của vi: $vedit tên_file

version này của vi sẽ hiện thông báo IN PUT MODE khi ta đang trong chế độ nhập văn bản. Khi

 90

ta chỉ muốn xem nội dung của một file, dùng: $view tên_file version này của vi mở file chỉ để

đọc, cho phép ta xem được nội dung mà tránh được nguy cơ file bị thay đổi.

 Chuyển chế độ làm việc: Từ chế độ soạn thảo sang chế độ lệnh dùng phím ESC

 Muốn ra khỏi vi và ghi file có thể dùng một trong các cách sau:
 ZZ hoặc

 :w sau đó:q hoặc

 :wq hoặc

 :x

 Ra khỏi VI và không ghi file:
 :q (nếu không có sửa đổi) hoặc

 :q!

 Khi đang trong VI, muốn làm việc với SHELL, ta có thể làm như sau:

− chạy một lệnh của SHELL
 :!lệnh

− hoặc gọi SHELL, sau đó chạy các lệnh ta muốn, khi kết thúc ấn CTRL-D để trở lại VI:
 :!sh

 $lệnh

 $CTRL-D

Chèn văn bản

Chèn ký tự trên một dòng

 a <text> <ESC> Chèn ký tự vào sau cursor.

 i <text> <ESC> Chèn ký tự vào trước cursor.

 A <text> <ESC> Chèn ký tự vào cuối dòng.

 I <text> <ESC> Chèn ký tự vào đầu dòng.

Chèn dòng

 o <text> <ESC> Chèn một dòng vào trước dòng chứa cursor.

 O <text> <ESC> Chèn một dòng vào sau dòng chứa cursor.

Ghi chú: nhấn ESC để kết thúc chế độ xem, muốn chèn các ký tự không in được ta phải gõ:

CTRL – V trước chúng.

Di chuyển cursor trong file

Theo ký tự

 Sang trái: dùng phím mũi tên trái hoặc h hoặc backspace.

 Xuống dòng: dùng phím mũi tên xuống hoặc j hoặc linefeed

 Sang phải: dùng phím mũi tên phải hoặc i hoặc escape.

 Lên dòng: dùng phím mũi tên lên hoặc k.

 91

Theo dòng

 ^ về đầu dòng

 $ cuối dòng

 Enter đầu dòng tiếp

Đầu dòng trên

 0(null) về đầu dòng vật lý (dòng bắt đầu bằng dấu cách hoặc tab)

Theo màn hình

 H về đầu màn hình (Home)

 M về giữa màn hình (Middle)

 L về cuối màn hình (Last)

Theo từ (word)

 w W về đầu từ tiếp

 b B đầu từ hiện tại

 e E cuối từ hiện tại

Theo câu (sentence)

 (về đầu câu

) về cuối câu

 dấu kết thúc một câu là các dấu ., ! hoặc ?

Theo đoạn văn (paragraph)

 { về đầu đoạn văn

 } cuối đoạn văn

 đoạn văn kết thúc bằng một dòng trống.

Theo cửa sổ (window)

 z dòng hiện tại ở giữa cửa sổ.

 z<Enter> dòng hiện tại ở đầu cửa sổ.

 z- dòng hiện tại ở cuối cửa sổ.

 ^D xuống nửa cửa sổ

 ^U lên nửa cửa sổ

 ^F xuống một cửa sổ (-2 dòng)

 ^B lên một cửa sổ (2 dòng)

Ghi chú: ^ là ký hiệu của phím CTRL

Theo số thứ tự dòng Để hiển thị số thứ tự của các dòng soạn thảo: :set nu

Xoá bỏ hiển thị trên

 92

 :set nonu

 :n <Enter> hoặc nG chuyển cursor đến dòng thứ n

 :$ hoặc G đến dòng cuối văn bản

 :se list hiển thị các ký tự Nn (hidden)

Tìm dãy ký tự

 / ký hiệu chiều tìm xuôi.

 ? ký hiệu chiều tìm ngược.

 /string chuyển cursor tới dòng chứa dãy ký tự theo chiều xuôi.

 ?string chuyển cursor tới dòng chứa dãy ký tự theo chiều ngược.

 // lặp lại tìm xuôi.

 ?? lặp lại tìm ngược.

Xóa văn bản

Xóa ký tự

 x xóa ký tự tại vị trí cursor

 3x xóa 3 ký tự

 X xóa ký tự trước vị trí cursor

Xóa dòng văn bản

 dd hoặc d<CR> xóa dòng chứa cursor

 3dd xóa 3 dòng bắt đầu từ dòng chứa cursor

 d$ hoặc D xóa đến cuối dòng

 dw xoá từ chứa cursor

 3dw hoặc d3w xoá 3 từ

 d/string xóa khi hết dãy string

Thay thế văn bản

Thay thế ký tự

 rc thay thế ký tự hiện tại bằng ký tự c (???)

 R<text><ESC> thay thế số ký tự bằng dãy “text”

Thay thế dòng

 S<text><ESC> xóa dòng hiện tại và thay nó bằng “text”

Thay thế từ

 cw<text><ESC> thay một từ bằng “text”. Từ được thay thế tính từ cursor đến ký tự $.

 c2w<text><ESC> thay 2 từ.

 C hoặc c$ thay thế cuối dòng

 93

 c/string thay thế đến hết ”string”

Xóa lệnh

 u xóa tác dụng của lệnh cuối cùng

 U xoá tất cả thay đổi đã làm trên dòng hiện tại.

Xem trạng thái văn bản đang soạn thảo

 ^G Hiển thị tên, trạng thái, số dòng, vị trí ,cursor và phần trăm văn bản tính từ vị trí

 cursor đến cuối văn bản.

Sao chép, di chuyển văn bản

Di chuyển văn bản

 Mỗi lần thực hiện một lệnh xóa (x hoặc d), vi đều ghi lại phần văn bản bị xóa vào vùng

đệm riêng cho đến lần xóa sau. Lệnh p và P cho phép lấy lại văn bản từ vùng đệm đó. Trước khi

thực hiện lệnh này, cursor phải được đặt vào vị trí cùng kiểu với phần văn bản có trong vùng

đệm:

− ký tự.

− từ.

− dòng.

− cuối dòng (end of line).

p sao phần văn bản xoá lần cuối cùng vào sau đối tượng trong cùng kiểu.

P sao phần văn bản xoá lần cuối vào trước đối tượng cùng kiểu.

Sao chép văn bản

 Lệnh y (yank) cho phép sao phần văn bản ta muốn vào vùng đệm. Muốn sao phần văn

bản từ vùng đệm ra, ta phải chuyển cursor vào nơi cần sao, sau đó dùng p hoặc P.

 Y3w sao 3 từ vào vùng đệm.

 Y hoặc yy sao dòng hiện tại vào vùng đệm.

 5yy sao 5 dòng vào vùng đệm.

Một cách khác để sao chép dòng

 :5,8t25 sao các dòng từ 5 đến 8 tới sau dòng 25

5.11 Sử dụng tài liệu giúp đỡ man

 Trong DOS để biết cú pháp hay ý nghĩa của một lệnh chúng ta hay dùng giúp đỡ của

lệnh bằng cách đánh tham số /? vào phía sau lệnh, còn Window có bộ Help cho phép ta tìm

kiếm các thông tin liên quan đến một vấn đề nào đó.

 94

 Linux thì cung cấp cho ta một hệ thống thư viện giúp đỡ cho phép ta tìm các thông tin

theo từ khóa ta nhập vào. Dù không có giao diện bằng Window, nhưng các tài liệu giúp đỡ này

rất có ích đối với người sử dụng đặc biệt khi sử dụng các lệnh. Chúng ta sẽ biết các lệnh trong

Linux sử dụng rất nhiều tùy chọn mà chúng ta không thể nhớ hết được. Man sẽ giúp chúng ta.

 Chúng ta sử dụng man theo cú pháp: $man từ-khóa [Enter]

từ-khóa là từ mà chúng ta cần tìm kiếm thông tin về nó.

Ví dụ: Tìm kiếm các thông tin về lệnh ls

 $man ls

 LS(1) FSF LS(1)

 NAME

 ls - list directory contents

 SYNOPSIS

 ls [OPTION]... [FILE]...

 DESCRIPTION

 List information about the FILEs (the current directory by

 default). Sort entries alphabetically if none of –cftuSUX nor --

 sort.

 -a, --all

 do not hide entries starting with .

 -A, --almost-all

 do not list implied . and ..

 -b, --escape

 print octal escapes for nongraphic characters

 --block-size=SIZE :

 Ta dùng phép điều khiển lên, xuống để xem trang man. N ếu muốn xem từng trang dùng

phím space.

 Thoát khỏi man sử dụng lệnh: : q

 Man phân dữ liệu mình lưu trữ thành những đoạn (session) khác nhau với các chủ đề

khác nhau là:

Session Tên chủ đề Ý nghĩa

1 user command các lệnh thông thường của hệ điều hành

2 system call các hàm thư viện kernel của hệ thống

3 subroutines các hàm thư viện lập trình

4 devices các hàm truy xuất file và xử lý thiết bị

 95

5 File format các hàm định dạng file

6 games các hàm liên quan đến trò chơi

7 Miscell các hàm khác

8 sys. admin các hàm quản trị hệ thống

 Xác định cụ thể thông tin của một chủ đề nào chúng ta dùng: $man session từ-khóa

 Ví dụ : # man 3 printf

 Xem các thông tin về hàm prinf dùng trong lập trình. N ếu chúng ta không xác định

session thì session mặc nhiên là 1 .

 96

CHƯƠNG 4: LẬP TRÌNH TRONG LINUX

1. LẬP TRÌNH SHELL

1.1 Khái niệm shell

 Shell là chương trình luôn được thực thi khi chúng ta đăng nhập hệ thống. N ó là chương

trình cho phép chúng ta tương tác với hệ thống. Hiện tại có nhiều shell có sẵn trong hệ thống.

 Shell là chương trình nằm giữa người sử dụng và kernel, thông thường nó là một bộ biên

dịch dòng lệnh từ người sử dụng ở các thiết bị cuối (cũng có thể từ file) và thực hiện chúng.

Không những thế, trong UN IX shell còn là một ngôn ngữ lập trình thực sự với đầy đủ các cú

pháp cần thiết như câu lệnh điều kiện, vòng lặp, các chương trình con, thủ tục...

 Shell cung cấp cho người dùng một tập lệnh để người dùng thao tác với hệ thống. Khi

người dùng thực hiện lệnh shell, shell sẽ dịch chúng thành các lời gọi hệ thống và chuyển cho

kernel hệ điều hành xử lý. Shell cũng là một phần trong các ứng dụng mà kernel quản lý.

Kernel chịu trách nhiệm cấp phát tài nguyên duy trì các tiến trình shell. Linux là hệ thống đa

người dùng, khi mỗi người dùng đăng nhập hệ thống, họ sẽ nhận được một bản copy của shell

để thao tác với hệ thống.

 Unix shell bao gồm bộ biên dịch lệnh và ngôn ngữ lập trình. Có ba loại shell :

− Bourne shell của Steven Bourne đơn giản và hiệu quả. N ó là mặc định trong đa số các

hệ UN IX (hoặc có thể gọi bởi sh).

− C shell của Bill Joy ở trường đại học Berkeley giống như Bourne shell nhưng bổ sung

thêm các đặc điểm như bí danh, history vvv. N ó có thể gọi bởi csh.

− Korn shell của David F. Korn kết hợp Bourne shell và C shell nhưng bổ sung thêm các

đặc điểm riêng. N ó có thể gọi bởi ksh.

1.2 Một số đặc điểm của Shell

 Xử lý tương tác (Interative processing): N gười dùng tương tác với shell dưới dạng đối

thoại trực quan.

 Chạy nền: Các chương trình trên shell có thời gian thực thi lâu và chiếm ít tài nguyên có

thể cho phép chạy nền bên dưới trong khi đó người dùng có thể thực hiện các công việc khác.

Điều này tăng hiệu quả sử dụng hệ thống.

 Chuyển hướng (Redirection): Có thể linh hoạt chuyển đổi các dữ liệu ra vào chuNn và

lỗi.

 97

 Ống dẫn (pipe): Cho phép thực hiện nhiều lệnh liên tiếp trong đó dữ liệu ra của lệnh này

được sử dụng như dữ liệu vào của lệnh kia.

 Tập tin lệnh (shell script): Tạo các tập tin chứa các lệnh làm việc theo trình tự. Cấp

quyền và thực thi tập tin này.

 Biến shell: shell hỗ trợ sử dụng các biến lưu trữ các thông tin để điều khiển hoạt động.

Sử dụng lại các lệnh đã thực hiện (history command): Đây là tính năng rất có ích cho người

dùng. Để thực hiện lại các lệnh mình đã thực hiện trước đó, thay vì phải gõ lại, người dùng có

thể lại.

 Cấu trúc lệnh như ngôn ngữ lập trình: Shell cho phép sử dụng lệnh như ngôn ngữ lập

trình, bởi nó có thể kết hợp xử lý các tác vụ phức tạp.

 Tự động hoàn tất tên file, hoặc lệnh: Chúng ta có thể gõ phần đầu của lệnh hoặc tập tin

sau đó dùng <Tab> để hoàn tất phần còn lại.

 Bí danh cho lệnh (command alias): Ta có thể dùng một tên mới cho một lệnh. Sau đó sử

dụng tên này thay thế lệnh : $alias dir=’ls –l’ lúc này ta sử dụng lệnh dir dùng như ls –l

Các Shell trong Linux

Tên Shell Lịch sử ra đời

sh (Bourne) Shell nguyên thủy trong Unix

Csh, tcsh và zsh Shell sử dụng cấu trúc lệnh lệnh của ngôn ngữ C làm ngôn ngữ script.

Shell này được tạo bởi Bill Joy, đây là Shell thông dụng thứ 2 sau bash

Bash Bash(Bourne Again Shell) là Shell sử dụng chính trong Linux, ra đời từ

dự án GN U. Bash có ưu điểm là mã nguồn mở, có thể download từ địa

chỉ http://www.gnu.org

Rc Là Shell mở rộng của C Shell với nhiều tương thích với ngôn ngữ C, ra

đời từ dự án GN U

 Shell Linux mặc định là bash, nằm tại /bin/bash

 Tất cả hệ điều hành Linux đều có Shell Bash. Muốn biết mình đang dùng Shell nào sử

dụng lệnh sau: Echo $Shell

Dấu nhắc shell (dấu nhắc đợi lệnh)

 # khi ta là root (superuser), ở bất kỳ shell nào.

 % dấu nhắc khi chạy C shell.

 $ dấu nhắc khi chạy Bourne shell hoặc Korn shell.

 > dấu nhắc khi chạy tcsh shell.

 98

 Trước dấu nhắc shell ta có thể đặt một chuỗi ký tự thể hiện tên riêng, tên máy tính, tên

thư mục hoặc đĩa chỉ mạng.

Các siêu ký tự (wildcards)

 Là những ký tự có ý nghĩa đặc biệt đối với shell : ? , *, [], -, !

 Dấu “?” : thay thế cho 1 ký tự bất kỳ.
 $ls fi?e

 file fine fire

 Dấu “*” : thay thế cho 0 hoặc nhiều ký tự bất kỳ.
 $ls abc*xyz

 abcxyz abcdefxyz abcdefghigjk0123456789xyz

Thay đổi shell làm việc

 Thay đổi vĩnh viễn: dùng lệnh passwd
 $passwd –s

 Changing login shell for mang on Linux

 Old shell: /bin/sh

 New shell: /bin/bash

 Thay đổi tạm thời (chuyển tạm thời qua shell khác) :
 $bash

 [nam@localhost nam]$ exit (hoặc ^D, tức Ctrl-D)

1.3 Lập trình đường ống

 Pipe còn gọi là đường ống, là cách truyền dữ liệu sử dụng kết hợp 2 chuyển tiếp. Pipe sử
dụng kết xuất của một chương trình và làm nhập liệu cho một chương trình khác. Đặc điểm
đường ống của Unix nối kết một lệnh với lệnh khác.

− Ống nối cho phép đầu ra của một lệnh là đầu vào của lệnh khác.

− Ống nối đơn thuần là một bộ đệm của kernel.

− Các tiến trình có thể chia sẻ dữ liệu thay cho việc sử dụng file tạm.

 99

 Đặc biệt hơn nó tạo xuất chuNn của 1 lệnh thành nhập chuNn của 1 lệnh khác. Ký hiệu |
để thiết lập đường ống
Ví dụ: # wc baocao* | sort –n đầu ra của wc (trong trường hợp này là tổng số từ và ký tự của

các tập tin có tên bắt đầu là baocao) và gửi nó đến lệnh sort để sắp thứ tự số. Kết quả cuối cùng

là các tổng số từ sắp theo thứ tự tăng dần hiển thị trên màn hình.

 Đường ống có thể kết hợp với đổi hướng: wc baocao* | sort -n > rep-count

kết quả sẽ đưa ra tập tin rep-count.

 Với lệnh: $ls –l | more kết quả của lệnh ls không xuất ra màn hình mà chuyển cho lệnh

more xử lý như dữ liệu đầu vào

Lệnh tee

 Hoạt động chuyển tiếp và đường ống là đặc điểm của hệ điều hành Linux. Tuy nhiên ta

cũng có thể sử dụng 1 lệnh của UN IX để làm việc này. Đó là lệnh tee, nó sẽ giảm bớt các kết

quả gián tiếp của chuỗi đường ống: sort baocao | tee baocaostt | lp

 Đầu tiên lệnh tee gửi nhập chuNn của nó đến xuất chuNn của nó, trong trường hợp này

gửi xuất của sort đến nhập của lp. Thứ hai tee lấy chỗ 1 bản sao của nhập chuNn vào tên tập tin

baocaostt.

1.4 Lập trình Shell Script

 N gôn ngữ Shell là dạng ngôn ngữ Script, không có độ uyển chuyển hay phức tạp như các

ngôn ngữ lập trình chuyên nghiệp C, java,...Chương trình Shell được soạn thảo dưới dạng văn

bản (text) và không được biên dịch thành file binary như các ngôn ngữ khác. Khi chạy chương

trình Shell, Shell sẽ biên dịch và thực thi. Trong Linux chúng ta gặp rất nhiều các chương trình

Shell xử lý những công việc rất hữu hiệu. Là nhà quản trị cần phải nắm vững cú pháp ngôn ngữ

Shell để không chỉ viết những đoạn chương trình mà ít ra cũng hiểu được các script có sẵn điều

khiển hệ thống của mình.

 Các thành phần chính của Shell:

− Biến: kiểu chuỗi, tham số và biến môi trường.

− Điều kiện: kiểm tra luận lý.

− Các lệnh điều khiển: if, for, while, until, case.

− Hàm.

− Các lệnh nội trú của Shell.

− Các phép toán số học

− …

Chú thích trong Shell

 100

 Dòng chú thích sử dụng trong các mã nguồn chương trình dùng để giải thích ý nghĩa các

lệnh hoặc chứa năng của một biến hay một đoạn chương trình. N hững dòng này không được

biên dịch đối với các ngôn ngữ lập trình, và nó không được thực thi đối với chương trình shell.

 Bắt đầu một dòng chú thích là dấu # .
Dòng chú thích ghi ở đây

Ví dụ: Một đoạn chương trình sử dụng dòng chú thích.
Kiểm tra có tồn tại tham số đầu tiên

if test $1 –z ; then

 echo "Khong co tham so"

fi # kết thúc if

 Trường hợp đặc biệt chỉ thị #! không dùng để giải thích mà là đây chính là dòng lệnh gọi

shell để thông dịch các lệnh trong tập tin này. Ta thường thấy dòng đầu tiên trong các chương

trình shell là #! /bin/bash. Điều này có nghĩa là ta sẽ dùng shell bash để thông dịch lệnh. Shell

chúng ta chạy có thể xem là shell phụ và chúng có thể thực thi các lệnh mà không làm biến đổi

các biến môi trường của shell chính.

 Cú pháp chung của chỉ thị này là: #!shell-thực-thi

 N ếu chúng ta không khai báo thì shell mặc nhiên trong Linux là bash. Các hệ Unix khác

thì shell mặc nhiên là sh. Chỉ thị #! Còn dùng để chạy các chương trình khác trước khi thực thi

các lệnh tiếp theo.

Sử dụng biến

 Biến dùng trong chương trình shell không cần phải khai báo trước như các ngôn ngữ C,

Pascal ... N ó sẽ tự động khai báo khi người dùng lần đầu sử dụng. Dữ liệu biến lưu trữ được

hiểu dưới dạng chuỗi dù nó có thể chứa số.

 Trong trường hợp muốn sử dụng giá trị biến như là số thì phải có các phép biến đổi mà

chúng ta học phía sau. Một vấn đề mà ta phải lưu ý là shell phân biết chữ hoa và chữ thường.

Ví dụ hai biến tong và Tong là khác nhau.

 Trong shell có thể kể tới 3 loại biến:

Biến môi trường: (biến shell đặc biệt, biến từ khóa, biến shell xác định trước hoặc biến shell

chuNn) được liệt kê như sau (các biến này thường gồm các chữ cái hoa):

HOME : đường dẫn thư mục riêng của người dùng,

MAIL: đường dẫn thư mục chứa hộp thư người dùng,

PATH: thư mục dùng để tìm các file thể hiện nội dung lệnh,

PS1: dấu mời ban đầu của shell (ngầm định là $),

PS2: dấu mời thứ 2 của shell (ngầm định là >),

 101

PWD: Thư mục hiện tại người dùng đang làm,

SHELL: Đường dẫn của shell (/bin/sh hoặc /bin/ksh)

TERM: Số hiệu gán cho trạm cuối,

USER: Tên người dùng đã vào hệ thống,

 Trong .profile ở thư mục riêng của mỗi người dùng thường có các câu lệnh dạng: <biến

môi trường> = <giá trị>

Biến người dùng

 Các biến này do người dùng đặt tên và có các cánh thức nhận giá trị các biến người dùng

từ bàn phím (lệnh read). Biến được đặt tên gồm một xâu ký tự, quy tắc đặt tên như sau: ký tự

đầu tiên phải là một chữ cỏi hoặc dấu gạch chân (_), sau tên là một hay nhiều ký tự khác. Để tạo

ra một biến ta chỉ cần gán biến đó một giá trị nào đó. Phép gán là một dấu bằng (=). Ví dụ:

myname=”duonglk”

Chú ý: không được có dấu cách (space) đằng trước hay đằng sau dấu bằng. Tên biến là phân

biệt chữ hoa chữ thường. Để truy xuất đến một biến ta dùng cú pháp sau; $tên_biến. Chẳng hạn

ta muốn in ra giá trị của biến myname ở trên ta chỉ cần ra lệnh: echo $myname.
$myname.

$myname.

 Ta có thể khai báo một biến nhưng nó có giá trị N ULL như trong những cách sau:
$ vech=

$ vech=""

 N ếu ta ra lệnh in giá trị của biến này thì ta sẽ thu được một giá trị N ULL ra màn hình

(một dòng trống).

Biến tự động (hay biến-chỉ đọc, tham số vị trí)

 Là các biến do shell đã có sẵn; tên các biến này cho trước.

 Có 10 biến tự động: $0, $1, $2, ..., $9.

Ký hiệu biến Ý nghĩa

$1, $2, $3 Giá trị các biến tham số thứ nhất, thứ 2.. tương ứng với các tham

số từ trái sang phải trong dòng tham số.

$0 Tên tập tin lệnh gọi (tên của shell script)

$* Danh sách tham số đầy đủ

$# Tổng số tham số.

$$ Số tiến trình (ID) mà chương trình đang hoạt động

 102

 Tham biến “$0” chứa tên của lệnh, các tham biến thực bắt đầu bằng “$1” (nếu tham số

cú vị trí lớn hơn 9, ta phải sử dụng cú pháp ${} – ví dụ, ${10} để thu được các giá trị của

chúng).

 Shell bash có ba tham biến vị trí đặc biệt, “$#”, “$@”, và “$#”. “$#” là số lượng tham

biến vị trí (không tính “$0”). “$*” là một danh sách tất cả các tham biến vị trí loại trừ “$0”, đã

được định dạng như là một xâu đơn với mỗi tham biến được phân cách bởi kớ tự $IFS. “$@”

trả về tất cả các tham biến vị trí được đưa ra dưới dạng N xâu được bao trong dấu ngoặc kép.

 Sự khác nhau giữa “$*” và “$@” là gì và tại sao lại có sự phân biệt? Sự khác nhau cho

phép ta xử lý các đối số dòng lệnh bằng hai cách. Cách thứ nhất, “$*”, do nó là một xâu đơn,

nên có thể được biểu diễn linh hoạt hơn không cần yêu cầu nhiều mã shell. “$@” cho phép ta

xử lý mỗi đối số riêng biệt bởi vì giá trị của chúng là N đối số độc lập.

 Một ví dụ khác về biến vị trí giúp ta phân biệt được sự khác nhau giữa biến $* và $@:
#!/bin/bash

#testparm.sh

function cntparm

{

 echo –e “inside cntparm $# parms: $*”

}

cntparm ‘$*’

cntparm ‘$@’

echo –e “outside cntparm $* parms\n”

echo –e “outside cntparm $# parms\n”

 Khi chạy chương trình này ta sẽ thu được kết quả:
$./testparm.sh Kurt Roland Wall

inside cntparm 1 parms: Kurt Roland Wall

inside cntparm 3 parms: Kurt Roland Wall

outside cntparm: Kurt Roland Wall

outside cntparm: Kurt Roland Wall

 Trong dòng thứ nhất và thứ 2 ta thấy kết quả có sự khác nhau, ở dòng thứ nhất biến “$*”

trả về tham biến vị trí dưới dạng một xâu đơn, vì thế cntparm báo cáo một tham biến đơn. Dòng

thứ hai gọi cntparm, trả về đối số dòng lệnh của là 3 xâu độc lập, vì thế cntparm báo cáo ba

tham biến.

Nhập giá trị cho biến từ bàn phím

 Cú pháp lệnh : read tên-biến gặp lệnh này chương trình sẽ đợi người dùng nhập giá trị

vào, khi dữ liệu đã xong thì ấn Enter. Giá trị sẽ được gán vào biến tên-biến.

Ví dụ :

 103

echo "Nhap vao ten cua ban"

read ten

echo "Ten vua nhap la $ten"

 Trong ví dụ trên khi xuất hiện dòng thông báo “N hap vao ten cua ban “, người dùng

nhập vào tên ví dụ như “ N guyen Hung Dung” thì kết quả hiển thị là “Ten vua nhap la N guyen

Hung Dung “.

 Dấu {} phải được sử dụng với tên biến theo sau bởi chữ hay số mà không phải là một

phần của tên biến.
$ filename=chapt

$ echo ${filename}0

chapt0

Các ký tự đặc biệt trong bash

Ký tự Mô tả

<

>

(

)

|

\

&

{

}

~

`

;

‘

“

$

*

?

Định hướng đầu vào

Định hướng đầu ra

Bắt đầu subshell

Kết thúc subshell

Ký hiệu dẫn

Dùng để hiện ký tự đặc biệt

Thi hành lệnh chạy ở chế độ ngầm

Bắt đầu khối lệnh

Kết thúc khối lệnh

Thư mục home của người dùng hiện tại

Thay thế lệnh

Chia cắt lệnh

Lời chú giải

Trích dẫn mạnh

Trích dẫn yếu

Biểu thức biến

Ký tự đại diện cho chuỗi

Ký tự đại diện cho một ký tự

 Dấu chia cắt lệnh “ ; ” cho phép thực hiện những lệnh bash phức tạp đánh trên một

dòng. N hưng quan trọng hơn, nó là kết thúc lệnh theo lý thuyết POSIX.

 104

Lệnh kiểm tra giá trị đúng sai của biểu thức

 Lệnh test hoặc [] dùng để kiểm tra giá trị đúng sai của biểu thức.

Các toán tử string

 Các toán tử string, cũng được gọi là các toán tử thay thế trong tài liệu về bash, kiểm tra

giá trị của biến là chưa gán giá trị hoặc khộng xác định. Bảng dưới là danh sách các toán tử này

cùng với miêu tả cụ thể cho chức năng của từng toán tử.

Toán tử Chức năng

${var:- word} N ếu biến tồn tại và xác định thì trả về giá trị của nó, nếu không thì

trả về word.

${var:= word} N ếu biến tồn tại và xác định thì trả về giá trị của nó, nếu không thì

gán biến thành word, sau đó trả về giá trị của nó.

${var:+ word} N ếu biến tồn tại và xác định thì trả về word, còn không thì trả về

null.

${var:?message} N ếu biến tồn tại và xác định thì trả về giá trị của nó, còn không thì

hiển thị “bash: $var:$message” và thoát ra khỏi lệnh hay tập lệnh

hiện thời.

${var: offset[:length]} Trả về một xâu con của var bắt đầu tại offset của độ dài length. N ếu

length bị bỏ qua, toàn bộ xâu từ offset sẽ được trả về.

 Để minh hoạ, hãy xem xét một biến shell có tên là status được khởi tạo với giá trị

defined. Sử dụng 4 toán tử string đầu tiên cho kết quả status như sau:
$echo ${status:-undefined}

defined

$echo ${status:=undefined}

defined

$echo ${status:+undefined}

undefined

$echo ${status:?Dohhh\! undefined}

defined

 Bây giờ sử dụng lệnh unset để xoá biến status, và thực hiện vẫn các lệnh đó, được output

như sau:
$unset status

$echo ${status:-undefined}

undefined

$echo ${status:=undefined}

 105

undefined

$echo ${status:+undefined}

undefined

$unset status

$echo ${status:?Dohhh\! undefined}

bash:status Dohhh! Undefined

 Cần thiết unset status lần thứ hai vì ở lệnh thứ ba, echo ${status:+undefined}, khởi tạo

lại status thành undefined.

 Các toán tử substring đã có trong danh sách ở bảng trên đặc biệt có ích. Hãy xét biến foo

có giá trị Bilbo_the_Hobbit. Biểu thức ${foo:7} trả về he_Hobbit, trong khi ${foo:7:5} lại trả về

he_Ho.

Các toán tử Pattern-Matching

 Các toán tử pattern-matching có ích nhất trong công việc với các bản ghi độ dài biến hay

các xâu đã được định dạng tự do được định giới bởi các kí tự cố định. Biến môi trường $PATH

là một ví dụ. Mặc dù nó có thể khá dài, các thư mục riêng biệt được phân định bởi dấu hai

chấm. Bảng dưới là danh sách các toán tử pattern-Matching của bash và chức năng của chúng.

Toán tử Chức năng

${var#pattern} Xoá bỏ phần khớp (match) ngắn nhất của pattern trước var và trả

về phần còn lại

${var##pattern} Xoá bỏ phần khớp (match) dài nhất của pattern trước var và trả về

phần còn lại

${var%pattern} Xoá bỏ phần khớp ngắn nhất của pattern ở cuối var và trả về phần

còn lại

${var%%pattern} Xoá bỏ phần khớp dài nhất của pattern ở cuối var và trả về phần

còn lại

${var/pattern/string} Thay phần khớp dài nhất của pattern trong var bằng string. Chỉ

thay phần khớp đầu tiên. Toán tử này chỉ có trong bash 2.0 hay

lớn hơn.

${var//pattern/string} Thay phần khớp dài nhất của pattern trong var bằng string. Thay

tất cả các phần khớp. Toán tử này có trong bash 2.0 hoặc lớn hơn.

 Thông thường quy tắc chuNn của các toán tử bash pattern-matching là thao tác với file

và tên đường dẫn. Ví dụ, giả sử ta có một tên biến shell là mylife có giá trị là

 106

/usr/src/linux/Documentation/ide.txt (tài liệu về trình điều khiển đĩa IDE của nhân). Sử dụng

mẫu “/*” và “*/” ta có thể tách được tên thư mục và tên file.
#!/bin/bash

myfile=/usr/src/linux/Documentation/ide.txt

echo ‘${myfile##*/}=’ ${myfile##*/}

echo ‘basename $myfile =’ $(basename $myfile)

echo ‘${myfile%/*}=’ ${myfile%/*}

echo ‘dirname $myfile =’ $(dirname $myfile)

 Lệnh thứ 2 xoá xâu matching “*/” dài nhất trong tên file và trả về tên file. Lệnh thứ 4

làm khớp tất cả mọi thứ sau “/”, bắt đầu từ cuối biến, bỏ tên file và trả về đường dẫn của file.

 Kết quả của tập lệnh này là:
$./pattern.sh

${myfile##*/}= ide.txt

basename $myfile = ide.txt

${myfile%/*}= /usr/src/linux/Documentation

dirname $myfile=/usr/src/linux/Documentation

 Để minh hoạ về các toán tử pattern-matching và thay thế, lệnh thay thế mỗi dấu hai chấm

trong biến môi trường $PATH bằng một dòng mới, kết quả hiển thị đường dẫn rất dễ đọc (ví dụ

này sẽ sai nếu ta không có bash phiên bản 2.0 hoặc mới hơn):
$ echo –e ${PATH//:/\\n}

/usr/local/bin

/bin

/usr/bin

/usr/X11R6/bin

/home/kwall/bin

/home/wall/wp/wpbin

Các toán tử so sánh chuỗi:

Kiểm tra Điều kiện thực

str1 = str2 str1 bằng str2

str1 != str2 str1 khác str2

-n str str có độ dài lớn hơn 0 (khác null)

-z str str có độ dài bằng 0 (null)

 107

So sánh số học

Phép so sánh Kết quả

bieuthuc1 –eq biethuc2 Đúng nếu bieuthuc1 bằng bieuthuc2

bieuthuc1 –ne biethuc2 Đúng nếu bieuthuc1 không bằng bieuthuc2

bieuthuc1 –gt biethuc2 Đúng nếu bieuthuc1 lớn hơn bieuthuc2

bieuthuc1 –ge biethuc2 Đúng nếu bieuthuc1 lớn hơn hoặc bằng bieuthuc2

bieuthuc1 –lt biethuc2 Đúng nếu bieuthuc1 nhỏ hơn bieuthuc2

bieuthuc1 –le biethuc2 Đúng nếu bieuthuc1 nhỏ hơn hoặc bằng bieuthuc2

Các toán tử kiểm tra file

Phép kiểm tra Kết quả

-d file file tồn tại và là một thư mục.

-e file Đúng nếu file tồn tại.

-f file Đúng nếu file là tập tin bình thường (không là một thư mục hay

một file đặc biệt).

-g file Đúng nếu file có xác lập set-group-id trên file

-s file Đúng nếu file có kích thước khác rỗng (>0)

-u file Đúng nếu file có xác lập set-user-id

-r file Đúng nếu file cho phép đọc

-w file Đúng nếu file có phép ghi

-x file Đúng nếu file cho phép thực thi

-O file Đúng nếu file hiện thời thuộc sở hữu của người dùng hiện thời.

-z file Đúng nêu file có kích thước là 0.

-G file file thuộc một trong các nhóm người dùng hiện tại là thành viên.

file1 - nt file2 file1 mới hơn file2

file1 - ot file2 file1 cũ hơn file2

Các toán tử logic

Phép kiểm tra Kết quả

! expr Đúng nếu expr không đúng

 108

expr1 -a expr2 Đúng nếu expr1 và expr2 đúng

expr1 -o expr2 Đúng nếu expr1 đúng hoặc expr2 đúng.

Biểu thức tính toán expr hoặc let cho việc tính toán

 Biểu thức expr sử dụng cho việc tính toán, các giá trị trong biểu thức được hiểu là số

nguyên thay vì là chuỗi. N ó cũng dùng để đổi chuỗi thành số.

 Biểu thức expr được bao bọc bởi 2 dấu ` (Không phải dấu nháy đơn, là dấu ở phím bên

trái phím số 1-!, hay là phím nằm dưới phím ESC). Trong biểu thức tính toán các toán tử và

toán hạng cách nhau bằng khoảng trắng.

Các phép toán và phép so sánh expr cho phép

| hoặc = bằng nhau

& và + cộng

> lớn hơn - trừ

< nhỏ hơn * nhân

>= lớn hơn hoặc bằng / chia

<= nhỏ hơn hoặc bằng % chia lấy phần dư

!= khác nhau

Ví dụ:
 $ let "a = 1 + 1"

 $ echo $a

 2

 $ a=‘expr $a + 1‘

 $ echo $a

 3

Kết nối lệnh, khối lệnh và lấy giá trị của lệnh

 Shell cho phép sử dụng phép hoặc (OR) và phép và (AN D) để kết nối các lệnh.

Phép và (AND)
 lệnh _1 && lệnh_2 && lệnh_3 …

 Các lệnh thực hiện từ trái sang phải cho đến khi một lệnh có kết quả lỗi. Kết quả cuối

cùng của dãy lệnh này là đúng (true) nếu tất cả các lệnh đều đúng, ngược lại là sai.

Phép hoặc (OR)
 lệnh _1 || lệnh_2 || lệnh_3 …

 109

 Các lệnh thực hiện từ trái sang phải cho đến khi một lệnh có kết quả đúng. Kết quả cuối

cùng của dãy lệnh này là đúng (true) nếu có ít nhất một lệnh là đúng, ngược lại là sai.
test -d demo && echo "demo is a directory"

test -d demo | | echo "demo is not a directory"

(test -d demo && ls -l demo) | | echo "demo not ok"

 Ta có thể kết hợp lại cả 2 loại toán tử lại để có một biểu thức như sau:
command1 && comamnd2 || command3

 N ếu câu lệnh command1 chạy thành công thì shell sẽ chạy lệnh command2 và nếu

command1 không chạy thành công thì command3 được chạy.

Ví dụ $ rm myf && echo "File is removed successfully" || echo "File is not removed"

 N ếu file myf được xóa thành công (giá trị trả về của lệnh là 0) thì lệnh "echo File is

removed successfully" sẽ được thực hiện, nếu không thì lệnh "echo File is not removed" được

chạy.

Khối lệnh

 Khi chúng ta cần thực thi nhiều lệnh liên tiếp nhau, có thể dùng khối lệnh. Khối lệnh

nằm giữa 2 dấu { }.

 Lấy giá trị của một lệnh. Khi viết chương trình nhiều khi lấy kết quả của lệnh này làm

đối số hay giá trị xử lý của lệnh kia. Ta có thể làm được điều này bằng cách sử dụng cú pháp

$(command). Khi dùng $(command), kết quả của việc thực hiện lệnh command được trả về.

1.5 Điều khiển luồng

 Các cấu trúc điều khiển luồng của bash, nó bao gồm:

�- if – Thi hành một hoặc nhiều câu lệnh nếu có điều kiện là true hoặc false.

�- for – Thi hành một hoặc nhiều câu lệnh trong một số cố định lần.

�- while – Thi hành một hoặc nhiều câu lệnh trong khi một điều kiện nào đó là true

hoặc false.

�- until – Thi hành một hoặc nhiều câu lệnh cho đến khi một điều kiện nào đó trở

thành true hoặc false.

- case – Thi hành một hoặc nhiều câu lệnh phụ thuộc vào giá trị của biến.

- select – Thi hành một hoặc nhiều câu lệnh dựa trên một khoảng tuỳ chọn của người

dùng.

Biểu thức điều kiện if

 Cú pháp: if then else fi
if condition

then

Formatted: Bullets and Numbering

 110

 statements

[elif condition

 statements]

[else

 statements]

fi

 Bash cung cấp sự thực hiện có điều kiện lệnh nào đó sử dụng câu lệnh if, câu lệnh if của

bash đầy đủ chức năng như của C. Cú pháp của nó được khái quát như sau:

 Đầu tiên, ta cần phải chắc chắn rằng mình hiểu if kiểm tra trạng thái thoát của câu lệnh

trong condition. N ếu nó là 0 (true), sau đó statements sẽ được thi hành, nhưng nếu nó khác 0,

thì mệnh đề else sẽ được thi hành và điều khiển nhảy tới dòng đầu tiên của mã fi. Các mệnh đề

elif (tuỳ chọn) (có thể nhiều tuỳ ý) sẽ chỉ thi hành khi điều kiện if là false.

 Tương tự, mệnh đề else (tuỳ chọn) sẽ chỉ thi hành khi tất cả else không thỏa mãn. N hìn

chung, các chương trình Linux trả về 0 nếu thành công hay hoàn toàn bình thường, và khác 0

nếu ngược lại, vì thế không có hạn chế nào cả.

Chú ý: Không phải tất cả chương trình đều tuân theo cùng một chuNn cho giá trị trả về, vì thế

cần kiểm tra tài liệu về các chương trình ta kiểm tra mã thoát với điều kiện if.

 Ví dụ chương trình diff, trả về 0 nếu không có gì khác nhau, 1 nếu có sự khác biệt và 2

nếu có vấn đề nào đó. N ếu một câu điều kiện hoạt động không như mong đợi thì hãy kiểm tra

tài liệu về mã thoát .

 Không quan tâm đến cách mà chương trình xác định mã thoát của chúng, bash lấy 0 có

nghĩa là true hoặc bình thường còn khác 0 là false. N ếu ta cần cụ thể để kiểm tra một mã thoát

của lệnh, sử dụng toán tử $? ngay sau khi chạy lệnh. $? trả về mã thoát của lệnh chạy ngay lúc

đó.

 Phức tạp hơn, bash cho phép ta phối hợp các mã thoát trong phần điều kiện sử dụng các

toán tử && và || được gọi là toán tử logic AN D và OR. Cú pháp đầy đủ cho toán tử AN D như

sau:
command1 && command2

 Câu lệnh command2 chỉ được chạy khi và chỉ khi command1 trả về trạng thái là số 0

(true).

 Cú pháp cho toán tử OR thì như sau:
command1 || command2

 111

 Câu lệnh command2 chỉ được chạy khi và chỉ khi command1 trả lại một giá trị khác 0

(false).

 Ta có thể kết hợp lại cả 2 loại toán tử lại để có một biểu thức như sau:
command1 && comamnd2 || command3

 N ếu câu lệnh command1 chạy thành công thì shell sẽ chạy lệnh command2 và nếu

command1 không chạy thành công thì command3 được chạy.

Ví dụ:$ rm myf && echo "File is removed successfully" || echo "File is not removed"

 N ếu file myf được xóa thành công (giá trị trả về của lệnh là 0) thì lệnh "echo File is

removed successfully" sẽ được thực hiện, nếu không thì lệnh "echo File is not removed" được

chạy.

 Giả sử trước khi ta vào trong một khối mã, ta phải thay đổi một thư mục và copy một

file. Có một cách để thực hiện điều này là sử dụng các toán tử if lồng nhau, như là đoạn mã sau:
if cd /home/kwall/data

then

 if cp datafile datafile.bak

 then

 # more code here

 fi

fi

 Tuy nhiên, bash cho phép ta viết đoạn mã này ngắn gọn hơn nhiều như sau:
if cd /home/kwall/data && cp datafile datafile.bak

then

 # more code here

fi

 Cả hai đoạn mã đều thực hiện cùng một chức năng, nhưng đoạn thứ hai ngắn hơn nhiều,

gọn nhẹ và đơn giản. Mặc dù if chỉ kiểm tra các mã thoát, ta có thể sử dụng cấu trúc […] lệnh

test để kiểm tra các điều kiện phức tạp hơn. [condition] trả về giá trị biểu thị condition là true

hay false. test cũng có tác dụng tương tự.

 Một ví dụ khác về cách sử dụng cấu trúc if:
#!/bin/sh

Script to test if..elif...else

if [$1 -gt 0]; then

 echo "$1 is positive"

elif [$1 -lt 0]

 112

then

 echo "$1 is negative"

elif [$1 -eq 0]

then

 echo "$1 is zero"

else

 echo "Opps! $1 is not number, give number"

fi

 Ta có thể kiểm tra các thuộc tính file, so sánh các xâu và các biểu thức số học.

Chú ý: Các khoảng trống trước dấu mở ngoặc và sau dấu đóng ngoặc trong [condition] là cần

phải có. Đây là điều kiện cần thiết trong cú pháp shell của bash.

Ví dụ 1:
if test -f file1

then echo "file exists"

else echo "file does not exist"

fi

Ví dụ 2: N hập vào điểm của môn học, cho biết kết quả.
echo chuong trinh ket qua mon hoc

echo Nhap vao diem

read diem

if [$diem –ge 5] ; then

 echo "Dat"

else

 echo "Hong"

fi

Ví dụ 3:
if test -f file1; then

 echo "file exists"

elif test -d file1; then

 echo "file is a directory"

fi

trong trường hợp này fi dùng chung.

Ví dụ 4: N hập vào điểm cho biết xếp loại.
echo Xep loai

echo Nhap vao diem

read diem

if test $diem -ge 8 ; then

 echo " Loai Gioi"

 113

elif test $diem –ge 7 ; then

 echo "Loai Kha"

 elif test $diem –ge 5 ; then

 echo "Loai TB"

 else

 echo "Loai Yeu"

 fi

 Ví dụ chương trình shell cho các toán tử test file trên các thư mục trong biến $PATH. Mã

cho chương trình descpath.sh như sau:
#!/bin/bash

################################

IFS=:

for dir in $PATH;

do

 echo $dir

 if [-w $dir]; then

 echo -e "\tYou have write permission in $dir"

 else

 echo –e “\tYou don’t have write permission in $dir”

 fi

 if [-0 $dir]; then

 echo -e "\tYou own $dir"

 else

 echo –e “\tYou don’t own $dir”

 fi

 if [-G $dir]; then

 echo -e "\tYou are a member of $dir's group"

 else

 echo -e "\tYou aren't a member of $dir's group"

 fi

done # Ket thuc vong lap for

Biểu thức lệnh rẽ nhánh case

 Cấu trúc điều khiển luồng tiếp theo là case, hoạt động cũng tương tự như lệnh switch của

C. N ó cho phép ta thực hiện các khối lệnh phụ thuộc vào giá trị của biến.

 Cú pháp đầy đủ của case như sau:
case expr in

 pattern1) statements ;;

 pattern2) statements ;;

 114

 …

 [*) statements ;;] # giá trị mặc định

esac

expr được đem đi so sánh với từng pattern, nếu nó bằng nhau thì các lệnh tương ứng sẽ được thi

hành. Dấu ;; là tương đương với lệnh break của C, tạo ra điều khiển nhảy tới dòng đầu tiên của

mã esac. Không như từ khoá switch của C, lệnh case của bash cho phép ta kiểm tra giá trị của

expr dựa vào pattern, nó có thể chứa các kí tự đại diện.

 Cách làm việc của cấu trúc case như sau: nó sẽ khớp (match) biểu thức expr với các mẫu

pattern1, pattern2,…nếu có một mẫu nào đó khớp thì khối lệnh tương ứng với mẫu đó sẽ được

thực thi, sau đó nó thoát ra khỏi lệnh case. N ếu tất cả các mẫu đều không khớp và ta có sử dụng

mẫu * (trong nhánh *)), ta thấy đây là mẫu có thể khớp với bất kỳ giá trị nào (ký tự đại diện là

*), nên các lệnh trong nhánh này sẽ được thực hiện.

 Cấu trúc điều khiển select (không có trong các phiên bản bash nhỏ hơn 1.14) chỉ riêng có

trong Korn (K – Shell) và các shell bash (B – Shell). Thêm vào đó, nó không có sự tương tự

như trong các ngôn ngữ lập trình quy ước. select cho phép ta dễ dàng trong việc xây dựng các

menu đơn giản và đáp ứng các chọn lựa của người dùng.

 Cú pháp của nó như sau:
select value [in list]

do

 statements that manipulate $value

done

 Dưới đây là một ví dụ về cách sử dụng lệnh select: Chương trình tạo các menu bằng

select.
#!/bin/bash

menu.sh – Createing simple menus with select

#######################################

IFS=:

PS3=“choice? ”

clear the screen

clear

select dir in $PATH

do

 if [$dir]; then

 cnt=$(ls –Al $dir | wc -l)

 echo “$cnt files in $dir”

 else

 115

 echo “Dohhh! No such choice!”

 fi # kết thúc if

 echo –e “\nPress ENTER to continue, CTRL –C to quit”

 read

 clear

done

 Lệnh đầu tiên đặt kí tự IFS là : (ký tự phân cách), vì thế select có thể phân tích hoàn

chỉnh biến môi trường $PATH. Sau đó nó thay đổi lời nhắc default khi select bằng biến PS3.

Sau khi xoá sạch màn hình, nó bước vào một vòng lặp, đưa ra một danh sách các thư mục nằm

trong $PATH và nhắc người dùng chọn lựa như là minh hoạ trong hình dưới.

 N ếu người dùng chọn hợp lệ, lệnh ls được thực hiện kết quả được gửi cho lệnh đếm từ

wc để đếm số file trong thư mục và hiển thị kết quả có bao nhiêu file trong thư mục đó. Do ls có

thể sử dụng mà không cần đối số, script đầu tiên cần chắc chắn là $dir khác null (nếu nó là null,

ls sẽ hoạt động trên thư mục hiện hành nếu người dùng chọn 1 menu không hợp lệ). N ếu người

dùng chọn không hợp lệ, một thông báo lỗi sẽ được hiển thị.

 Câu lệnh read (được giới thiệu sau) cho phép người dùng đánh vào lựa chọn của mình và

nhấn Enter để lặp lại vòng lặp hay nhấn Ctrl + C để thoát.

Chú ý: N hư đã giới thiệu, các vòng lặp script không kết thúc nếu ta không nhấn Ctrl+C. Tuy

nhiên ta có thể sử dụng lệnh break để thoát ra.

 Dùng case khi chúng ta sử dụng giá trị của một biểu thức để rẽ các nhánh khác nhau.

Ví dụ: Trong ví dụ này sẽ tạo menu lựa chọn và cho phép người dùng chọn chức năng thực

hiện. N ếu biến chọn là 1 thì liệt kê thư mục hiện hành, 2 thì cho biết đường dẫn thư mục hiện

hành, các số khác là không hợp lệ.
clear

echo

 116

echo " Menu "

echo " 1. Liệt kê thư mục hiện hành"

echo " 2. Cho biết đường dẫn thư mục hiện hành"

read chon

case $chon in

 1) ls -l ;;

 2) pwd ;;

 *) echo "Không hợp lệ";;

esac

Vòng lặp For

 N hư đã thấy ở chương trình trên, for cho phép ta chạy một đoạn mã một số lần nhất định.

Tuy nhiên cấu trúc for của bash chỉ cho phép ta lặp đi lặp lại trong danh sách các giá trị nhất

định bởi vì nó không tự động tăng hay giảm con đếm vòng lặp như là C, Pascal, hay Basic.

 Tuy nhiên, vòng lặp for là công cụ lặp thường xuyên được sử dụng bởi vì nó điều khiển

gọn gàng trên các danh sách, như là các tham số dòng lệnh và các danh sách các file trong thư

mục.

 Cú pháp đầy đủ của for là:
for value in list

do

 statements using $value

done

list là một danh sách các giá trị, ví dụ như là tên file. Giá trị là một thành viên danh sách đơn và

statements là các lệnh sử dụng value. Một cú pháp khác của lệnh for có dạng như sau:
for ((expr1; expr2; expr3))

do

 ...

 repeat all statements between do and

 done until expr2 is TRUE

done

 Linux không có tiện ích để đổi tên hay copy các nhóm của file. Trong MS-DOS nếu ta

có 17 file có phần mở rộng a*.doc, ta có thể sử dụng lệnh COPY để copy *.doc thành file *.txt.

 Lệnh DOS như sau: C:\ cp doc*.doc doc*.txt

sử dụng vòng lặp for của bash để bù đắp những thiếu sót này. Đoạn mã dưới đây có thể được

chuyển thành chương trình shell thực hiện đúng như những gì ta muốn:
for docfile in doc/*.doc

do

 117

 cp $docfile ${docfile%.doc}.txt

done

 Sử dụng một trong các toán tử pattern-matching của bash, đoạn mã này làm việc copy

các file có phần mở rộng là *.doc bằng cách thay thế .doc ở cuối của tên file bằng .txt.

Một ví dụ khác về vòng for đơn giản như sau:
#!/bin/bash

for i in 1 2 3 4 5

do

 echo "Welcome $i times"

done

 Ta cũng có một cấu trúc về for như sau, chương trình này cũng có cùng chức năng như

chương trình trên nhưng ta chú ý đến sự khác biệt về cú pháp của lệnh for.
#!/bin/bash

for ((́i = 0 ; ́i <= 5; ́i++ ́))

do

 ́ echo "Welcome $i times"

done

^D

$ sh for2

Welcome 0 times

Welcome 1 times

Welcome 2 times

Welcome 3 times

Welcome 4 times

Welcome 5 times

 Tiếp theo là một ví dụ về vòng for lồng nhau:
#!/bin/bash

for ((i = 1; i <= 5; i++)) ### Outer for loop ###

do

 for ((j = 1 ; j <= 5; j++)) ### Inner for loop ###

 do

 echo -n "$i "

done

 Ví dụ khác về cách sử dụng cấu trúc if và for như sau:
#!/bin/sh

#Script to test for loop#

if [$# -eq 0]

 118

then

 echo "Error - Number missing form command line argument"

 echo "Syntax : $0 number"

 echo "Use to print multiplication table for given number"

 exit 1

fi

n=$1

for i in 1 2 3 4 5 6 7 8 9 10

do

 echo "$n * $i = `expr $i * $n`"

done

 Khi ta chạy chương trình với tham số:
$ sh mtable 7

 Ta thu được kết quả như sau:
7 * 1 = 7

7 * 2 = 14

...

..

7 * 10 = 70

 Cho phép thực hiện một chuỗi lệnh như nhau với mỗi một giá trị trong danh sách đã cho.

Số các vòng lặp bằng số các giá trị trong danh sách.

Ví dụ: Shell_script copy sao chép các file trong danh sách đối vào danh mục /users/user8 và đổi

nhóm thành nhóm student, đổi người sở hữu thành user8.
$cat copy

for i

do

 if [-f $i]; then

 cp $i /users/user8

 chgrp student /users/user8/$i

 chown user8 /users/user8/$i

 fi

done

Vòng lặp While và until

 Vòng lặp for giới hạn số lần mà một đoạn mã được thi hành, các cấu trúc while và until

của bash cho phép một đoạn mã được thi hành liên tục cho đến khi một điều kiện nào đó xảy ra.

 119

 Chỉ với chú ý là đoạn mã này cần viết sao cho điều kiện cuối phải xảy ra nếu không sẽ

tạo ra một vòng lặp vô tận.

 Cú pháp của nó như sau:
while condition

do

 statements

done

 Cú pháp này có nghĩa là khi nào condition còn true, thì thực hiện statements cho đến khi

condition trở thành false (cho đến khi một chương trình hay một lệnh trả về khác 0).

 Hai lệnh thường dùng trong vòng lặp while:
true hoặc : cho giá trị true(0)

sleep[n] đợi n giây

shell_script disp_time hiển thị số liệu ngày tháng theo khoảng thời gian 30 giây.
$cat disp_time

while true hoặc sử dụng while :

do

 date

 sleep 30

done

 Cú pháp until có nghĩa là trái ngược với while: cho đến khi condition trở thành true thì

thi hành statements (có nghĩa là cho đến khi một lệnh hay chương trình trả về mã thoát khác 0).
until condition

do

 statements

done

 Cấu trúc while của bash khắc phục thiếu sót không thể tự động tăng, giảm con đếm cua

vòng lặp for. Ví dụ, ta muốn copy 150 bản của một file, thì vòng lặp while là một lựa chọn để

giải quyết bài toán này. Dưới đây là chương trình:
#!/bin/sh

declare -i idx

idx=1

while [$idx != 150]

do

 cp somefile somefile.$idx

 idx=$idx+1

done

 120

 Chương trình này giới thiệu cách sử dụng tính toán số nguyên của bash. Câu lệnh

declare khởi tạo một biến, idx, định nghĩa là một số nguyên. Mỗi lần lặp idx tăng lên, nó sẽ

được kiểm tra để thoát khỏi vòng lặp. Vòng lặp until tuy cũng có khả năng giống while nhưng

không được dùng nhiều vì rất khó viết và chạy chậm.

 Một ví dụ nữa về cách sử dụng vòng lặp while được minh họa trong chương trình in bản

nhân của một số:
#!/bin/sh

#Script to test while statement

if [$# -eq 0]

then

 echo "Error - Number missing form command line argument"

 echo "Syntax : $0 number"

 echo " Use to print multiplication table for given number"

 exit 1

fi

n=$1

i=1

while [$i -le 10]

do

 echo "$n * $i = `expr $i * $n`"

 i=`expr $i + 1`

done

Ví dụ: Chương trình sẽ lặp cho đến khi n<=10
echo Nhap vao so n

read n

until [$n –lt 10]

do

 echo " n lớn hơn 10"

 n=‘expr $n –1’

done

Lệnh Break, continue, exit
Lệnh break

 Cho phép ta thoát ra khỏi vòng lặp mà không cần kiểm tra điều kiện lặp.

Lệnh exit

 Làm chương trình thoát ra và trở về dấu nhắc lệnh $.

Ví dụ 1: N hận số n từ đối số dòng lệnh, tính tổng S =1+2+ ..+n

 121

 echo "chuong trinh tinh tong"

 if [-z $1]; then

 echo "tong <n>"

 exit 0

 fi

 s=0

 i=1

 while true

 do

 s=`expr $i + $s`

 i=`expr $i + 1`

 if [i –gt n]; then

 break;

 fi

 done

 echo $s

Ví dụ 2: Shell_script stock ghi các dòng ký tự vào từ bàn phím lên file lines cho tới khi ta gõ từ

“EN D”
 $cat stock

 while true

 do

 echo “Enter your line:”

 read answer

 if test “$answer” = “END” ; then

 break

 else

 echo $answer >> lines

 fi

 done

Chú ý: break[n] cho phép ra khỏi n mức của các vòng lặp lồng.

Lệnh continue: cho phép bỏ qua các lệnh còn lại, quay về đầu vòng lặp.

Ví dụ 3: shell_script supprim xoá tất cả các file có trong danh sách đối, trừ file save và source:
$cat supprim

set -x

for i

do

 if test "$i" = "save" -o "$i" = "source"

 then continue

 fi

 122

 echo $i

 rm $i

done

Các lệnh khác

Lệnh Shift

 Chuyển giá trị hiện thời được lưu trong dãy các tham số sang trái một vị trí, nếu thêm

tham số đi cùng lệnh shift thì sẽ dịch chuyển sang trái ngần ấy vị trí .

Ví dụ:
 $1 = -r $2 = file1 $3 = file2

 $shift

 Kết quả là:
 $1 = file1 $2 = file2

 N ếu muốn dịch sang trái hai vị trí thì sử dụng lệnh.
 shift 2

1.6 Hàm

 Cũng như các ngôn ngữ lập trình khác, Shell cho phép sử dụng hàm. Hàm là một đoạn

chương trình con nằm trong script chính. N ó có thể được gọi lại nhiều lần trong script chính.

 Hàm chức năng của bash là một cách mở rộng các tiện ích sẵn có trong shell, nó có các

điểm lợi sau:

- Thi hành nhanh hơn do các hàm shell luôn thường trực trong bộ nhớ.

- Cho phép việc lập trình trở nên dễ dàng hơn vì ta có thể tổ chức chương trình thành các

module.

 Định nghĩa hàm:
 tên-hàm() {

 các-lệnh-của-hàm.

 }

 N ếu so sánh với C hay Pascal, hàm của bash không được chặt chẽ, nó không kiểm tra lỗi

và không có phương thức trả về đối số bằng giá trị. Tuy nhiên giống như C và Pascal, các biến

địa phương có thể khai báo cục bộ đối với hàm, do đó tránh được sự xung đột với biến toàn cục.

 Để thực hiện điều này ta dùng từ khoá local như trong đoạn mã sau:
 function foo

 {

 local myvar

 local yourvar=1

 }

 123

 Trong ví dụ về các biến vị trí ở trên ta cũng thấy được cách sử dụng hàm trong bash. Các

hàm shell giúp mã của ta dễ hiểu và dễ bảo dưỡng. Sử dụng các hàm và các chú thích ta sẽ đỡ

rất nhiều công sức khi ta phải trở lại nâng cấp đoạn mã mà ta đã viết từ thời gian rất lâu trước

đó.

Ví dụ: chao()

 {

 echo “hello”

 }

 Gọi hàm và truyền tham số cho hàm. Để gọi hàm thực hiện ta sử dụng tên hàm hoặc có

thêm tham số đi kèm (chú ý tên hàm phải khác với tên của các lệnh unix đã tồn tại). Shell thực

hiện các lệnh trong { } khi hàm được gọi.
 tên-hàm

 tên-hàm thamso-1 thamso-2 …

 Sử dụng tham số trong hàm cũng như trong script chính. Hàm có thể truy xuất tập hợp

biến của shell hiện hành.
 lietke()

 {

 /bin/ls -C

 }

1.7 Mảng

 Khái niệm mảng trong ngôn ngữ lập trình Shell Script cũng giống như trong các ngôn

ngữ lập trình khác Pascal, C, C++, Java, php, asp…

 Mảng được khởi tạo theo cấu trúc sau: declare –a array_name. Trong lập trình Shell ta

cần chú ý là không có khái niệm cố định kích thước của mảng, để truy xuất các thành phần của

mạng ta có thể sử dụng những cách truy xuất thường dùng: x[0], x[1], x[2]
declare -a nums=(45 33 100 65)

declare -ar names (array is readonly)

names=(Tom Dick Harry)

states=(ME [3]=CA CT)

x[0]=55

n[4]=100

tùy chọn –r chỉ ra rằng đây là mảng chỉ đọc.

 Để lấy giá trị của một thành phần của mảng ta sử dụng cú pháp sau:

 ${arrayname[index]}

Ví dụ:

 124

$declare -a lop

$lop=(abc defg ijklm pqwst)

$echo ${#lop} # 3

$echo ${#lop[0]} # 3

$echo ${#lop[1]} # 4

$echo ${#lop[*]} # 4

$echo ${#lop[@]} # 4

$echo ${lop[*]} # abc defg ijklm pqwst

$echo ${lop[@]} # abc defg ijklm pqwst

 Copy một mảng:
array2=("${array1[@]}")

array2="${array1[@]}“

 Thêm một thành phần cho mảng:
array=("${array[@]}" "new element")

array[${#array[*]}]="new element"

Một số ví dụ về sử dụng mảng trong lập trình shell

The Bubble Sort [1]
#!/bin/bash

#bubble.sh: Bubble sort, of sorts.

#Recall the algorithm for a bubble sort. In this particular version...

With each successive pass through the array to be sorted,

#+ compare two adjacent elements, and swap them if out of order.

At the end of the first pass, the "heaviest" element has sunk to

bottom.

At the end of the second pass, the next "heaviest" one has sunk next

to bottom.

And so forth.

This means that each successive pass needs to traverse less of the

array.

You will therefore notice a speeding up in the printing of the later

passes.

exchange()

{

 # Swaps two members of the array.

 local temp=${Countries[$1]} # Temporary storage

 #+ for element getting swapped out.

 Countries[$1]=${Countries[$2]}

 Countries[$2]=$temp

 return

 125

}

declare −a Countries # Declare array,

#+ optional here since it's initialized below.

Is it permissable to split an array variable over multiple lines

#+ using an escape (\)?

Yes.

Countries=(Netherlands Ukraine Zaire Turkey Russia Yemen Syria Brazil

Argentina Nicaragua Japan Mexico Venezuela Greece England Israel Peru

Canada Oman Denmark Wales France Kenya Xanadu Qatar Liechtenstein

Hungary)

"Xanadu" is the mythical place where, according to Coleridge,

#+ Kubla Khan did a pleasure dome decree.

clear # Clear the screen to start with.

echo "0: ${Countries[*]}" # List entire array at pass 0.

number_of_elements=${#Countries[@]}

let "comparisons = $number_of_elements − 1"

count=1 # Pass number.

while ["$comparisons" −gt 0] # Beginning of outer loop

do

 index=0 # Reset index to start of array after each pass.

 while ["$index" −lt "$comparisons"] # Beginning of inner loop

 do

 if [${Countries[$index]} \> ${Countries[`expr $index + 1`]}]

 # If out of order...

 # Recalling that \> is ASCII comparison operator

 #+ within single brackets.

 # if [[${Countries[$index]} > ${Countries[`expr $index + 1`]}]]

 #+ also works.

 then

 exchange $index `expr $index + 1` # Swap.

 fi # end if

 let "index += 1"

 done # End of inner loop

 let "comparisons −= 1"

 #Since "heaviest" element bubbles to bottom,

 #+ we need do one less comparison each pass.

 echo

 echo "$count: ${Countries[@]}"

 # Print resultant array at end of each pass.

 echo

 126

 let "count += 1" # Increment pass count.

 done # End of outer loop

 # All done.

exit 0

^D

Push- down Stack [1]
#!/bin/bash

#stack.sh: push-down stack simulation

#Similar to the CPU stack, a push-down stack stores data items

#sequentially, but releases them in reverse order,LIFO

BP=100 # Base Pointer of stack array.

 # Begin at element 100.

SP=$BP # Stack Pointer.

 # Initialize it to "base"(bottom) of stack

Data= # Contents of stack location.

 # Must use local variable,

 #because of limitation on function return range

declare -a stack

push() { # Push item on stack.

 if [-z "$1"] # Nothing to push?

 then

 return

 fi

 let "SP -= 1" # Bump stack pointer.

 stack[$SP]=$1

 return

}

pop() { # Pop item off stack.

 Data= # Empty out data item.

 if ["$SP" -eq "$BP"] # Stack empty?

 then

 return

 fi # This also keeps SP from getting past 100,

 #+ i.e., prevents a runaway stack.

 Data=${stack[$SP]}

 let "SP += 1" # Bump stack pointer.

 return

}

status_report(){ # Find out what's happening

 echo "--------------------------“

 127

 echo "REPORT“

 echo "Stack Pointer = $SP“

 echo "Just popped \""$Data"\"off the stack“

 echo "----------------------------“

 echo

}

the main(). Now, for exect this function

echo # See if you can pop anything off empty stack

pop

status_report

echo

push garbage

pop

status_report # Garbage in, garbage out

value1=23; push $value1

value2=skidoo; push $value2

value3=FINAL; push $value3

pop # FINAL

status_report

pop # skidoo

status_report

pop # 23

status_report # Last-in, first-out!

Notice how the stack pointer decrements with each push,

#+ and increments with each pop.

echo

===

Exercises:

−−−−−−−−−

1) Modify the "push()" function to permit pushing

+ multiple element on the stack with a single function call.

2) Modify the "pop()" function to permit popping

+ multiple element from the stack with a single function call.

3) Using this script as a jumping−off point,

+ write a stack−based 4−function calculator.

exit 0

^D

Mô phỏng mảng hai chiều trong Shell Script

Mã nguồn chương trình mô phỏng mảng 2 chiều (di_arr)

 128

#!/bin/bash

Simulating a two−dimensional array.

A two−dimensional array stores rows sequentially.

Rows=5

Columns=5

declare −a alpha # char alpha [Rows] [Columns];

Unnecessary declaration.

load_alpha()

{

 local rc=0

 local index

 for i in A B C D E F G H I J K L M N O P Q R S T U V W X Y

 do

 local row=`expr $rc / $Columns`

 local column=`expr $rc % $Rows`

 let "index = $row * $Rows + $column"

 alpha[$index]=$i # alpha[$row][$column]

 let "rc += 1"

 done

 # Simpler would be

 #declare −a alpha=(A B C D E F G H I J K L M N O P Q R S T U V W X Y)

 # but this somehow lacks the "flavor" of a two−dimensional array.

}

print_alpha()

{

 local row=0

 local index

 echo

 while ["$row" −lt "$Rows"] # Print out in "row major" order −

 do # columns vary

 # while row (outer loop) remains the same.

 local column=0

 while ["$column" −lt "$Columns"]

 do

 let "index = $row * $Rows + $column"

 echo −n "${alpha[index]} " # alpha[$row][$column]

 let "column += 1"

 done

 let "row += 1"

 echo

 129

 done

 # The simpler equivalent is

 # echo ${alpha[*]} | xargs −n $Columns

 echo

}

filter () # Filter out negative array indices.

{

 echo −n " " # Provides the tilt.

 if [["$1" −ge 0 && "$1" −lt "$Rows" && "$2" −ge 0 && "$2" −lt

"$Columns"]]

then

let "index = $1 * $Rows + $2"

Now, print it rotated.

echo −n " ${alpha[index]}" # alpha[$row][$column]

fi

}

rotate () # Rotate the array 45 degrees

{ # ("balance" it on its lower lefthand corner).

local row

local column

for ((row = Rows; row > −Rows; row−−)) # Step through the array

backwards.

do

for ((column = 0; column < Columns; column++))

do

if ["$row" −ge 0]

then

let "t1 = $column − $row"

let "t2 = $column"

else

let "t1 = $column"

let "t2 = $column + $row"

fi

filter $t1 $t2 # Filter out negative array indices.

done

echo; echo

done

Array rotation inspired by examples (pp. 143−146) in

"Advanced C Programming on the IBM PC", by Herbert Mayer

(see bibliography).

 130

}

#−−−#

load_alpha # Load the array.

print_alpha # Print it out.

rotate # Rotate it 45 degrees counterclockwise.

#−−−#

This is a rather contrived, not to mention kludgy simulation.

Chạy chương trình

1.8 Một số các lệnh thường dùng trong lập trình Shell

Các toán tử định hướng vào ra

 Ta đã được biết về các toán tử định hướng vào ra, > và <. Toán tử định hướng ra cho

phép ta gửi kết quả ra của một lệnh vào một file.

 Ví dụ như lệnh sau: $ cat $HOME/.bash_profile > out

 N ó sẽ tạo một file tên là out trong thư mục hiện tại chứa các nội dung của file

bash_profile, bằng cách định hướng đầu ra của cat tới file đó.

 Tương tự, ta có thể cung cấp đầu vào là một lênh từ một file hoặc là lệnh sử dụng toán tử

đầu vào, <.

 Tacó thể viết lại lệnh cat để sử dụng toán tử định hướng đầu vào như sau:
 $ cat < $HOME/.bash_profile > out

 Kết quả của lệnh này vẫn như thế nhưng nó cho ta hiểu thêm về cách sử dụng định

hướng đầu vào đầu ra.

 131

 Toán tử định hướng đầu ra, >, sẽ ghi đè lên bất cứ file nào đang tồn tại. Đôi khi điều này

là không mong muốn, vì thế bash cung cấp toán tử nối thêm dữ liệu, >>, cho phép nối thêm dữ

liệu vào cuôi file. Hay xem lệnh thêm bí danh cdlpu vào cuối của file .bashrc của tôi:
$echo “alias cdlpu=’cd $HOME/kwall/projects/lpu’ ” >> $HOME/.bashrc

 Một cách sử dụng định hướng đầu vào là đầu vào chuNn (bàn phím). Cú pháp của lệnh

này như sau:
Command << label

Input …

Label

 Cú pháp này nói lên rằng command đọc các input cho đến khi nó gặp label. Dưới đây là

ví dụ về cách sử dụng cấu trúc này:
#!/bin/bash

####################################

 USER=anonymous

PASS=kwall@xmission.com

ftp -i -n << END

open ftp.caldera.com

user $USER $PASS

cd /pub

ls

close

END

Hiện dòng văn bản

 Lệnh echo hiện ra dòng văn bản được ghi ngay trong dòng lệnh có cú pháp:

 echo [tùy chọn] [xâu ký tự]…

với các tùy chọn như sau:

�- n : hiện xâu ký tự và dấu nhắc trên cùng một dòng.

�- e : bật khả năng thông dịch được các ký tự điều khiển.

�- E : tắt khả năng thông dịch được các ký tự điều khiển.

�- - help : hiện hỗ trợ và thoát. Một số bản Linux không hỗ trợ tham số này.

 Ví dụ, dùng lệnh echo với tham số -e
echo -e ‘thử dùng lệnh echo \n’

sẽ thấy hiện ra chính dòng văn bản ở lệnh:
thử dùng lệnh echo

 Ở đây ký tự điểu khiể̉n ‘\n’ là ký tự xuống dòng.

Lệnh set

Formatted: Bullets and Numbering

 132

 Để gán kết quả đưa ra từ lệnh shell ra các biến tự động, ta dùng lệnh set.

 Dạng lệnh set: set `<lệnh>`

 Sau lệnh này, kết quả thực hiện lệnh không hiệ ra lê màn hình mà gán kết quả đó tương

ứng cho các biến tự động. Mộ̣t cách tự động các từ trong kết quả thực hiện lệnh sẽ gán tương

ứng cho các biến tự động (từ $1 trở đi).

 Xem xét một ví dụ sau đây (chương trình thu2.arg) có nội dung:
 #!/bin/sh

 # Hien thoi diem chay chuong trinh nay

 set `date`

 echo "Thoi gian: $4 $5"

 echo "Thu: $1"

 echo "Ngay $3 thang $2 nam $6"

 Sau khi đổi mode của File chương trình này và chạy, chúng ta nhận được:
 Thoi gian: 7:20:15 EST

 Thu: Tue

 Ngay 20 thang Oct nam 1998

 Như vậy,

 $# = 6

 $* = Tue Oct 20 7:20:15 EST 1998

 $1 = Tue $2=Oct $3 = 20 $4 = 7:20:15

 $5 = EST $6 = 1998

1.8 Đệ quy

 Tất cả các shell_script đều có tính đệ quy (recursivity).

Ví dụ: shell_script dir_tree hiển thị cây thư mục bắt đầu từ thư mục là đối của nó.
 $cat dir_tree

 if test -d $1

 then echo $1 is a directory

 for j in $1/*

 do $0 $j #$0 tên shell_script chính là dir_tree

 done

 fi

 $dir_tree /usr

 /usr is a directory

 /usr/adm is a directory

 /usr/adm/acct is a directory

 /usr/adm/acct/fiscal is a directory

 /usr/adm/acct/nite is a directory

 133

 /usr/adm/sa is a directory

 /usr/bin is a directory

1.9 Lập trình hội thoại

 Cú pháp chung của các hội thoại hay được sử dụng:
dialog --title {title} --backtitle {backtitle} {Box options}

 where Box options can be any one of following

 --yesno {text} {height} {width}

 --msgbox {text} {height} {width}

 --infobox {text} {height} {width}

 --inputbox {text} {height} {width} [{init}]

 --textbox {file} {height} {width}

 --menu {text} {height} {width} {menu} {height} {tag1} {item1}...

Infobox

Mã nguồn chương trình (dia1)
$ cat > dia1

dialog --title "Linux Dialog Utility Infobox" --backtitle "Linux Shell Script

Tutorial" --infobox "This is dialog box called infobox, which is used \

to show some information on screen, Thanks to Savio Lam and\

Stuart Herbert to give us this utility. Press any key. . . " 7 50 ; read

Chạy chương trình
$ sh dia1

 Ở đây số 7 và 50 là chiều cao và chiều rộng của hộp thoại.

Message box (msgbox)

Mã nguồn chương trình (dia2)
$cat > dia2

dialog --title "Linux Dialog Utility Msgbox" --backtitle "Linux Shell\

Script Tutorial" --msgbox "This is dialog box called msgbox, which is\

 134

used to show some information on screen which has also Ok button,\

Thanks to Savio Lam and Stuart Herbert to give us this utility. Press

any key. . . " 9 50

Chạy chương trình
$ sh dia2

Yesno box

Mã nguồn chương trình (dia3)
$ cat > dia3

dialog --title "Alert : Delete File" --backtitle "Linux Shell Script \

Tutorial" --yesno "\nDo you want to delete\

'/usr/letters/jobapplication'file" 7 60

sel=$?

case $sel in

 0) echo "User select to delete file";;

 1) echo "User select not to delete file";;

 255) echo "Canceled by user by pressing [ESC] key";;

esac

Chạy chương trình
$ sh dia3

Input Box (inputbox)

Mã nguồn chương trình (dia4)

 135

dialog --title "Inputbox - To take input from you" --backtitle "Linux

Shell Script Tutorial" --inputbox "Enter your name please" 8 60

2>/tmp/input.$$

sel=$?

na=`cat /tmp/input.$$`

case $sel in

 0) echo "Hello $na" ;;

 1) echo "Cancel is Press" ;;

 255) echo "[ESCAPE] key pressed" ;;

esac

rm -f /tmp/input.$$

Chạy chương trình
$ sh dia4

1.10 Một số ví dụ về Shell

Chương trình tính tổng 2 số

Mã nguồn chương trình (tong1.sh)
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

Q1.Script to sum to nos

if [$# -ne 2]

then

 echo "Usage - $0 x y"

 136

 echo " Where x and y are two nos for which I will

print sum"

 exit 1

fi

 echo "Sum of $1 and $2 is `expr $1 + $2`"

Chương trình in ra kế quả như 5,4,3,2,1

Mã nguồn chương trình
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

Q3

Algo:

1) START: set value of i to 5 (since we want to start from 5,

if you want to start from other value put that value)

2) Start While Loop

3) Chechk, Is value of i is zero, If yes goto step 5 else

continue with next step

4) print i, decement i by 1 (i.e. i=i-1 to goto zero) and

goto step 3

5) END

i=5

while test $i != 0

do

 echo "$i"

 i=`expr $i - 1`

done

Chương trình tính tổng: 1-> n

Mã nguồn chương trình (tong.sh)
#!/bin/sh

echo “Chuong trinh tinh tong 1- $1”

index=0

tong=0

while [$index -lt $1]

do

 index=$(($index + 1))

 tong=$(($tong + $index))

done

echo "Tong 1-$1= $tong"

 137

exit 0

Chạy chương trình
sh tong 100

Chương trình tính giai thừa

Mã nguồn chương trình (giaithua.sh)
#!/bin/sh

echo “Chuong trinh tinh $1!”

index=0

gt=1

while [$index -lt $1]

do

 index=$(($index + 1))

 gt=$(($gt * $index))

done

echo "$1!= $gt"

exit 0

Chạy chương trình
sh giaithua 5

Chương trình đếm số dòng của một file

Mã nguồn chương trình (demdong.sh)
#!/bin/sh

echo “Chuong trinh dem so dong cua tap tin $1”

{

n=0

while read line

do

 n=$(($n + 1))

done

echo “So dong cua tap tin $1 la : $n”

} < $1

exit 0

Chạy chương trình
sh demdong vidu.txt

Chương trình đếm số từ trong một file

Mã nguồn chương trình (demtu.sh)
#!/bin/sh

echo “Chuong trinh dem so tu cua tap tin $1”

{

 138

n=0

while read line

do

 for wd in $line

 do

 n=$(($n + 1))

 done

done

echo “Tong so tu cua tap tin $1 la : $n”

}<$1

exit 0

Chạy chương trình
sh demtu vidu.txt

Chương trình tìm dòng dài nhất trong tập tin

Mã nguồn chương trình (dongmax.sh)
#!/bin/sh

echo “Chuong trinh tim dong dai nhat trong tap tin $1”

{

n=0

max=0

dong=””

while read line

do

 n=`expr length “$line”`

 if [$n -gt $max]

 then

 dong=”$line”

 max=$n

 fi

done

echo “Dong trong tap tin $1 co do dai max = $max la : $dong”

}<$1

exit 0

Chạy chương trình
sh dongmax vidu.txt

Chương trình tìm một xâu trong một tập tin

Mã nguồn chương trình (timxau.sh)
#!/bin/sh

 139

echo “Chuong trinh tim xau $1 trong tap tin $2”

{

wordlen=`expr length “$1”` # Do dai tu can tim

while read textline

do

 textlen=`expr length “$textline”` # Do dai cua dong vua doc

 end=$(($textlen - wordlen + 1))

 index=1

 while [$index -le $end]

 do

 temp=`expr substr “$textline” $index $wordlen

 if [“$temp” = $1]

 then

 echo “Tim thay $1 tai dong $textline”

 break

 fi

 index=$(($index + 1))

 done

done

}<$2

exit 0

Chạy chương trình
sh timxau abc vidu.txt

Chương trình kiểm tra số nguyên tố

Mã nguồn chương trình (nguyento.sh)
$ cat > nt.sh

n=$1

for ((i=2; i< n; i++))

do

 temp=`expr $n % $i`

 if test $temp –eq 0; then

 echo “ không nguyên tố”

 exit

 fi

done

echo “ la nguyên tố”

Chạy chương trình
sh nguyento 5

Chương trình tính ước chung lớn nhất của hai số

 140

Mã nguồn chương trình (ucln.sh)
if test $n -ne 2

then

 echo” truyền tham sô”

fi

 g=0

 x=$1

 y=$2

if test $x –lt 0

then

 x=`expr 0 -$x `

fi

if [$y –lt 0]

then

 $y=`expr 0 -$y`

while [$x –gt 0]

do

 g=$x

 x=`expr $y %$x`

 y=$g

done

echo “ ucln là :$g”

Chạy chương trình
sh ucln 4 8

Chương trình tìm số lớn nhất trong 3 tham số truyền vào

Mã nguồn chương trình
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

Q2. Script to find out bigest number

Algo:

1) START: Take three nos as n1,n2,n3.

2) Is n1 is greater than n2 and n3, if yes

print n1 is bigest no goto step 5, otherwise goto next step

3) Is n2 is greater than n1 and n3, if yes

print n2 is bigest no goto step 5, otherwise goto next step

4) Is n3 is greater than n1 and n2, if yes

print n3 is bigest no goto step 5, otherwise goto next step

 141

5) END

 if [$# -ne 3]

 then

 echo "$0: number1 number2 number3 are not given" >&2

 exit 1

 fi

 n1=$1

 n2=$2

 n3=$3

 if [$n1 -gt $n2] && [$n1 -gt $n3]

 then

 echo "$n1 is Bigest number"

 elif [$n2 -gt $n1] && [$n2 -gt $n3]

 then

 echo "$n2 is Bigest number"

 elif [$n3 -gt $n1] && [$n3 -gt $n2]

 then

 echo "$n3 is Bigest number"

 elif [$1 -eq $2] && [$1 -eq $3] && [$2 -eq $3]

 then

 echo "All the three numbers are equal"

 else

 echo "I can not figure out which number is biger"

 fi

Chương trình in ra số theo dạng ngược lại, nếu 123 thì in ra 321

Mã nguồn chương trình (daonguoc.sh)
Algo:

1) Input number n

2) Set rev=0, sd=0

3) Find single digit in sd as n % 10 it will give (left most digit)

4) Construct revrse no as rev * 10 + sd

5) Decrment n by 1

6) Is n is greater than zero, if yes goto step 3, otherwise next

step

7) Print rev

if [$# -ne 1]

then

 echo "Usage: $0 number"

 echo " I will find reverse of given number"

 142

 echo " For eg. $0 123, I will print 321"

 exit 1

fi

n=$1

rev=0

sd=0

while [$n -gt 0]

do

 sd=`expr $n % 10`

 rev=`expr $rev * 10 + $sd`

 n=`expr $n / 10`

done

 echo "Reverse number is $rev"

Chạy chương trình
sh daonguoc.sh 1234

Chương trình in ra tổng của các chữ số, ví dụ 123 kết quả là 1+2+3 = 6

Mã nguồn chương trình (tongso.sh)
Algo:

#1) Input number n

#2) Set sum=0, sd=0

#3) Find single digit in sd as n % 10 it will give (left most digit)

#4) Construct sum no as sum=sum+sd

#5) Decrment n by 1

#6) Is n is greater than zero, if yes goto step 3, otherwise next step

#7) Print sum

if [$# -ne 1]

then

 echo "Usage: $0 number"

 echo " I will find sum of all digit for given number"

 echo " For eg. $0 123, I will print 6 as sum of all digit (1+2+3)"

 exit 1

fi

n=$1

sum=0

sd=0

while [$n -gt 0]

do

 sd=`expr $n % 10`

 143

 sum=`expr $sum + $sd`

 n=`expr $n / 10`

done

echo "Sum of digit for numner is $sum"

Chương trình tính tổng của hai số thực a=5.66, b=8.67, c=a+b

Mã nguồn chương trình tong.sh
a=5.66

b=8.67

c=`echo $a + $b | bc` # đầu ra của phép tính tổng sẽ được bc tính

echo "$a + $b = $c"

Chạy chương trình
sh tong.sh

Chương trình sử dụng getopts

Mã nguồn chương trình (ham.sh)
-c clear

-d dir

-m mc

-e vi { editor }

Function to clear the screen

cls()

{

 clear

 echo "Clear screen, press a key . . ."

 read

 return

}

Function to show files in current directory

show_ls()

{

 ls

 echo "list files, press a key . . ."

 read

 return

}

Function to start mc

start_mc()

{

 if which mc > /dev/null ; then

 144

 mc

 echo "Midnight commander, Press a key . . ."

 read

 else

 echo "Error: Midnight commander not installed, Press a key

 . . ."

 read

 fi

 return

}

Function to start editor

start_ed()

{

 ced=$1

 if which $ced > /dev/null ; then

 $ced

 echo "$ced, Press a key . . ."

 read

 else

 echo "Error: $ced is not installed or no such editor exist,

 Press a key . . ."

 read

 fi

 return

}

Function to print help

print_help_uu()

{

 echo "Usage: $0 -c -d -m -v {editor name}";

 echo "Where -c clear the screen";

 echo " -d show dir";

 echo " -m start midnight commander shell";

 echo " -e {editor}, start {editor} of your choice";

 return

}

Main procedure start here

Check for sufficent args

if [$# -eq 0] ; then

 print_help_uu

 exit 1

 145

fi

Now parse command line arguments

while getopts cdme: opt

do

 case "$opt" in

 c) cls;;

 d) show_ls;;

 m) start_mc;;

 e) thised="$OPTARG"; start_ed $thised ;;

 \?) print_help_uu; exit 1;;

 esac

done

Chạy chương trình
sh ham.sh

Chương trình in ra date, time, username, và thư mục hiện thời

Mã nguồn chương trình
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

echo "Hello, $LOGNAME"

echo "Current date is `date`"

echo "User is `who i am`"

echo "Current direcotry `pwd`"

Viết Shell script in ra "Hello World" (in Bold, Blink effect, and in different colors

like red, brown)

Mã nguồn chương trình
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

echo command with escape sequance to give differnt effects

Syntax: echo -e "escape-code your message, var1, var2 etc"

For eg. echo -e "\033[1m Hello World"

| |

| |

Escape code Message

 146

clear

echo -e "\033[1m Hello World" # bold effect

echo -e "\033[5m Blink" # blink effect

echo -e "\033[0m Hello World" # back to noraml

echo -e "\033[31m Hello World" # Red color

echo -e "\033[32m Hello World" # Green color

echo -e "\033[33m Hello World" # See remaing on screen

echo -e "\033[34m Hello World"

echo -e "\033[35m Hello World"

echo -e "\033[36m Hello World"

echo -e -n "\033[0m " # back to noraml

echo -e "\033[41m Hello World"

echo -e "\033[42m Hello World"

echo -e "\033[43m Hello World"

echo -e "\033[44m Hello World"

echo -e "\033[45m Hello World"

echo -e "\033[46m Hello World"

echo -e "\033[0m Hello World" # back to noraml

Viế ra Shell Script thể hiện đồng hồ số

Mã nguồn chương trình (ms)
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

echo

echo "Digital Clock for Linux"

echo "To stop this clock use command kill pid, see above for pid"

echo "Press a key to continue. . ."

while :

do

 ti=`date +"%r"`

 echo -e -n "\033[7s" #save current screen postion & attributes

 #

 # Show the clock

 #

 tput cup 0 69 # row 0 and column 69 is used to show clock

 echo -n $ti # put clock on screen

 echo -e -n "\033[8u" #restore current screen postion & attributs

 147

 #

 #Delay fro 1 second

 #

 sleep 1

done

^D

Chạy chương trình
#sh ms &

Shell script to convert upercase filename to lowercase in current

Mã nguồn chương trình (up2low)
#!/bin/bash

up2low : script to convert upercase filename to lowercase in current

working dir

Author : Vivek G. Gite <vivek@nixcraft.com>

#Copy this file to your bin directory i.e. $HOME/bin as cp rename.awk

$HOME/bin

AWK_SCRIPT="rename.awk"

change your location here

awkspath=$HOME/bin/$AWK_SCRIPT

ls -1 > /tmp/file1.$$

tr "[A-Z]" "[a-z]" < /tmp/file1.$$ > /tmp/file2.$$

paste /tmp/file1.$$ /tmp/file2.$$ > /tmp/tmpdb.$$

rm -f /tmp/file1.$$

rm -f /tmp/file2.$$

Make sure awk script exist

if [-f $awkspath]; then

 awk -f $awkspath /tmp/tmpdb.$$

else

 echo -e "\n$0: Fatal error - $awkspath not found"

 echo -e "\nMake sure \$awkspath is set correctly in $0 script\n"

fi

rm -f /tmp/tmpdb.$$

Chương trình xem các thông tin hệ thống

Mã nguồn chương trình
#!/bin/bash

Linux Shell Scripting Tutorial 1.05r3, Summer-2002

Written by Vivek G. Gite <vivek@nixcraft.com>

Latest version can be found at http://www.nixcraft.com/

 148

nouser=`who | wc -l`

echo -e "User name: $USER (Login name: $LOGNAME)" >> /tmp/info.tmp.01.$$$

echo -e "Current Shell: $SHELL" >> /tmp/info.tmp.01.$$$

echo -e "Home Directory: $HOME" >> /tmp/info.tmp.01.$$$

echo -e "Your O/s Type: $OSTYPE" >> /tmp/info.tmp.01.$$$

echo -e "PATH: $PATH" >> /tmp/info.tmp.01.$$$

echo -e "Current directory: `pwd`" >> /tmp/info.tmp.01.$$$

echo -e "Currently Logged: $nouser user(s)" >> /tmp/info.tmp.01.$$$

if [-f /etc/redhat-release]

then

 echo -e "OS: `cat /etc/redhat-release`" >> /tmp/info.tmp.01.$$$

fi

if [-f /etc/shells]

then

 echo -e "Available Shells: " >> /tmp/info.tmp.01.$$$

 echo -e "`cat /etc/shells`" >> /tmp/info.tmp.01.$$$

fi

if [-f /etc/sysconfig/mouse]

then

 echo -e "-------------------------------" >> /tmp/info.tmp.01.$$$

 echo -e "Computer Mouse Information: " >> /tmp/info.tmp.01.$$$

 echo -e "------------------------------" >> /tmp/info.tmp.01.$$$

 echo -e "`cat /etc/sysconfig/mouse`" >> /tmp/info.tmp.01.$$$

fi

echo -e "--------------------------------" >> /tmp/info.tmp.01.$$$

echo -e "Computer CPU Information:" >> /tmp/info.tmp.01.$$$

echo -e "----------------------------" >> /tmp/info.tmp.01.$$$

cat /proc/cpuinfo >> /tmp/info.tmp.01.$$$

echo -e "-----------------------------" >> /tmp/info.tmp.01.$$$

echo -e "Computer Memory Information:" >> /tmp/info.tmp.01.$$$

echo -e "----------------------------" >> /tmp/info.tmp.01.$$$

cat /proc/meminfo >> /tmp/info.tmp.01.$$$

if [-d /proc/ide/hda]

then

 echo -e "----------------------------" >> /tmp/info.tmp.01.$$$

 echo -e "Hard disk information:" >> /tmp/info.tmp.01.$$$

 echo -e "-----------------------------" >> /tmp/info.tmp.01.$$$

 echo -e "Model: `cat /proc/ide/hda/model` " >> /tmp/info.tmp.01.$$$

 echo -e "Driver: `cat /proc/ide/hda/driver` " >> /tmp/info.tmp.01.$$$

 echo -e "Cache size: `cat /proc/ide/hda/cache` " >> /tmp/info.tmp.01.$$$

fi

 149

echo -e "-------------------------------" >> /tmp/info.tmp.01.$$$

echo -e "File System (Mount):" >> /tmp/info.tmp.01.$$$

echo -e "-------------------------------" >> /tmp/info.tmp.01.$$$

cat /proc/mounts >> /tmp/info.tmp.01.$$$

if which dialog > /dev/null

then

 dialog --backtitle "Linux Software Diagnostics (LSD) Shell Script

 Ver.1.0" --title "Press Up/Down Keys to move" --textbox

 /tmp/info.tmp.01.$$$ 21 70

else

 cat /tmp/info.tmp.01.$$$ |more

fi

rm -f /tmp/info.tmp.01.$$$

2. Lập trình C trên Linux
 Linux cung cấp nhiều công cụ hỗ trợ phát triển các ứng dụng dựa trên ngôn ngữ C và

C++, nội dung chính của chương này là mô tả các công cụ hỗ trợ biên dịch, gỡ lỗi các ứng dụng

C trên nền tảng Linux.

− Trình biên dịch gcc.

− Sử dụng gdb gỡ lỗi.

2.1 Trình biên dịch gcc

 Hệ điều hành Unix luôn kèm theo bộ dịch ngôn ngữ lập trình C với tên gọi là cc (C

compiler). Trong Linux, bộ dịch có tên là gcc (GN U C Compiler) với ngôn ngữ lập trình không

khác nhiều với C chuNn.

 N ội dung chi tiết về các ngôn ngữ lập trình c trên Linux thuộc phạm vi của các tài liệu

khác. gcc cho người lập trình kiểm tra trình biên dịch. Quá trình biên dịch bao gồm bốn giai

đoạn:

− Tiền xử lý.

− Biên dịch.

− Tạp hợp.

− Liên kết.

 Ta có thể dừng quá trình sau một trong những giai đoạn để kiểm tra kết quả biên dịch tại

giai đoạn ấy. gcc cũng có thể chấp nhận ngôn ngữ khác của C, như AN SI C hay C truyền

thống. N hư đã nói ở̉ trên, gcc thích hợp biên dịch C++ hay Objective-C. Ta có thể kiểm soát

lượng cũng như kiểu thông tin cần debug, tất nhiên là có thể nhúng trong quá trình nhị phân hóa

kết quả và giống như hầu hết các trì ̀nh biên dịch, gcc cũng thực hiện tối ưu hóa mã.

 150

 Trước khi bắt đầu đi sâu vào nghiên cứu gcc, ta xem một ví dụ sau:
#include<stdio.h>

int main (void)

{

 fprintf(stdout, “Hello, Linux programming world!\n”);

 return 0;

 }

 Để biên dịch và chạy chương trình này hãy gõ:
1 $ gcc hello.c –o hello

2 $./hello

3 Hello, Linux programming world!

 Dòng lệnh đầu tiên chỉ cho gcc phải biên dịch và liên kết file nguồn hello.c, tạo ra tập tin

thực thi, bằng cách chỉ định sử dụng đối số -o hello. Dòng lệnh thứ hai thực hiện chương trình,

và kết quả cho ra trên dòng thứ 3.

 Có nhiều chỗ mà ta không nhìn thấy được, gcc trước khi chạy hello.c thông qua bộ tiền

xử lý của cpp, để mở rộng bất kỳ một macro nào và chèn thêm vào nội dung của những file

#include. Tiếp đến, nó biên dịch mã nguồn tiền xử lý sang mã obj . Cuối cùng, trình liên kết, tạo

ra mã nhị phân cho chương trình hello.

 Ta có thể tạo lại từng bước này bằng tay, chia thành từng bước qua tiến trình biên dịch.

Để chỉ cho gcc biết phải dừng việc biên dịch sau khi tiền xử lý, ta sử dụng tuỳ chọn –E của gcc:
$ gcc –E hello.c –o hello.cpp

 Xem xét hello.cpp và ta có thể thấy nội dung của stdio.h được chèn vào file, cùng với

những mã thông báo tiền xử lý khác. Bước tiếp theo là biên dịch hello.cpp sang mã obj. Sử

dụng tuỳ chọn –c của gcc để hoàn thành:
$ gcc –x cpp-output -c hello.cpp –o hello.o

 Trong trường hợp này, ta không cần chỉ định tên của file output bởi vì trình biên dịch tạo

một tên file obj bằng cách thay thế .c bởi .o. Tuỳ chọn –x chỉ cho gcc biết bắt đầu biên dịch ở

bước được chỉ báo trong trường hợp này với mã nguồn tiền xử lý.

 Làm thế nào gcc biết chia loại đặc biệt của file? N ó dựa vào đuôi mở rộng của file ở trên

để xác định rõ phải xử lý file như thế nào cho dúng. Hầu hết những đuôi mở rộng thông thường

và chú thích của chúng được liệt kê trong bảng dưới.

Phần mở rộng Kiểu

.c Mã nguồn ngôn ngữ C

.c, .cpp Mã nguồn ngôn ngữ C++

.i Mã nguồn C tiền xử lý

 151

.ii Mã nguồn C++ tiền xử lý

.S, .s Mã nguồn Hơp ngữ

.o Mã đối tượng biên dịch (obj)

.a, .so Mã thư viện biên dịch

 Các phần mở rộng của tên file đối với gcc.

 Liên kết file đối tượng, và cuối cùng tạo ra mã nhị phân:
$ gcc hello.o –o hello

 Trong trường hợp , ta chỉ muốn tạo ra các file obj, và như vậy thì bước liên kết là không

cần thiết.

 Hầu hết các chương trình C chứa nhiều file nguồn thì mỗi file nguồn đó đều phải được

biên dịch sang mã obj trước khi tới bước liên kết cuối cùng. Giả sử có một ví dụ, ta đang làm

việc trên killerapp.c là chương trình sử dụng phần mã của helper.c, như vậy để biên dịch

killerapp.c ta phải dùng dòng lệnh sau:
$ gcc killerapp.c helper.c –o killerapp

gcc qua lần lượt các bước tiền xử lý - biên dịch – liên kết, lúc này tạo ra các file obj cho mỗi file

nguồn trước khi tạo ra mã nhị phân cho killerapp.

 Một số tuỳ chọn dòng lệnh của gcc:

− o FILE Chỉ định tên file output; không cần thiết khi biên dịch sang mã obj. N ếu FILE

không được chỉ rõ thì tên mặc định sẽ là a.out.

− c Biên dịch không liên kết.

− DF00=BAR Định nghĩa macro tiền xử lý đặt tên F00 với một giá trị của BAR trên dòng

lệnh.

− IDIRN AME Trước khi chưa quyết định được DIRN AME hãy tìm kiếm những file

include trong danh sách các thư mục(tìm trong danh sách các đường dẫn thư mục)

− LDIRN AME Trước khi chưa quyết định được DIRN AME hãy tìm kiếm những file thư

viện trong danh sách các thư mục. Với mặc định gcc liên kết dựa trên những thư viện

dùng chung

− static Liên kết dựa trên những thư viện tĩnh

− lF00 Liên kết dựa trên libF00

− g Bao gồm chuNn gỡ rối thông tin mã nhị phân

− ggdb Bao gồm tất cả thông tin mã nhị phân mà chỉ có chương trình gỡ rối GN U- gdb

mới có thể hiểu được

 152

− O Tối ưu hoá mã biên dịch

− ON Chỉ định một mức tối ưu hoá mã N , 0<=N <=3.

− AN SI Hỗ trợ chuNn AN SI/ISO của C, loại bỏ những mở rộng của GN U mà xung đột với

chuNn (tuỳ chọn này không bảo đảm mã theo AN SI).

− pedantic Cho ra tất cả những cảnh báo quy định bởi chuNn

− pedantic-erors Thông báo ra tất cả các lỗi quy định bởi chuNn AN SI/ISO của C.

− traditional Hỗ trợ cho cú pháp ngôn ngữ C của Kernighan và Ritchie (giống như cú pháp

định nghĩa hàm kiểu cũ).

− w Chặn tất cả thông điệp cảnh báo.

− Wall Thông báo ra tất cả những cảnh báo hữu ích thông thường mà gcc có thể cung cấp.

− werror Chuyển đổi tất cả những cảnh báo sang lỗi mà sẽ làm ngưng tiến trình biên dịch.

− MM Cho ra một danh sách sự phụ thuộc tương thích được tạo.

− v Hiện ra tất cả các lệnh đã sử dụng trong mỗi bước của tiến trình biên dịch.

Chú ý: N ếu không có tùy chọn –o thì kết quả sẽ tạo ra một file thực thi có tên là a.out.
 $gcc thu.c

 Kết quả sẽ tạo ra file a.out, để hiển thị kết quả sử dụng lệnh sau :
 $./ a.out

 N ếu có thêm tùy chọn –o kết quả sẽ tạo ra file thực thi với tên do người dùng tạo ra.
 $ gcc –o thu thu.c

 $ sh thu

2.2 Công cụ GNU make

 Trong trường hợp ta viết một chương trình rất lớn được cấu thành bởi từ nhiều file, việc

biên dịch sẽ rất phức tạp vì phải viết các dòng lệnh gcc rất là dài. Để khắc phục tình trạng này,

công cụ GN U make đã được đưa ra.

 GN U make được giải quyết bằng cách chứa tất cả các dòng lệnh phức tạp đó trong một

file gọi là makefile. N ó cũng làm tối ưu hóa quá trình dịch bằng cách phát hiện ra những file

nào có thay đổi thì nó mới dịch lại, còn file nào không bị thay đổi thì nó sẽ không làm gì cả, vì

vậy thời gian dịch sẽ được rút ngắn.

 Một makefile là một cơ sở dữ liệu văn bản chứa cách luật, các luật này sẽ báo cho

chương trình make biết phải làm gì và làm như thế nào. Một luật bao gồm các thành phần như

sau:

•− Đích (target) – cái mà make phải làm.

•− Một danh sách các thành phần phụ thuộc (dependencies) cần để tạo ra đích.

Formatted: Bullets and Numbering

 153

•− Một danh sách các câu lệnh để thực thi trên các thành phần phụ thuộc.

 Khi được gọi, GN U make sẽ tìm các file có tên là GN Umakefile, makefile hay Makefile.

 Các luật sẽ có cú pháp như sau:
target: dependency1, dependency2, ….

 command

 command

 ……

 Target thường là một file như file khả thi hay file object ta muốn tạo ra. Dependency là

một danh sách các file cần thiết như là đầu vào để tạo ra target. Command là các bước cần thiết

(chẳng hạn như gọi chương trình dịch) để tạo ra target.

 Dưới đây là một ví dụ về một makefile về tạo ra một chương trình khả thi có tên là editor

(số hiệu dòng chỉ đưa vào để tiện theo dõi, còn nội dung của makefile không chứa số hiệu

dòng). Chương trình này được tạo ra bởi một số các file nguồn: editor.c, editor.h, keyboard.h,

screen.h, screen.c, keyboard.c.
1. editor : editor.o screen.o keyboard.o

2. gcc -o editor.o screen.o keyboard.o

3. editor.o : editor.c editor.h keyboard.h screen.h

4. gcc -c editor.c

5. screen.o : screen.c screen.h

6. gcc -c screen.c

7. keyboard.o : keyboard.c keyboard.h

8. gcc -c keyboard.c

9. clean:

10. rm *.o

 Để biên dịch chương trình này ta chỉ cần ra lệnh make trong thư mục chứa file này.

 Trong makefile này chứa tất cả 5 luật, luật đầu tiên có đích là editor được gọi là đích

ngầm định. Đây chính là file mà make sẽ phải tạo ra, editor có 3 dependencies editor.o,

screen.o, keyboard.o. Tất cả các file này phải tồn tại thì mới tạo ra được đích trên. Dòng thứ 2 là

lệnh mà make sẽ gọi thực hiện để tạo ra đích trên. Các dòng tiếp theo là các đích và các lệnh

tương ứng để tạo ra các file đối tượng (object).

2.3 Sử dụng nhãn file (mô tả file – file descriptor)

 Trong Linux, để làm việc với file ta sử dụng nhãn file (file descriptor). Một trong những

thuận lợi trong Linux và các hệ thống UN IX khác là giao diện file làm như nhau đối với nhiều

loại thiết bị. Đĩa từ, các thiết bị vào/ra, cổng song song, giả máy trạm (pseudoterminal), cổng

máy in, bảng mạch âm thanh, và chuột được quản lý như các thiết bị đặc biệt giống như các tệp

 154

thông thường để lập trình ứng dụng. Các socket TCP/IP và miền, khi kết nối được thiết lập, sử

dụng mô tả file như thể chúng là các file chuNn. Các ống (pipe) cũng tương tự các file chuNn.

 Một nhãn file file đơn giản chỉ là một số nguyên được sử dụng như chỉ mục (index) vào

một bảng các file mở liên kết với từng tiến trình. Các giá trị 0, 1 và 2 liên quan đến các dòng

(streams) vào ra chuNn: stdin, stderr và stdout; ba dòng đó thường kết nối với máy của người

sử dụng và có thể được chuyển tiếp (redirect).

 Một số lời gọi hệ thống sử dụng mô tả file. Hầu hết các lời gọi đó trả về giá trị -1 khi có

lỗi xảy ra và biến errno ghi mã lỗi. Mã lỗi được ghi trong trang chính tuỳ theo từng lời gọi hệ

thống. Hàm perror() được sử dụng để hiển thị nội dung thông báo lỗi dựa trên mã lỗi.

Hàm open()

 Lời gọi open() sử dụng để mở một file. Khuôn mẫu của hàm và giải thích tham số và cờ

của nó được cho dưới đây:
#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

 Đối số pathname là một xâu chỉ ra đường dẫn đến file sẽ được mở. Thông số thứ ba xác

định chế độ của file Unix (các bit được phép) được sử dụng khi tạo một file và nên được sử

dụng khi tạo một file. Tham số flags nhận một trong các giá trị O_RDON LY, O_WRON LY

hoặc O_RDWR

Cờ Chú giải

O_RDON LY

O_WRON LY

O_RDWR

O_CREAT

O_EXCL

O_N OCTTY

O_TRUN C

O_APPEN D

O_N ON BLOCK

O_N ODELAY

O_SYN C

Mở file để đọc

Mở file để ghi

Mở file để đọc và ghi

Tạo file nếu chưa tồn tại file đó

Thất bại nếu file đã có

Không điều khiển tty nếu tty đã mở và tiến trình không điều khiển tty

Cắt file nếu nó tồn tại

N ối thêm và con trỏ đặt ở cuối file

N ếu một quá trình không thể hoàn thành mà không có trễ, trả về trạng thái

trước đó

Tương tự O_N ON BLOCK

Thao tác sẽ không trả về cho đến khi dữ liệu được ghi vào đĩa hoặc thiết bị

 155

khác

open() trả về một mô tả file nếu không có lỗi xảy ra. Khi có lỗi , nó trả về giá trị -1 và đặt giá

trị cho biến errno. Hàm create() cũng tương tự như open() với các cờ O_CREATE |

O_WRON LY | O_TRUN C

Hàm close()

 Chúng ta nên đóng nhãn file khi đã thao tác xong với nó. Chỉ có một đối số đó là số mô

tả file mà lời gọi open() trả về. Dạng của lời gọi close() là:
 #include <unistd.h>

 int close(int fd);

 Tất cả các khoá (lock) do tiến trình xử lý trên file được giải phóng, cho dù chúng được

đặt mô tả file khác. N ếu quá trình đóng file làm cho bộ đếm liên kết bằng 0 thì file sẽ bị xoá.

N ếu đây là mô tả file cuối cùng liên kết đến một file được mở thì bản ghi ở bảng file mở được

giải phóng. N ếu không phải là một file bình thường thì các hiệu ứng không mong muốn có thể

xảy ra.

Hàm read()

 Lời gọi hệ thống read() sử dụng để đọc dữ liệu từ file tương ứng với một mô tả file.
#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

 Đối số đầu tiên là mô tả file mà được trả về từ lời gọi open() trước đó. Đối số thứ hai là

một con trỏ tới bộ đệm để sao chép dữ liệu và đối số thứ ba là số byte sẽ được đọc. read() trả về

số byte được đọc hoặc -1 nếu có lỗi xảy ra.

Hàm write()

 Lời gọi hệ thống write() sử dụng để ghi dữ liệu vào file tương ứng với một mô tả file.
#include <unistd.h>

ssize_t write(int fd, const void *buf, size_t count);

 Đối số đầu tiên là số mô tả file được trả về từ lời gọi open() trước đó. Đối số thứ hai là

con trỏ tới bộ đệm (để sao chép dữ liệu, có dung lượng đủ lớn để chứa dữ liệu) và đối số thứ ba

xác định số byte sẽ được ghi. write() trả về số byte đọc hoặc -1 nếu có lỗi xảy ra.

Hàm ftruncate()

 Lời gọi hệ thống ftruncate() cắt file tham chiếu bởi mô tả file fd với độ dài được xác định

bởi tham số length.
#include <unistd.h>

int ftruncate(int fd, size_t length);

 156

 Trả về giá trị 0 nếu thành công và -1 nếu có lỗi xảy ra.

Hàm lseek()

 Hàm lseek() đặt vị trí đọc và ghi hiện tại trong file được tham chiếu bởi mô tả file files

tới vị trí offset:
#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

 Phụ thuộc vào giá trị của whence, giá trị của offset là vị trí bắt đầu (SEEK_SET), vị trí

hiện tại (SEEK_CUR), hoặc cuối file (SEEK_EN D). Giá trị trả về là kết quả của offset: bắt đầu

file, hoặc một giá trị của off_t , giá trị -1 nếu có lỗi.

 Hàm fstat()

 Hàm fstat() đưa ra thông tin về file thông qua việc nhãn các file, nơi kết quả của struct

stat được chỉ ra ở con trỏ chỉ đến buf(). Kết quả trả về giá trị 0 nếu thành công và nhận giá trị -1

nếu sai (kiểm tra lỗi).
#include <sys/stat.h>

#include <unistd.h>

int fstat(int filedes, struct stat *buf);

Sau đây là định nghĩa của struct stat
struct stat

{

 dev_t st_dev; / * thiết bị */

 int_t st_ino; /* inode */

 mode_t st_mode; /* chế độ bảo vệ */

 nlink_t st_nlink; /* số lượng các liên kết cứng */

 uid_t st_uid; /* số hiệu của người chủ */

 gid_t st_gid; /* số hiệu nhóm của người chủ*/

 dev_t st_rdev; /* kiểu thiết bị */

 off_t st_size; /* kích thước bytes */

 unsigned long st_blksize; /* kích thước khối*/

 unsigned long st_blocks; /* Số lượng các khối đã sử dụng*/

 time_t st_atime; /* thời gian truy cập cuối cùng*/

 time_t st_mtime; /* thời gian cập nhật cuối cùng */

 time_t st_ctime; /* thời gian thay đổi cuối cùng */

};

Hàm fchown()

 Lời gọi hệ thống fchown() cho phép ta thay đổi người chủ và nhóm người chủ kết hợp

với việc mở file.

 157

#include <sys/types.h>

#include <unistd.h>

int fchown(int fd, uid_t owner, gid_t group);

 Tham số đầu tiên là nhãn file, tham số thứ hai là số định danh của người chủ, và tham số

thứ ba là số định danh của nhóm người chủ. N gười dùng hoặc nhóm người dùng sẽ được phép

sử dụng khi giá trị -1 thay đổi. Giá trị trả về là 0 nếu thành công và –1 nếu gặp lỗi (kiểm tra biến

errno).

 Thông thường người dùng có thể thay đổi nhóm các file thuộc về họ. Chỉ root mới có

quyền thay đổi người chủ sở hữu của nhiều nhóm.

Hàm fchdir()

 Lời gọi hàm fchdir() thay đổi thư mục bằng cách mở file được nhãn bởi biến fd. Giá trị

trả về là 0 nếu thành công và –1 nếu có lỗi (kiểm tra biến errno).
#include <unistd.h>

int fchdir(int fd);

Một ví dụ về cách sử dụng các hàm thao tác với file
/* filedes_io.c */

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/file.h>

#include <fcntl.h>

#include <unistd.h>

#include <assert.h>

#include <errno.h>

#include <string.h>

#include <stdio.h> /*for print */

char sample1[] = "This is sample data 1\n";

char sample2[] = "This is sample data 2\n";

char data[16];

main()

{

 int fd;

 int rc;

 struct stat statbuf;

 printf("Creating file\n");

 fd = open("junk.out", O_WRONLY | O_CREAT| O_TRUNC, 0666);

 assert(fd>=0);

 rc = write(fd, sample1, strlen(sample1));

 assert(fd>=0);

 158

 rc = write(fd, sample1, strlen(sample1));

 assert(rc == strlen(sample1));

 close(fd);

 printf("Appending to file\n");

 fd = open("junk.out", O_WRONLY| O_APPEND);

 assert(fd>=0);

 printf("locking file\n");

 rc = flock(fd, LOCK_EX);

 assert(rc == 0);

 printf("sleeping for 10 seconds\n");

 sleep(10);

 printf("writing data\n");

 rc = write(fd, sample2, strlen(sample2));

 assert(rc == strlen(sample2));

 printf("unlocking file\n");

 rc = flock(fd, LOCK_UN);

 assert(rc == 0);

 close(fd);

 printf("Reading file \n");

 fd = open("junk.out", O_RDONLY);

 assert(fd >=0);

 while (1)

 {

 rc = read(fd, data, sizeof (data));

 if(rc > 0) {

 data[rc]=0;

 printf(" Data read(rc = %d): <%s>\n", rc, data);

 }

 else if(rc == 0) {

 printf(" End of file read \n");

 break;

 }

 else

 {

 perror("read error");

 break;

 }

 }

 close(fd);

 printf(" Fiddling with inode\n");

 159

 fd = open (" junk.out", O_RDONLY);

 assert (fd >= 0);

 printf (" changing file mode\n");

 rc = fchmod (fd, 0600);

 assert(rc == 0);

 if(getuid () == 0)

 {

 printf("changing file owner \n ");

 rc = fchown(fd, 99, 99);

 assert(rc == 0);

 } else

 {

 printf("not changing file owner\n");

 }

 fstat(fd, &statbuf);

 printf(" file mode = o% (octal) \n", statbuf.st_mode);

 printf("Owner uid = %d \n", statbuf.st_uid);

 printf(" Owner gid = %d \n", statbuf.st_uid);

 close(fd);

}

2.4 Thư viện liên kết

 Phần này sẽ giới thiệu cách tạo ra và sử dụng thư viện (các module chương trình đã được

viết và được tái sử dụng nhiều lần). Thư viện gốc của C/C++ trên Linux chính là glibc, thư viện

này cung cấp cho người dùng rất nhiều lời gọi hệ thống. Các thư viện trên Linux thường được

tổ chức dưới dạng tĩnh (static library), thư viện chia sẻ (shared library) và động (dynamic

library - giống như DLL trên MS Windows).

 Thư viện tĩnh được liên kết cố định vào trong chương trình trong quá trình liên kết. Thư

viện dùng chung được nạp vào bộ nhớ trong khi chương trình bắt đầu thực hiện và cho phép các

ứng dụng cùng chia sẻ loại thư viện này. Thư viện liên kết động được nạp vào bộ nhớ chỉ khi

nào chương trình gọi tới.

Thư viện liên kết tĩnh

 Thư viện tĩnh và các thư viện dùng chung (shared library) là các file chứa các file được

gọi là các module đã được biên dịch và có thể sử dụng lại được. Chúng được lưu trữ dưới một

định dạng đặc biệt cùng với một bảng (hoặc một bản đồ) phục vụ cho quá trình liên kết và biên

dịch. Các thư viện liên kết tĩnh có phần mở rộng là .a.

 160

 Để sử dụng các module trong thư viện ta cần thêm phần #include file tiêu đề (header)

vào trong chương trình nguồn và khi liên kết (sau quá trình biên dịch) thì liên kết với thư viện

đó. Dưới đây là một ví dụ về cách tạo và sử dụng một thư viên liên kết tĩnh. Có 2 phần trong ví

dụ này, phần thứ nhất là mã nguồn cho thư viện và phần thứ 2 cho chương trình sử dụng thư

viện.
/* Mã nguồn file liberr.h */

#ifndef _LIBERR_H

#define _LIBERR_H

#include <stdarg.h>

/* in ra một thông báo lỗi tới việc gọi stderr và return hàm gọi */

void err_quit(const char *fmt, …);

/* in ra một thông điệp lỗi cho logfile và trả về hàm gọi */

void log_ret(char *logfile, const char *fmt, …);

 /* in ra một thông điệp lỗi cho logfile và thoát */

void log_quit(char *logfile, const char *fmt , …);

/* in ra một thông báo lỗi và trả lại hàm gọi */

void err_prn(const char *fmt, va_list ap, char *logfile);

#endif //_LIBERR_H

/* Mã nguồn file liberr.c*/

#include <errno.h>

#include <stdarg.h>

#include <stdlib.h>

#include <stdio.h>

#include "liberr.h"

#define MAXLINELEN 500

void err_ret(const char *fmt, ...)

{

 va_list ap;

 va_start(ap, fmt);

 err_prn(fmt, ap, NULL);

 va_end(ap);

 return;

}

void err_quit(const char *fmt, ...)

{

 va_list ap;

 va_start(ap, fmt);

 err_prn(fmt, ap, NULL);

 161

 va_end(ap);

 exit(1);

}

void log_ret(char *logfile, const char *fmt, ...)

{

 va_list ap;

 va_start(ap, fmt);

 err_prn(fmt,ap, logfile);

 va_end(ap);

 return;

}

void log_quit(char *logfile, const char *fmt,...)

{

 va_list ap;

 va_start(ap, fmt);

 err_prn(fmt, ap,logfile);

 va_end(ap);

 exit(1);

}

extern void err_prn(const char *fmt, va_list ap, char *logfile)

{

 int save_err;

 char buf[MAXLINELEN];

 FILE *plf;

 save_err = errno;

 vsprintf(buf,fmt, ap);

 sprintf(buf+strlen(buf), ": %s", strerror(save_err));

 strcat(buf, "\n");

 fflush(stdout);

 if(logfile !=NULL){

 if((plf=fopen(logfile, "a")) != NULL){

 fputs(buf, plf);

 fclose(plf);

 }else

 fputs("failed to open log file \n", stderr);

 }else fputs(buf, stderr);

 fflush(NULL);

 return;

}

 Để tạo một thư viện tĩnh, bước đầu tiên là dịch đoạn mã của form đối tượng:

 162

 $gcc –H –c liberr.c –o liberr.o

tiếp theo:
 $ar rcs liberr.a liberr.o

 /* Mã nguồn file testerr.c*/

 #include <stdio.h>

 #include <stdlib.h>

 #include "liberr.h"

 #define ERR_QUIT_SKIP 1

 #define LOG_QUIT_SKIP 1

 int main(void)

 {

 FILE *pf;

 fputs("Testing err_ret()...\n", stdout);

 if((pf = fopen("foo", "r")) == NULL)

 err_ret("%s %s", "err_ret()", "failed to open foo");

 fputs("Testing log_ret()...\n", stdout);

 if((pf = fopen("foo", "r")) == NULL);

 log_ret("errtest.log", "%s %s", "log_ret()",

 "failed to open foo");

 #ifndef ERR_QUIT_SKIP

 fputs("Testing err_quit()...\n", stdout);

 if((pf = fopen("foo", "r")) == NULL)

 err_ret("%s %s", "err_quit()", "failed to open foo");

 #endif /* ERR_QUIT_SKIP */

 #ifndef LOG_QUIT_SKIP

 fputs("Testing log_quit()...\n", stdout);

 if((pf = fopen("foo", "r")) == NULL)

 log_ret("errtest.log", "%s %s", "log_quit()", "failed to open

 foo");

 #endif /* LOG_QUIT_SKIP */

 return EXIT_SUCCESS;

}

 Biên dịch chương trình kiểm tra, ta sử dụng dòng lệnh:

$ gcc -g errtest.c -o errtest -L. -lerr

 Tham số -L. chỉ ra đường dẫn tới thư mục chứa file thư viện là thư mục hiện thời, tham

số –lerr chỉ rõ thư viện thích hợp mà chúng ta muốn liên kết. Sau khi dịch ta có thể kiểm tra

bằng cách chạy chương trình.

 163

Thư viện dùng chung

 Thư viện dùng chung có nhiều thuận lợi hơn thư viện tĩnh.Thứ nhất, thư viện dùng chung

tốn ít tài nguyên hệ thống, chúng sử dụng ít không gian đĩa vì mã nguồn thư viện dùng chung

không biên dịch sang mã nhị phân nhưng được liên kết và được dùng tự động mỗi lần dùng.

 Chúng sử dụng ít bộ nhớ hệ thống vì nhân chia sẻ bộ nhớ cho thư viện dùng chung này

và tất cả các chương trình đều sử dụng chung miền bộ nhớ này. Thứ 2, thư viện dùng chung

nhanh hơn vi chúng chỉ cần nạp vào một bộ nhớ. Lí do cuối cùng là mã nguồn trong thư viện

dùng chung dễ bảo trì. Khi các lỗi được sửa hay thêm vào các đặc tính, người dùng cần sử dụng

thư viện nâng cấp. Đối với thư viện tĩnh, mỗi chương trình khi sử dụng thư viện phải biên dịch

lại.

 Trình liên kết (linker)/module tải (loader) ld.so liên kết tên biểu tượng tới thư viện dùng

chung mỗi lần chạy. Thư viện dùng chung có tên đặc biệt (gọi là soname), bao gồm tên thư viện

và phiên bản chính. Ví dụ: tên đầy đủ của thư viện C trong hệ thống là libc.so.5.4.46, tên thư

viện là libc.so, tên phiên bản chính là 5, tên phiên bản phụ là 4, 46 là mức vá (patch level). N hư

vậy, soname thư viện C là libc.5. Thư viện libc6 có soname là libc.so.6, sự thay đổi phiên bản

chính là sự thay đổi đáng kể thư viện. Phiên bản phụ và patch level thay đổi khi lỗi được sửa

nhưng soname không thay đổi và bản mới có sự thay khác biệt đáng kể so với bản cũ.

 Các chương trình ứng dụng liên kết dựa vào soname. Tiện ích idconfig tạo một biểu

tượng liên kết từ thư viện chuNn libc.so.5.4.46 tới soname libc.5 và lưu trữ thông tin này trong

/etc/ld.so.cache. Trong lúc chạy, ld.so đọc phần lưu trữ, tìm soname thích hợp và nạp thư viện

hiện tai vào bộ nhớ, kết nối hàm ứng dụng gọi tới đối tượng thích hợp trong thư viện.

 Các phiên bản thư viện khác nhau nếu:

♣− Các giao diện hàm đầu ra thay đổi.

♣− Các giao diện hàm mới được thêm.

♣− Chức năng hoạt động thay đổi so với đặc tả ban đầu

♣− Cấu trúc dữ liệu đầu ra thay đổi

♣− Cấu trúc dữ liệu đầu ra được thêm

 Để duy trì tính tương thích của thư viện, cần đảm bảo các yêu cầu:

♣− Không thêm vào những tên hàm đã có hoặc thay đổi hoạt động của nó

♣− Chỉ thêm vào cuối cấu trúc dữ liệu đã có hoặc làm cho chúng có tính tuỳ chọn hay

được khởi tạo trong thư viện

♣− Không mở rộng cấu trúc dữ liệu sử dụng trong các mảng

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 164

 Xây dựng thư viện dùng chung hơi khác so với thư viện tĩnh, quá trình xây dựng thư viện

dùng chung được minh hoạ dưới đây:

� Khi biên dịch file đối tượng, sử dụng tùy chọn -fpic của gcc nó sẽ tạo ra mã độc lập vị trí

(position independence code) từ đó có thể liên kết hay sử dụng ở bất cứ chỗ nào.

� Không loại bỏ file đối tượng và không sử dụng các tùy chọn –fomit –frame -pointer của

gcc, vì nếu không sẽ ảnh hưởng đến quá trình gỡ rối (debug).

� Sử dụng tuỳ chọn -shared and –soname của gcc

� Sử dụng tuỳ chọn –Wl của gcc để truyền tham số tới trình liên kết ld.

� Thực hiện quá trình liên kết dựa vào thư viện C, sử dụng tuỳ chọn –l của gcc

 Trở lại thư viện xử lý lỗi, để tạo thư viện dùng chung trước hết xây dụng file đối tượng:
$ gcc -fPiC -g -c liberr.c -o liberr.o

 Tiếp theo liên kết thư viện:
$ gcc -g -shared -Wl,-soname,liberr.so -o liberr.so.1.0.0 liberr.o -lc

 Vì không thể cài đặt thư viện này như thư viện hệ thống trong /usr hay /usr/lib chúng ta

cần tạo 2 kiên kết, một cho soname:

 Và cho trình liên kết khi kết nối dựa vào liberr, sử dụng –lerr:
 $ ln -s liberr.so.1.0.0 liberr.so

 Bây giờ, để dử dụng thư viện dùng chung mới chúng ta quay lại chương trình kiểm tra,

chúng ta cần hướng trình liên kết tới thư viện nào để sử dụng và tìm nó ở đâu, vì vậy chúng ta

sẽ sử dụng tuỳ chọn –l và –L:
 $ gcc -g errtest.c -o errtest -L. -lerr

 Cuối cùng để chạy chưong trình, chúng ta cần chỉ cho ld.so nơi để tìm thư viện dùng

chung :
 $ LD_LIBRARY_PATH=$(pwd) ./errtest

Sử dụng đối tượng dùng chung theo cách động

 Một cách để sử dụng thư viện dùng chung là nạp chúng tự động mỗi khi chạy không

giống như nhũng thư viện liên kết và nạp một cách tự động. Ta có thể sử dụng giao diện dl

(dynamic loading) vì nó tạo sự linh hoạt cho lập trình viên hay người dùng.

 Giả sử ta đang tạo một ứng dụng sử lý đồ hoạ. Trong ứng dụng, ta biểu diễn dữ liệu ở

một dạng không theo chuNn nhưng lại thuận tiện cho ta xử lý, và ta cần có nhu cầu chuyển dữ

liệu đó ra các định dạng thông dụng đã có (số lượng các định dạng này có thể có hàng trăm loại)

hoặc đọc dữ liệu từ các định dạng mới này vào để xử lý. Để giải quyết vấn đề này ta có thể sử

dụng giải pháp là thư viện. N hưng khi có thêm một định dạng mới thì ta lại phải biên dịch lại

chương trình. Đây lại là một điều không thích hợp lắm. Khả năng sử dụng thư viện động sẽ giúp

Formatted: Bullets and Numbering

 165

ta giải quyết vấn đề vừa gặp phải. Giao diện dl cho phép tạo ra giao diện (các hàm) đọc và viết

chung không phụ thuộc vào định dạng của file ảnh. Để thêm hoặc sửa các định dạng của file

ảnh ta chỉ cần viết thêm một module để đảm nhận chức năng đó và báo cho chương trình ứng

dụng biết là có thêm một module mới bằng cách chỉ cần thay đổi một file cấu hình trong một

thư mục xác định nào đó.

 Giao diện dl (cũng đơn thuần được xây dựng như một thư viện - thư viện libdl) chứa các

hàm để tải (load), tìm kiếm và giải phóng (unload) các đối tượng chia sẻ. Để sử dụng các hàm

này ta thêm file <dlfcn.h> vào phần #include vào trong mã nguồn, và khi dịch thì liên kết nó

với thư viện libdl bằng cách sử dụng tham số và tên –ldl trong dòng lệnh dịch.

dl cung cấp 4 hàm xử lí các công việc cần thiết để tải, sử dụng và giải phóng đối tượng dùng

chung.
Truy cập đối tượng chia sẻ

 Để truy cập một đối tượng chia sẻ, dùng hàm dlopen() có đặc tả như sau:
void *dlopen(const char *filename, int flag);

dlopen() truy cập đối tượng chia sẻ bằng filename và bằng cờ. Filename có thể là đường dẫn

đầy đủ, tên file rút gọn hay N ULL. N ếu là N ULL dlopen() mở chương trình đang chạy, đó là

chương trình của bạn, nếu filename là đường dẫn dlopen() mở file đó, nếu là tên rút gọn

dlopen() sẽ tìm trong vị trí sau để tìm file:
$LD_ELF_LiBRARY_PATH,

$LD_LIBRARY_PATH, /etc/ld.so.cache, /usr/lib, và /lib.

 Cờ có thể là RTLD_LAZY, có nghĩa là các kí hiệu (symbol) hay tên hàm từ đối tượng

truy cập sẽ được tìm mỗi khi chúng được gọi, hoặc cờ có thể là RTLD_N OW, có nghĩa tất cả kí

hiệu từ đối tượng truy cập sẽ được tìm trước khi hàm dlopen() trả về. dlopen() trả điều khiển tới

đối tượng truy nhâp nếu nó tìm thấy từ filename hay trả về giá trị N ULL nếu không tìm thấy.

Sử dụng đối tượng chia sẻ

 Trước khi có thể sử dụng mã nguồn trong thư viện ta phải biết đang tìm cái gì và tìm ở

đâu. Hàm dlsym() sẽ giúp điều đó:
void *dlsym(void *handle, char *symbol);

dlsym() tìm kí hiệu hay tên hàm trong truy cập và trả lại con trỏ kiểu void tới đối tượng hay

 N ULL nếu không thành công.

Kiểm tra lỗi

 Hàm dlerror() sẽ giúp ta kiểm tra lỗi khi sử dụng đối tượng truy cập động:

const char *dlerror(void);

 166

 N ếu một trong các hàm lỗi, dlerror() trả về thông báo chi tiết lỗi và gán giá trị N ULL cho

phần bị lỗi.

Giải phóng đối tượng chia sẻ
 Để bảo vệ tài nguyên hệ thống đặc biệt bộ nhớ, khi ta sử dụng xong module trong một

đối tượng chia sẻ, thì giải phóng chúng. Hàm dlclose() sẽ đóng đối tượng chia sẻ:

 int dlclose(void *handle);

Sử dụng giao diện dl

 Để minh hoạ cách sử dụng dl,chúng ta quay lại thư viện xử lí lỗi, sử dụng một chương

trình khác như sau:
/*

* Mã nguồn chương trình dltest.c

* Dynamically load liberr.so and call err_ret()

*/

#include <stdio.h>

#include <stdlib.h>

#include <dlfcn.h>

 int main(void)

 {

 void *handle;

 void (*errfcn)();

 const char *errmsg;

 FILE *pf;

 handle = dlopen("liberr.so", RTLD_NOW);

 if(handle == NULL) {

 fprintf(stderr, "Failed to load liberr.so: %s\n", dlerror());

 exit(EXIT_FAILURE);

 }

 dlerror();

 errfcn = dlsym(handle, "err_ret");

 if((errmsg = dlerror()) != NULL) {

 fprintf(stderr, "Didn't find err_ret(): %s\n", errmsg);

 exit(EXIT_FAILURE);

 }

 if((pf = fopen("foobar", "r")) == NULL)

 errfcn("couldn't open foobar");

 dlclose(handle);

 return EXIT_SUCCESS;

 }

 167

Biên dịch ví dụ trên bằng lệnh
$ gcc -g -Wall dltest.c -o dltest -ldl

 N hư tacó thể thấy, chúng ta không liên kết dựa vào liberr hay liberr.h trong mã nguồn.

Tất cả truy cập tới liberr.so thông qua dl. Chạy chương trình bằng cách sau:
$ LD_LIBRARY_PATH=$(pwd) ./dltest

 N ếu thành công thì ta nhận được kết quả như sau:
couldn’t open foobar: No such file or directory

2.5 Các công cụ cho thư viện

Công cụ nm
 Lệnh nm liệt kê toàn bộ các tên hàm (symbol) được mã hoá trong file đối tượng (object)

và nhị phân (binary). Lệnh nm sử dụng cú pháp sau: nm [options] file

 Lệnh nm liệt kê những tên hàm chứa trong file. Bảng dưới liệt kê các tuỳ chọn của lệnh

nm:

Tuỳ chọn Miêu tả

-C| -demangle Chuyển tên ký tự vào tên mức người dùng để cho dễ đọc.

-s|-print-armap
Khi sử dụng các file lưu trữ (phần mở rộng là “.a”), in ra các chỉ số của

module chứa hàm đó.

-u| -undefined-only
Chỉ đưa ra các hàm không được định nghĩa trong file này, tức là các hàm

được định nghĩa ở một file khác.

- l | -line-numbers Sử dụng thông tin gỡ rối để in ra số dòng nơi hàm được định nghĩa.

Ví dụ: xem các hàm được mã hóa trong file nhị phân a.out (file nhị phân sau khi dịch

filedes_io.c)
bt Desktop # nm a.out

08049da4 d _DYNAMIC

08049e70 d_GLOBAL_OFFSET_TABLE_

08048be4 R _IO_stdin_used

 w _Jv_RegisterClasses

08049d94 d __CTOR_END__

08049d90 d __CTOR_LIST__

08049d9c d __DTOR_END__

08049d98 d __DTOR_LIST__

08048d8c r __FRAME_END__

08049da0 d __JCR_END__

08049da0 d __JCR_LIST__

08048be8 r __PRETTY_FUNCTION__.2764

 U__assert_fail@@GLIBC_2.0

08049ef8 A __bss_start

08049ebc D __data_start

08048b90 t __do_global_ctors_aux

080485f0 t __do_global_dtors_aux

08049ec0 D __dso_handle

08048b50 T __fstat

 U __fxstat@@GLIBC_2.0

 w __gmon_start__

08048b47 T

__i686.get_pc_thunk.bx

 168

08049d90 d __init_array_end

08049d90 d __init_array_start

08048ad0 T __libc_csu_fini

08048ae0 T __libc_csu_init

 U__libc_start_main@@GLIBC_2.0

08049ef8 A _edata

08049f0c A _end

08048bc4 T _fini

08048be0 R _fp_hw

08048470 T _init

080485a0 T _start

080485c4 t call_gmon_start

 U close@@GLIBC_2.0

08049ef8 b completed.5745

08049efc B data

08049ebc W data_start

 U fchmod@@GLIBC_2.0

 U fchown@@GLIBC_2.0

 U flock@@GLIBC_2.0

08048620 t frame_dummy

08048b50 W fstat

 U getuid@@GLIBC_2.0

08048644 T main

 U open@@GLIBC_2.0

08049ec4 d p.5743

 U perror@@GLIBC_2.0

 U printf@@GLIBC_2.0

 U puts@@GLIBC_2.0

 U read@@GLIBC_2.0

08049ec8 D sample1

08049edf D sample2

 U sleep@@GLIBC_2.0

 U write@@GLIBC_2.0

Công cụ ar

 Lệnh ar sử dụng cú pháp sau: ar {dmpqrtx} [thành viên] file

 Lệnh ar tạo, chỉnh sửa và trích các file lưu trữ. N ó thường được sử dụng để tạo các thư

viện tĩnh- những file mà chứa một hoặc nhiều file đối tượng chứa các chương trình con thường

được sử dụng (subrountine) ở định dạng tiền biên dịch (precompiled format), lệnh ar cũng tạo

và duy trì một bảng mà tham chiếu qua tên ký tự tới các thành viên mà trong đó chúng được

định nghĩa.
bt Desktop # ar a.out

ar: illegal option -- .

Usage: ar [emulation options] [-]{dmpqrstx}[abcfilNoPsSuvV] [member-

name] [count] archive-file file...

 ar -M [<mri-script]

 commands:

 d - delete file(s) from the archive

 m[ab] - move file(s) in the archive

 p - print file(s) found in the archive

 q[f] - quick append file(s) to the archive

 r[ab][f][u] - replace existing or insert new file(s) into the

archive

 t - display contents of archive

 x[o] - extract file(s) from the archive command specific modifiers:

 169

 [a] - put file(s) after [member-name]

 [b] - put file(s) before [member-name] (same as [i])

 [N] - use instance [count] of name

 [f] - truncate inserted file names

 [P] - use full path names when matching

 [o] - preserve original dates

 [u] -only replace files that are newer than current archive contents

eneric modifiers:

 [c] - do not warn if the library had to be created

 [s] - create an archive index (cf. ranlib)

 [S] - do not build a symbol table

 [v] - be verbose

 [V] - display the version number

 @<file> - read options from <file> emulation options:

 No emulation specific options

ar: supported targets: elf32-i386 a.out-i386-linux efi-app-ia32 elf64-

x86-64 elf64-little elf64-big elf32-little elf32-big srec symbolsrec

tekhex binary ihex trad-core

2.6 Biến môi trường và file cấu hình

 Chương trình tải (loader) và trình liên kết (linker) ld.so sử dụng 2 biến môi trường. Biến

thứ nhất là $LD_LIBRARY, chứa danh sách các thư mục chứa các file thư viện được phân cách

bởi dấu hai chấm để tìm ra các thư viện cần thiết khi chạy. N ó giống như biến môi trường

$PATH. Biến môi trường thứ hai là $LD_PRELOAD, một danh sách các thư viện được người

dùng thêm vào được phân cách nhau bởi khoảng trống (space).

 ld.so cũng cho phép sử dụng 2 file cấu hình mà có cùng mục đích với biến môi trường

được đề cập ở trên. File /etc/ld.so.conf chứa một danh sách các thư mục mà chương trình tải và

trình liên kết (loader/linker) nên tìm kiếm các thư viện chia sẻ bên cạnh /usr/lib và /lib.

/etc/ld.so.preload chứa danh sách các file thư viện được phân cách bằng một khoảng trống các

thư viện này là thư viện người dùng tạo ra.

2.7 Sử dụng gdb để gỡ lỗi

 Sử dụng gdb để gỡ lỗi khi biên dịch file nguồn c, cú pháp: # gdb fileName

 Bảng các lệnh cơ bản của gdb:

Lệnh Mô tả

file N ạp file thực thi sẽ được gỡ lỗi

 170

kill Kết thúc chương trình đang được gỡ lỗi.

list Liệt kê các đoạn của mã nguồn được sử dụng để tạo file thực thi.

next Tiến lên một dòng trong mã nguồn tại hàm hiện thời, không dùng để chuyển đến những

hàm khác.

step Tiến lên một dòng trong mã nguồn tại hàm hiện thời, có thể dùng để chuyển đến những

hàm khác.

run Thực thi chương trình đã được gỡ lỗi.

quit Kết thúc gdb.

watch Cho phép ta xem giá trị biến số của chương trình mỗi khi giá trị thay đổi.

break Thiết lập một điểm ngắt trong mã; cho phép chương trình ngừng làm việc gì đó mỗi khi

gặp điểm ngắt này.

make Cho phép thực thi lại chương trình mà không cần thoát khỏi gdb hoặc sử dụng cửa sổ

khác.

shell Cho phép thực thi lệnh Shell mà không cần ngừng gdb.

 171

CHƯƠNG 5: QUẢN LÝ TÀI NGUYÊN VÀ TRUYỀN THÔNG TRONG

LINUX
 Trong chương này phạm vi tìm hiểu “tài nguyên” gồm 3 nội dung là: Tiến trình, đĩa

cứng, người dùng hay nhóm người dùng.

1. Quản lý tiến trình

Trong Linux, bất cứ chương trình nào đang chạy đều được coi là một tiến trình. Có thể có
nhiều tiến trình cùng chạy một lúc. Ví dụ dòng lệnh ls -l | sort | more sẽ khởi tạo ba tiến trình:
ls, sort và more.

Hình 5.1Cấu trúc của một tiến trình trong Unix

Tiến trình có thể trải qua nhiều trạng thái khác nhau và tại một thời điểm một tiến trình rơi
vào một trong các trạng thái đó. Bảng dưới đây giới thiệu các trạng thái cơ bản của tiến trình
trong Linux.
Ký hiệu Ý nghĩa

D

R

S

T

Z

(uninterruptible sleep) ở trạng thái này tiến trình bị treo và không thể chạy lại nó

bằng một tín hiệu.

(runnable) trạng thái sẵn sàng thực hiện, tức là tiến trình có thể thực hiện được

nhưng chờ đến lượt thực hiện vì một tiến trình khác đang có CPU.

(sleeping) trạng thái tạm dừng, tức là tiến trình tạm dừng không hoạt động (20 giây

hoặc ít hơn)

(traced or stopped) trạng thái dừng, tiến trình có thể bị treo bởi một tiến trình ngoài

(zombie process) tiến trình đã kết thúc thực hiện, nhưng nó vẫn được tham chiếu

 172

W

<

N

L

trong hệ thống

không có các trang thường trú

tiến trình có mức ưu tiên cao hơn

tiến trình có mức ưu tiên thấp hơn

có các trang khóa bên trong bộ nhớ

 Sơ đồ biểu diễn các trạng thái và việc chuyển trạng thái trong UN IX được trình bày trong

hình dưới đây (Số hiệu trạng thái quá trình xem trong hình vẽ).

Hình 5.2 Sơ đồ trạng thái các tiến trình

 Khi quá trình được phát sinh nó ở trạng thái (8), tùy thuộc vào tình trạng bộ nhớ quá

trình được phân phối bộ nhớ trong (3) hay bộ nhớ ngoài (5). Trạng thái (3) thể hiện quá trình đã

sẵn sáng thực hiện, các thành phần của nó đã ở bộ nhớ trong chờ đợi CPU để thực hiện. Việc

thực hiện tiếp theo tùy thuộc vào trạng thái trước đó của nó. N ếu lần đầu phát sinh, nó cần đi tới

thực hiện mức nhân để hoàn thiện công việc lời gọi fork sẽ từ trạng thái (3) sang trạng thái (1),

trong trường hợp khác, từ trạng thái (3) nó đi tới trạng thái chờ dợi CPU ở mức người dùng (7).

Trong trạng thái thực hiện ở mức người dùng (1), quá trình đi tới trạng thái (2) khi gặp lời gọi

hệ thống hoặc hiện tượng ngắt xảy ra. Từ trạng thái (1) tới trạng thái (7) khi hết lượng tử thời

gian.

 Trạng thái (4) là trạng thái chờ đợi trong bộ nhớ còn trạng thái (6) thể hiện việc chờ đợi

trong bộ nhớ ngoài.

Thực hiện mức
nhân (2)

Thực hiện mức
người dùng (1)

Sẵn sàng sang mức
người dùng (7)

Hoàn thiện
(9)

Chờ đợi thiếu tài
nguyên (4) Sẵn sàng thực

hiện (3)

Chờ đợi ở bộ nhớ
ngoài (6)

Quá trình
phát sinh

(8) Đợi bộ nhớ để
thực hiện (5)

 173

 Cung chuyển từ trạng thái (2) vào ngay trạng thái (2) xảy ra khi ở quá trình ở trạng thái

thực hiện mức nhân, nhân hệ thống gọi các hàm xử lý ngắt tương ứng.

2. Các lệnh cơ bản trong quản lý tiến trình

2.1 Sử dụng lệnh ps trong quản lý tiến trình

 Linux cung cấp cho người dùng hai cách thức nhận biết có những chương trình nào đang

chạy trong hệ thống. Cách dễ hơn, đó là lệnh jobs sẽ cho biết các quá trình nào đã dừng hoặc là

được chạy trong chế độ nền.

 Cách phức tạp hơn là sử dụng lệnh ps. Lệnh này cho biết thông tin đầy đủ nhất về các

quá trình đang chạy trên hệ thống.

Ví dụ:
ps

PID TTY TIME CMD

7813 pts/0 00:00:00 bash

7908 pts/0 00:00:00 ps

 (PID - chỉ số của tiến trình, TTY - tên thiết bị đầu cuối trên đó tiến trình được thực hiện,

TIME - thời gian để chạy tiến trình, CMD - lệnh khởi tạo tiến trình).

 Cú pháp lệnh ps: ps [tùy-chọn]

 Lệnh ps có một lượng quá phong phú các tùy chọn được chia ra làm nhiều loại. Dưới đây

là một số các tùy chọn hay dùng.

 Các tùy chọn đơn giản:

♣− A, -e : chọn để hiển thị tất cả các tiến trình.

♣− T : chọn để hiển thị các tiến trình trên trạm cuối đang chạy.

♣− a : chọn để hiển thị tất cả các tiến trình trên một trạm cuối, bao gồm cả các tiến

trình của những người dùng khác.

♣− r : chỉ hiển thị tiến trình đang được chạy.

� Chọn theo danh sách:

♣− C : chọn hiển thị các tiến trình theo tên lệnh.

♣− G : hiển thị các tiến trình theo chỉ số nhóm người dùng.

♣− U : hiển thị các tiến trình theo tên hoặc chỉ số của người dùng thực sự (người

dùng khởi động tiến trình).

♣− p : hiển thị các tiến trình theo chỉ số của tiến trình.

♣− s : hiển thị các tiến trình thuộc về một phiên làm việc.

Formatted: Bullets and Numbering

 174

♣− t : hiển thị các tiến trình thuộc một trạm cuối.

♣− u : hiển thị các tiến trình theo tên và chỉ số của người dùng hiệu quả.

� Thiết đặt định dạng được đưa ra của các tiến trình:

♣− f : hiển thị thông tin về tiến trình với các trường sau UID - chỉ số người dùng, PID

- chỉ số tiến trình, PPID - chỉ số tiến trình khởi tạo ra tiến trình, C - , STIME - thời gian

khởi tạo tiến trình, TTY - tên thiết bị đầu cuối trên đó tiến trình được chạy, TIME - thời

gian để thực hiện tiến trình, CMD - lệnh khởi tạo tiến trình

♣− l : hiển thị đầy đủ các thông tin về tiến trình với các trường F, S, UID, PID, PPID,

C, PRI, N I, ADDR, SZ, WCHAN , TTY, TIME, CMD

♣− o xâu-chọn : hiển thị các thông tin về tiến trình theo dạng do người dùng tự chọn

thông qua xâu-chọn các kí hiệu điều khiển hiển thị có các dạng như sau:
%C, %cpu % CPU được sử dụng cho tiến trình

%mem % bộ nhớ được sử dụng để chạy tiến trình

%G tên nhóm người dùng

%P chỉ số của tiến trình cha khởi động ra tiến trình con

%U định danh người dùng

%c lệnh tạo ra tiến trình

%p chỉ số của tiến trình

%x thời gian để chạy tiến trình

%y thiết bị đầu cuối trên đó tiến trình được thực hiện

Ví dụ: muốn xem các thông tin như tên người dùng, tên nhóm, chỉ số tiến trình, chỉ số tiến trình

khởi tạo ra tiến trình, tên thiết bị đầu cuối, thời gian chạy tiến trình, lệnh khởi tạo tiến trình, hãy

gõ lệnh:
ps -o '%U %G %p %P %y %x %c'

USER GROUP PID PPID TTY TIME COMMAND

root root 1929 1927 pts/1 00:00:00 bash

root root 2279 1929 pts/1 00:00:00 ps

2.2 Hủy một tiến trình sử dụng lệnh kill

 Trong một số trường hợp, sử dụng lệnh kill để hủy bỏ một tiến trình. Điều quan trọng

nhất khi sử dụng lệnh kill là phải xác định được chỉ số của tiến trình mà chúng ta muốn hủy.

 Cú pháp lệnh: kill [tùy-chọn] <chỉ-số-của-tiến-trình>

 kill -l [tín hiệu]

 Lệnh kill sẽ gửi một tín hiệu đến tiến trình được chỉ ra. N ếu không chỉ ra một tín hiệu

nào thì ngầm định là tín hiệu TERM sẽ được gửi.

 Một số tùy chọn:

 175

− s xác định tín hiệu được gửi. Tín hiệu có thể là số hoặc tên của tín hiệu. Dưới đây là một

số tín hiệu hay dùng:

Số Tên Ý nghĩa

1 SIGHUP (hang up) đây là tín hiệu được gửi đến tất cả các tiến trình đang

chạy trước khi logout khỏi hệ thống

2 SIGIN T (interrupt) đây là tín hiệu được gửi khi nhấn CTRL+c

9 SIGKILL (kill) tín hiệu này sẽ dừng tiến trình ngay lập tức

15 SIGTERM tín hiệu này yêu cầu dừng tiến trình ngay lập tức, nhưng cho

phép chương trình xóa các file tạm.

− p lệnh kill sẽ chỉ đưa ra chỉ số của tiến trình mà không gửi một tín hiệu nào.

− l hiển thị danh sách các tín hiệu mà lệnh kill có thể gửi đến các tiến trình (các tín hiệu

này có trong file /usr/include/Linux/signal.h)

Ví dụ:
 # ps

 PID TTY TIME CMD

 2240 pts/2 00:00:00 bash

 2276 pts/2 00:00:00 man

 2277 pts/2 00:00:00 more

 2280 pts/2 00:00:00 sh

 2281 pts/2 00:00:00 sh

 2285 pts/2 00:00:00 less

 2289 pts/2 00:00:00 man

 2291 pts/2 00:00:00 sh

 2292 pts/2 00:00:00 gunzip

 2293 pts/2 00:00:00 less

 # kill 2277

 PID TTY TIME CMD

 2240 pts/2 00:00:00 bash

 2276 pts/2 00:00:00 man

 2280 pts/2 00:00:00 sh

 2281 pts/2 00:00:00 sh

 2285 pts/2 00:00:00 less

 2289 pts/2 00:00:00 man

 2291 pts/2 00:00:00 sh

 2292 pts/2 00:00:00 gunzip

 2293 pts/2 00:00:00 less

 176

2.3 Cho máy ngừng hoạt động một thời gian với lệnh sleep

 N ếu muốn cho máy nghỉ một thời gian mà không muốn tắt vì ngại khởi động lại thì cần
dùng lệnh sleep.
 Cú pháp: sleep [tuỳ-chọn]... NUMBER[SUFFIX]

− N UMBER: số giây(s) ngừng hoạt động.

− SUFFIX : có thể là giây(s) hoặc phút(m) hoặc giờ hoặc ngày(d)

 Các tùy chọn:

− -help hiện thị trợ giúp và thoát

− - version hiển thị thông tin về phiên bản và thoát

2.4 Xem cây tiến trình với lệnh pstree

 Đã biết lệnh để xem các tiến trình đang chạy trên hệ thống, tuy nhiên trong Linux còn có

một lệnh cho phép có thể nhìn thấy mức độ phân cấp của các tiến trình, đó là lệnh pstree.

 Cú pháp lệnh: pstree [tùy-chọn] [pid | người-dùng]

 Lệnh pstree sẽ hiển thị các tiến trình đang chạy dưới dạng cây tiến trình. Gốc của cây

tiến trình thường là init. N ếu đưa ra tên của một người dùng thì cây của các tiến trình do người

dùng đó sở hữu sẽ được đưa ra.

 pstree thường gộp các nhánh tiến trình trùng nhau vào trong dấu ngoặc vuông, ví dụ:
 nit -+-getty

 |-getty

 |-getty

 |-getty

thành

 init ---4*[getty]

− a chỉ ra tham số dòng lệnh. N ếu dòng lệnh của một tiến trình được tráo đổi ra bên ngoài,

nó được đưa vào trong dấu ngoặc đơn.

− c không thể thu gọn các cây con đồng nhất. Mặc định, các cây con sẽ được thu gọn khi

có thể

− h hiển thị tiến trình hiện thời và "tổ tiên" của nó với màu sáng trắng

− H giống như tùy chọn -h, nhưng tiến trình con của tiến trình hiện thời không có màu

sáng trắng

 177

− l hiển thị dòng dài.

− n sắp xếp các tiến trình cùng một tổ tiên theo chỉ số tiến trình thay cho sắp xếp theo tên

Ví dụ:

pstree

init-+-apmd

 |-atd

 |-automount

 |-crond

 |-enlightenment

 |-gdm-+-X

 | `-gdm---gnome-session

 |-gen_util_applet

 |-gmc

 |-gnome-name-serv

 |-gnome-smproxy

 |-gnomepager_appl

 |-gpm

 |-identd---identd---3*[identd]

 |-inetd

 |-kflushd

 |-klogd

 |-kpiod

 |-kswapd

 |-kupdate

 |-lockd---rpciod

 |-login---bash---mc-+-bash-+-cat

 | | |-passwd

 | | `-pstree

 | `-cons.saver

 |-lpd

 |-mdrecoveryd

 |-5*[mingetty]

 |-panel

 |-portmap

 |-rpc.statd

 |-sendmail

 |-syslogd

 `-xfs

 178

2.5 Lệnh thiết đặt lại độ ưu tiên của tiến trình nice và lệnh renice

 N goài các lệnh xem và hủy bỏ tiến trình, trong Linux còn có hai lệnh liên quan đến độ

ưu tiên của tiến trình, đó là lệnh nice và lệnh renice.

 Để chạy một chương trình với độ ưu tiên định trước, hãy sử dụng lệnh nice.

 Cú pháp lệnh: nice [tùy-chọn] [lệnh [tham-số]...]

 Lệnh nice sẽ chạy một chương trình (lệnh) theo độ ưu tiên đã sắp xếp. N ếu không có

lệnh, mức độ ưu tiên hiện tại sẽ hiển thị. Độ ưu tiên được sắp xếp từ -20 (mức ưu tiên cao nhất)

đến 19 (mức ưu tiên thấp nhất).

♣− ADJUST : tăng độ ưu tiên theo ADJUST đầu tiên

♣− - help : hiển thị trang trợ giúp và thoát

 Để thay đổi độ ưu tiên của một tiến trình đang chạy, hãy sử dụng lệnh renice.

 Cú pháp lệnh: renice <độ-ưu-tiên> [tùy-chọn]

 Lệnh renice sẽ thay đổi mức độ ưu tiên của một hoặc nhiều tiến trình đang chạy.

♣− g : thay đổi quyền ưu tiên theo nhóm người dùng

♣− p : thay đổi quyền ưu tiên theo chỉ số của tiến trình

♣− u : thay đổi quyền ưu tiên theo tên người dùng

Ví dụ:
renice +1 987 -u daemon root -p 32

lệnh trên sẽ thay đổi mức độ ưu tiên của tiến trình có chỉ số là 987 và 32, và tất cả các tiến trình

do người dùng daemon và root sở hữu.

2.6 Lệnh fg và lệnh bg

 Linux cho phép người dùng sử dụng tổ hợp phím CTRL+z để dừng một quá trình và

khởi động lại quá trình đó bằng cách gõ lệnh fg. Lệnh fg (foreground) tham chiếu đến các

chương trình mà màn hình cũng như bàn phím đang làm việc với chúng.

 Ví dụ, người dùng đang xem trang man của lệnh sort, nhìn xuống cuối thấy có tùy chọn -

b, muốn thử tùy chọn này đồng thời vẫn muốn xem trang man. Thay cho việc đánh q để thoát

và sau đó chạy lại lệnh man, cho phép người dùng gõ CTRL+z để tạm dừng lệnh man và gõ

lệnh thử tùy chọn -b. Sau khi thử xong, hãy gõ fg để tiếp tục xem trang man của lệnh sort. Kết

quả của quá trình trên hiển thị như sau:
man sort | more

SORT(1) FSF SORT(1)

NAME

sort - sort lines of text Files

SYNOPSIS

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 179

 ../src/sort [OPTION] ... [Files]...

DESCRIPTION

Write sorted concatenation of all FILE(s) to standard out-put.

 +POS1 [-POS2]

start a key at POS1,end it *before* POS2 obsoles-cent)field numbers

and character offsets are num-bered starting with zero(contrast with

the -k option)

-b ignore leading blanks in sort fields or keys

 --More--

(CTRL+z)

[1]+ Stopped man sort | more

ls -s | sort -b | head -4

 1 Archives/

 1 InfoWorld/

 1 Mail/

 1 News/

 1 OWL/

fg

 man sort | more

 --More--

 Trong phần trước, cách thức gõ phím CTRL+z để tạm dừng một quá trình đã được giới

thiệu. Linux còn người dùng cách thức để chạy một chương trình dưới chế độ nền (background)

- sử dụng lệnh bg - trong khi các chương trình khác đang chạy, và để chuyển một chương trình

vào trong chế độ nền - dùng ký hiệu &.

 N ếu một tiến trình hoạt động mà không đưa ra thông tin nào trên màn hình và không cần

nhận bất kỳ thông tin đầu vào nào, thì có thể sử dụng lệnh bg để đưa nó vào trong chế độ nền (ở

chế độ này nó sẽ tiếp tục chạy cho đến khi kết thúc).

 Khi chương trình cần đưa thông tin ra màn hình hoặc nhận thông tin từ bàn phím, hệ

thống sẽ tự động dừng chương trình và thông báo cho người dùng. Cũng có thể sử dụng chỉ số

điều khiển công việc (job control) để làm việc với chương trình nào muốn. Khi chạy một

chương trình trong chế độ nền, chương trình đó được đánh số thứ tự (được bao bởi dấu ngoặc

vuông []), theo sau là chỉ số của quá trình.

 Sau đó có thể sử dụng lệnh fg + số thứ tự của chương trình để đưa chương trình trở lại

chế độ nổi và tiếp tục chạy.

 180

 Để có một chương trình (hoặc một lệnh ống) tự động chạy trong chế độ nền, chỉ cần

thêm ký hiệu '&' vào cuối lệnh.

 Trong một số hệ thống, khi tiến trình nền kết thúc thì hệ thống sẽ gửi thông báo tới người

dùng, nhưng trên hầu hết các hệ thống, khi quá trình trên nền hoàn thành thì hệ thống sẽ chờ

cho đến khi người dùng gõ phím Enter thì mới hiển thị dấu nhắc lệnh mới kèm theo thông báo

hoàn thành quá trình (thường thì một tiến trình hoàn thành sau khoảng 20 giây).

 N ếu cố để chuyển một chương trình vào chế độ nền mặc dù nó có các thông tin cần xuất

hoặc nhập từ các thiết bị vào ra chuNn thì hệ thống sẽ đưa ra thông báo lỗi dưới dạng sau:
 Stopped (tty input/output) tên chương trình.

 Ví dụ, lệnh sau đây thực hiện việc tìm kiếm file thu1 trong chế độ nền:
find -name thu1 &

[5] 918

trong chế độ này, số thứ tự của chương trình là [5], chỉ số quá trình tương ứng với lệnh find là

918. Vì gõ Enter khi quá trình chưa thực hiện xong nên trên màn hình chỉ hiển thị số thứ tự của

chương trình và chỉ số quá trình, nếu chờ khoảng 30 hoặc 40 giây sau rồi gõ Enter lần nữa, màn

hình hiển thị thông báo hoàn thành chương trình như sau:

[5] Done find -name thu1

Giả sử chương trình chưa hoàn thành và muốn chuyển nó lên chế độ nổi, hãy gõ lệnh sau:
fg 5

find -name thu1

./thu1

chương trình đã hoàn thành và hiển thị thông báo rằng file thu1 nằm ở thư mục gốc.

 Thông thường sẽ đưa ra một thông báo lỗi nếu người dùng cố chuyển một chương trình

vào chế độ nền khi mà chương trình đó cần phải xuất hoặc nhập thông tin từ thiết bị vào ra

chuNn. Ví dụ, lệnh:
vi &

[6] 920

nhấn Enter

[6] + Stopped (tty output) vi

 181

 Lệnh trên chạy chương trình vi trong chế độ nền, tuy nhiên lệnh gặp phải lỗi vì đây là

chương trình đòi hỏi hiển thị các thông tin ra màn hình (output). Dòng thông báo lỗi Stopped

(tty intput) vi cũng xảy ra khi chương trình vi cần nhận thông tin.

3. Quản lý trị hệ thống

3.1 Khởi động và đóng tắt hệ thống

 Khi một máy PC bắt đầu khởi động, bộ vi xử lý sẽ tìm đến cuối vùng bộ nhớ hệ thống

của BIOS và thực hiện các chỉ thị ở đó.

 BIOS sẽ kiểm tra hệ thống, tìm và kiểm tra các thiết bị, và tìm kiếm đĩa chứa trình khởi

động. Thông thường, BIOS sẽ kiểm tra ổ đĩa mềm, hoặc CDROM xem có thể khởi động từ

chúng được không, rồi đến đĩa cứng. Thứ tự của việc kiểm tra các ổ đĩa phụ thuộc vào các cài

đặt trong BIOS.

 Khi kiểm tra ổ đĩa cứng, BIOS sẽ tìm đến MBR và nạp vào vùng nhớ hoạt động chuyển

quyền điều khiển cho nó.

 MBR chứa các chỉ dẫn cho biết cách nạp trình quản lý khởi động GRUB/LILO cho

Linux hay N TLDR cho Windows N T/2000. MBR sau khi nạp trình quản lý khởi động, sẽ

chuyển quyền điều khiển cho trình quản lý khởi động.

Trình quản lý khởi động sẽ cho hiện trên màn hình một danh sách các tùy chọn để người dùng

xử lý xem nên khởi động hệ điều hành nào.

 Các chỉ dẫn cho việc nạp hệ điều hành thích hợp được ghi rõ trong các tập tin cấu hình

tương ứng với các trình quản lý khởi động.

− LILO lưu cấu hình trong tập tin /etc/lilo.conf

− GRUB lưu trong tập tin /boot/grub/grub.conf

− N TLDR lưu trong c:\boot.ini

3.2 Tìm hiểu về trình nạp Linux

 LILO là một boot manager nằm trọn gói chung với các bản phát hành Red Hat, và là

boot manager mặc định cho Red Hat 7.1 trở về trước.

Thiết lập cấu hình LILO:

 LILO đọc thông tin chứa trong tập tin cấu hình /etc/lilo.conf để biết xem hệ thống máy ta

có những hệ điều hành nào, và các thông tin khởi động nằm ở đâu. LILO được lập cấu hình để

 182

khởi động một đoạn thông tin trong tập tin /etc/lilo.conf cho từng hệ điều hành. Sau đây là ví dụ

về tập tin /etc/lilo.conf
 Boot=/dev/hda

 Map=/boot/map

 Install=/boot/boot.b

 Prompt

 Timeout=50

 Message=/boot/message

 Lba32

 Default=linux

 Image=/boot/vmlinuz-2.4.0-0.43.6

 Label=linux

 Initrd=/boot/initrd-2.4.0-0.43.6.img

 Read-only

 Root=/dev/hda5

 Other=/dev/hda1

 Label=dos

Đoạn thứ nhất:

− Cho biết LILO cần xem xét vào MBR (boot=/dev/hda1)

− Kiểm tra tập tin map

− N ó còn cho biết LILO có thể cài đặt một tập tin đặc biệt (/boot/boot.b) như là một sector

khởi động mới

− Thời gian chờ trước khi nạp hệ điều hành mặc định (default=xxx) được khai báo thông

qua dòng timeout=50 (5 giây) ? thời gian tính bằng 1/10 của giây.

− N ạp thông tin trong quá trình khởi động từ tập tin /boot/message

− Dòng LBA32 cho biết cấu hình của đĩa cứng: cho biết đĩa cứng của ta hỗ trợ LBA32,

thông thường dòng này có giá trị linear (ta không nên đổi lại dòng này nếu ta không hiểu

rõ ổ đĩa cứng của ta, ta có thể tìm hiểu đĩa cứng của ta có hỗ trợ LBA32 hay không bằng

cách xem trong BIOS)

Đoạn thứ hai:

− Cung cấp thông tin khởi động cho hệ điều hành linux

− Dòng image báo cho LILO biết vị trí của kernel Linux

− Dòng label hiện diện ở cả 2 đoạn cho biết tên của hệ điều hành nào sẽ xuất hiện tại trình

đơn khởi động của LILO.

 183

− Dòng root xác định vị trí root file system của Linux

Đoạn thứ ba:

− Dòng other cho biết partition của một hệ điều hành nữa đang ở hda1 của ổ đĩa cứng.

3.3 Tìm hiểu GRUB, trình nạp Linux.

 Định nghĩa: GRUB cũng chỉ là một trình quản lý khởi động tương tự LILO.

 Tập tin cấu hình GRUB: N hư trên, ta thấy thông thường sẽ có 3 đoạn cơ bản.

Đoạn thứ nhất: mô tả các chỉ thị tổng quát như :

− Hệ điều hành mặc định (default)

− Thời gian chờ đợi người dùng nhập dữ liệu trước khi thực hiện lệnh mặc định

(timeout=10), tính bằng giây.

− Ta cũng có thể chọn màu để hiển thị trình đơn (color green/black light-gray/blue)

Đoạn thứ hai: cho biết các thông số để khởi động hệ Linux:

− Tiêu đề trên trình đơn là Red Hat Linux (title)

− Hệ điều hành này sẽ khởi động từ partition đầu tiên của ổ đĩa thứ nhất ? root (hda0,0:ổ

đĩa thứ nhất, partition thứ nhất). Và cần phải mount partition này trước.

− Tập tin vmlinuz đang được chứa trong thư mục root và filesystem root đang nằm trên

partition thứ năm của đĩa cứng thứ nhất (/dev/hdc5)

− Dòng lệnh boot nhắc phải nạp ngay hệ điều hành đã được khai báo ở trên.

Đoạn thứ ba: cho biết các thông số về hệ điều hành thứ hai đang được cài đặt trong hệ thống.

− Tiêu đề là Windows

− Hệ điều hành đang chiếm partition thứ nhất của ổ đĩa thứ hai (hda1,0). Có điều với lệnh

rootnoverify, GRUB không cần chú ý kiểm tra xem partition này có được mount hay

không.

− Câu lệnh chainloader + 1 đã sử dụng +1 làm tên tập tin cần khởi động như một mắc xích

trong tiến trình: +1 có nghĩa là sector thứ nhất của partition đang xét ta có thể dùng lệnh

man grub.conf để tìm hiểu thêm về tập tin cấu hình này.

3.4 Quá trình khởi động

 Sau khi ta bật máy, máy sẽ nạp boot loader (lilo or grub), boot loader nạp file boot image

để khởi tạo hệ điều hành, sau đó hệ điều hành kiểm tra các thiết bị phần cứng, hệ điều hành bắt

đầu kiểm tra partition, mount các file system cần thiết cho hệ thống, tiếp theo nó đọc tập tin

/etc/inittab để chọn default runlevel, khởi tạo các deamon, cuối cùng yêu cầu người dùng logon

 184

vào trước khi sử dụng hệ thống, sau khi log on bằng username và password, hệ thống sẽ chạy

chương trình shell (hoặc chạy X Windows) để giao tiếp với người dùng.

4. Quản trị người dùng
 Trong môi trường nhiều người cùng làm việc trên hệ thống, cùng sử dụng, chia sẻ các tài

nguyên như bộ nhớ, đĩa cứng, máy in và các thiết bị khác. Chính sách quản lý người dùng tốt sẽ

là chìa khóa cho hoạt động hiệu quả của hệ thống.

4.1 Superuser (root)

 Các hệ thống máy chủ đều có account quản trị, ví như N T có account administrator,

N ovell có admin. Đây là account có quyền cao nhất, dùng cho người quản trị quản lý, giám sát

hệ thống. Trong quá trình cài đặt Linux chúng ta khởi tạo người sử dụng root cho hệ thống. Đây

là superuser, tức là người sử dụng đặc biệt có quyền không giới hạn. Sử dụng quyền root chúng

ta thấy rất thoải mái vì chúng ta có thể làm được thao tác mà không phải lo lắng gì đến xét

quyền thâm nhập này hay khác.

 Tuy nhiên, khi hệ thống bị sự cố do một lỗi lầm nào đó, chúng ta mới thấy sự nguy hiểm

khi làm việc như root. Do vậy chúng ta chỉ sử dụng account này vào các mục đích cấu hình, bảo

trì hệ thống chứ không nên sử dụng vào mục đích hằng ngày.

 Ta cần tạo các tài khoản (account) cho người sử dụng thường sớm nhất có thể được (đầu

tiên là cho bản thân ta). Với những server quan trọng và có nhiều dịch vụ khác nhau, thậm chí ta

có thể tạo ra các superuser thích hợp cho từng dịch vụ để tránh dùng root cho các công tác này.

Ví dụ như superuser cho công tác backup chỉ cần chức năng đọc (read-only) mà không cần chức

năng ghi.

Account root

 Tài khoản này có quyền hạn rất lớn nên nó là mục tiêu mà các kẻ xấu muốn chiếm đoạt.

Chúng ta sử dụng nó phải cNn thận, không sử dụng bừa bãi trên qua telnet hay kết nối từ xa mà

không có công cụ kết nối an toàn.

 Trong Linux, chúng ta có thể tạo các user có tên khác có quyền của root, bằng cách tạo

user có UserID bằng 0.

Cần phân biệt ta đang login như root hay người sử dụng thường thông qua dấu nhắc của shell.
login: natan

Password:

Last login: Wed Mar 13 19:00:42 2002 from 172.29.8.3

[natan@NetGroup natan]$ su -

 185

Password:

[root@NetGroup /root]#

 Dòng thứ tư với dấu $ cho thấy ta đang kết nối như một người sử dụng thường (tnminh).

 Dòng cuối cùng với dấu # cho thấy ta đang thực hiện các lệnh với root.

 # su user_name (trong ubuntu sử dụng lệnh #sudo su user_name)

 Cho phép ta thay đổi login dưới một user khác (user_name) mà không phải logout rồi

login lại.

4.2 Tài khoản người dùng

 Mọi người muốn đăng nhập và sử dụng hệ thống Linux đều cần có 1 account. Việc tạo ra

và quản lý account người dùng là vấn đề quan trọng mà người quản trị phải thực hiện. Trừ

account root, các account khác do người quản trị tạo ra.

 Mỗi tài khoản người dùng phải có một tên sử dụng (username), một mật khNu (password)

riêng để người quản trị dễ dàng quản lý hoạt động của người dùng cũng như tăng cường tính an

toàn cho hệ thống. Tập tin /etc/passwd là tập tin chứa các thông tin về tài khoản người dùng của

hệ thống.

Tập tin /etc/passwd

 Tập tin /etc/passwd đóng vai trò sống còn đối với một hệ thống Unix/Linux. Mọi người

đều có thể đọc được tập tin này nhưng chỉ có root mới có quyền thay đổi nó. Tập tin

/etc/passwd được lưu dưới dạng text như đại đa số các tập tin cấu hình của Unix/Linux.
[natan@NetGroup natan]$ more /etc/passwd

root:x:0:0:root:/root:/bin/bash

bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:

halt:x:7:0:halt:/sbin:/sbin/halt

mail:x:8:12:mail:/var/spool/mail:

news:x:9:13:news:/var/spool/news:

ftp:x:14:50:FTP User:/var/ftp:

nobody:x:99:99:Nobody:/:

nscd:x:28:28:NSCD Daemon:/:/bin/false

mailnull:x:47:47::/var/spool/mqueue:/dev/null

rpcuser:x:29:29:RPC Service User:/var/lib/nfs:/bin/false

xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false

nthung:x:525:526:nguyen tien hung:/home/nthung:/bin/bash

natan:x:526:527::/home/natan:/bin/bash

 186

 Mỗi user được lưu trong một dòng gồm 7 cột:

− Cột 1 : tên người sử dụng.

− Cột 2 : mã liên quan đến passwd cho Unix chuNn và ?x? đối với Linux. Linux lưu mã này

trong một tập tin khác /etc/shadow mà chỉ có root mới có quyền đọc.

− Cột 3:4 : user ID:group ID.

− Cột 5 : tên đầy đủ của người sử dụng. Một số phần mềm phá password sử dụng dữ liệu

của cột này để thử đoán password.

− Cột 6 : thư mục cá nhân.

− Cột 7 : chương trình sẽ chạy đầu tiên sau khi login (thường là shell) cho user.

 Tập tin mở đầu bởi superuser root. Chú ý là tất cả những user có user ID = 0 đều là root.

 Tiếp theo là các user hệ thống. Đây là các user không có thật và không thể login vào hệ

thống. Cuối cùng là các user bình thường.

Tên người dùng và định danh người dùng (Username và User ID)

 Tên người dùng là chuỗi ký tự xác định duy nhất một người dùng. N gười dùng tên này

khi đăng nhập cũng như truy xuất tài nguyên.

 Trong linux tên phân biệt chữ hoa, thường. Thông thường tên người dùng thường sử

dụng chữ thường.

 Để quản lý người dùng linux sử dụng khái niệm định danh người dùng (user ID). Mỗi

người dùng mang một con số định danh cho mình.

 Linux sử dụng số định danh để kiểm soát hoạt động của người dùng. Theo qui định

chung các người dùng có định danh là 0 là người dùng quản trị (root). Các số định danh từ 1- 99

sử dụng cho các tài khoản hệ thống, định danh của người dùng bình thường sử dụng giá trị bắt

đầu từ 100.

Mật khẩu (Password)

 Mỗi người dùng phải có một mật khNu riêng để sử dụng tài khoản người dùng của mình.

Mọi người đều có quyền đổi mật khNu của chính mình. N gười quản trị thì có thể đổi mật khNu

của những người khác.

 Unix/Linux truyền thống lưu các thông tin liên quan tới mật khNu để đăng nhập (login) ở

trong /etc/passwd. Tuy nhiên, do đây là tập tin phải đọc được bởi tất cả mọi người do một số

yêu cầu cho hoạt động bình thường của hệ thống (như chuyển User ID thành tên khi hiển thị

trong lệnh ls chẳng hạn) và nhìn chung các user đặt mật khNu ?yếu?, do đó, hầu hết các phiên

bản Unix mới đều lưu mật khNu trong một tập tin khác /etc/shadow và chỉ có root được quyền

đọc tập tin này.

 187

Chú ý: Theo cách xây dựng mã hóa mật khNu, chỉ có 2 cách phá mật khNu là vét cạn (brute

force) và đoán. Phương pháp vét cạn, theo tính toán chặt chẽ, là không thể thực hiện nổi vì đòi

hỏi thời gian tính toán quá lớn, còn đoán thì chỉ tìm ra những mật khNu ngắn, hoặc ?yếu?, ví dụ

như những từ tìm thấy trong từ điển như god, darling ?

Group ID

 Định danh của nhóm mà user này là một thành viên của nhóm.

Comment

 Dòng chú thích về user này.

Home Directory

 Khi người dùng login vào hệ thống được đặt làm việc tại thư mục cá nhân của mình.

Thường thì mỗi người có một thư mục cá nhân riêng, người dùng có toàn quyền trên nó, nó

dùng chứa dữ liệu cá nhân và các thông tin hệ thống cho hoạt động của người dùng như biến

môi trường, script khởi động, profile khi sử dụng X window ?

 Thư mục mặc nhiên sử dụng cho các thư mục cá nhân của người dùng bình thường là

/home; cho root là /root. Tuy nhiên chúng ta cũng có thể đặt vào vị trí khác.

4.3 Thêm người dùng với lệnh useradd

 N gười quản trị hệ thống sử dụng lệnh useradd (trong một số phiên bản là adduser) để tạo

một người dùng mới hoặc cập nhật ngầm định các thông tin về người dùng.

 Cú pháp lệnh: useradd [tùy-chọn] <tên-người-dùng>
 useradd -D [tùy-chọn]

 N ếu không có tùy chọn -D, lệnh useradd sẽ tạo một tài khoản người dùng mới sử dụng

các giá trị được chỉ ra trên dòng lệnh và các giá trị mặc định của hệ thống. Tài khoản người

dùng mới sẽ được nhập vào trong các file hệ thống, thư mục cá nhân sẽ được tạo, hay các file

khởi tạo được sao chép, điều này tùy thuộc vào các tùy chọn được đưa ra.

 Các tùy chọn như sau:

− c, comment soạn thảo trường thông tin về người dùng.

− d, home_dir tạo thư mục đăng nhập cho người dùng.

− e, expire_date thiết đặt thời gian (YYYY-MM-DD) tài khoản người dùng sẽ bị hủy bỏ.

− f, inactive_days tùy chọn này xác định số ngày trước khi mật khNu của người dùng hết

hiệu lực khi tài khoản bị hủy bỏ. N ếu =0 thì hủy bỏ tài khoản người dùng ngay sau khi

mật khNu hết hiệu lực, =-1 thì ngược lại (mặc định là -1).

 188

− g, initial_group tùy chọn này xác định tên hoặc số khởi tạo đăng nhập nhóm người dùng.

Tên nhóm phải tồn tại, và số của nhóm phải tham chiếu đến một nhóm đã tồn tại. Số

nhóm ngầm định là 1.

− G, group danh sách các nhóm phụ mà người dùng cũng là thành viên thuộc các nhóm

đó. Mỗi nhóm sẽ được ngăn cách với nhóm khác bởi dấu ',', mặc định người dùng sẽ

thuộc vào nhóm khởi tạo.

− m với tùy chọn này, thư mục cá nhân của người dùng sẽ được tạo nếu nó chưa tồn tại.

− M không tạo thư mục người dùng.

− n ngầm định khi thêm người dùng, một nhóm cùng tên với người dùng sẽ được tạo. Tùy

chọn này sẽ loại bỏ sự ngầm định trên.

− p, passwd tạo mật khNu đăng nhập cho người dùng.

− s, shell thiết lập shell đăng nhập cho người dùng.

− u, uid thiết đặt chỉ số người dùng, giá trị này phải là duy nhất.

4.4 Thay đổi thông tin của user

 Cú pháp lệnh: usermod [tùy-chọn] <tên-đăng-nhập>
 Lệnh usermod sửa đổi các file tài khoản hệ thống theo các thuộc tính được xác định trên
dòng lệnh. Các tùy chọn của lệnh:

− c, comment thay đổi thông tin cá nhân tài khoản người dùng.

− d, home_dir thay đổi thư mục cá nhân tài khoản người dùng.

− e, expire_date thay đổi thời điểm hết hạn tài khoản người dùng (YYYY-MM-DD).

− f, inactive_days thiết đặt số ngày hết hiệu lực của mật khNu trước khi tài khoản

người dùng hết hạn sử dụng.

− g, initial_group tùy chọn này thay đổi tên hoặc số khởi tạo đăng nhập nhóm người

dùng. Tên nhóm phải tồn tại, và số của nhóm phải tham chiếu đến một nhóm đã tồn tại.

Số nhóm ngầm định là 1.

− G, group thay đổi danh sách các nhóm phụ mà người dùng cũng là thành viên

thuộc các nhóm đó. Mỗi nhóm sẽ được ngăn cách với nhóm khác bởi dấu ',' mặc định

người dùng sẽ thuộc vào nhóm khởi tạo.

− l, login_name thay đổi tên đăng nhập của người dùng. Trong một số trường hợp, tên thư

mục cá nhân của người dùng có thể sẽ thay đổi để tham chiếu đến tên đăng nhập mới.

− p, passwd thay đổi mật khNu đăng nhập của tài khoản người dùng.

− s, shell thay đổi shell đăng nhập.

 189

− u, uid thay đổi chỉ số người dùng.

 Lệnh usermod không cho phép thay đổi tên của người dùng đang đăng nhập. Phải đảm

bảo rằng người dùng đó không thực hiện bất kỳ tiến trình nào trong khi lệnh usermod đang thực

hiện thay đổi các thuộc tính của người dùng đó.

Ví dụ : muốn thay đổi tên người dùng new thành tên mới là newuser, hãy gõ lệnh sau:
 # usermod -l new newuser

4.5 Hủy user

 Lệnh hay được dùng để xóa bỏ một tài khoản người dùng là lệnh userdel.

 Cú pháp: userdel [-r] <tên-người-dùng>

 Lệnh này sẽ thay đổi nội dung của các file tài khoản hệ thống bằng cách xóa bỏ các

thông tin về người dùng được đưa ra trên dòng lệnh. N gười dùng này phải thực sự tồn tại. Tuỳ

chọn -r có ý nghĩa:

− r các file tồn tại trong thư mục cá nhân của người dùng cũng như các file nằm trong các

thư mục khác có liên quan đến người dùng sẽ bị xóa bỏ cùng lúc với thư mục người

dùng.

 Lệnh userdel sẽ không cho phép xóa bỏ người dùng khi họ đang đăng nhập vào hệ thống.

Phải hủy bỏ mọi tiến trình có liên quan đến người dùng trước khi xoá bỏ người dùng đó.

 N goài ra cũng có thể xóa bỏ tài khoản của một người dùng bằng cách hiệu chỉnh lại file

/etc/passwd.

4.6 Tạo nhóm người dùng groupadd

 Việc tạo nhóm xuất phát từ việc gom các người dùng có chung một số quyền hạn trên tài

nguyên. Mỗi nhóm có một tên và một định danh nhóm, Một nhóm có thể chứa nhiều người

dùng và người dùng có thể thuộc nhiều nhóm. Tuy nhiên tại một điểm một người chỉ thuộc một

nhóm mà thôi.

 Thông tin của nhóm lưu tại tập tin /etc/group. Mỗi dòng định nghĩa một nhóm, các

trường trên dòng cách nhau bằng dấu :

 N ội dung của một dòng: tên-nhóm : password-của-nhóm: định-danh-nhóm:các-user-

thuộc-nhóm

 Chúng ta có thể thêm trực tiếp vào file /etc/group hoặc dùng lệnh groupadd:
#groupadd tên-nhóm

Thêm user vào group

 190

 Chúng ta có thể sửa từ tập tin /etc/group, các tên người dùng cách nhau bằng dấu ;. Một

cách khác là cho từng uset vào nhóm bằng lệnh: # usermod ?g tên-nhóm tên-user hay sửa tập tin

/etc/passwd cho từng user, trong đó thay lại định danh nhóm trong dòng khai báo người dùng.

Hủy group

 Xóa trong tập tin /etc/group hay dùng lệnh : #groupdel tên-nhóm

Sửa đổi các thuộc tính của một nhóm người dùng

 Trong một số trường hợp cần phải thay đổi một số thông tin về nhóm người dùng bằng

lệnh groupmod với cú pháp như sau: #roupmod [tùy-chọn] <tên-nhóm>

 Thông tin về các nhóm xác định qua tham số tên-nhóm được điều chỉnh.
 Các tùy chọn của lệnh:

− g, gid thay đổi giá trị chỉ số của nhóm người dùng.

− n, group_name thay đổi tên nhóm người dùng.

4.7 Xác định người dùng đang đăng nhập (lệnh who)

 Lệnh who là một lệnh đơn giản, cho biết được hiện tại có những ai đang đăng nhập trên

hệ thống với cú pháp như sau: #who [tùy-chọn]

 Các tuỳ chọn là:

♣− H, --heading : hiển thị tiêu đề của các cột trong nội dung lệnh.

♣− m : hiển thị tên máy và tên người dùng với thiết bị vào chuNn.

♣− q, --count : hiển thị tên các người dùng đăng nhập và số người dùng đăng nhập.

Ví dụ:
who

root tty1 Nov 15 03:54

lan pts/0 Nov 15 06:07

 Lệnh who hiển thị ba cột thông tin cho từng người dùng trên hệ thống. Cột đầu là tên của

người dùng, cột thứ hai là tên thiết bị đầu cuối mà người dùng đó đang sử dụng, cột thứ ba hiển

thị ngày giờ người dùng đăng nhập.

 N goài who, có thể sử dụng thêm lệnh users để xác định được những người đăng nhập

trên hệ thống.
users

lan root

Formatted: Bullets and Numbering

 191

 Trong trường hợp người dùng không nhớ nổi tên đăng nhập trong một phiên làm việc

(điều này nghe có vẻ như hơi vô lý nhưng là tình huống đôi lúc gặp phải), hãy sử dụng lệnh

whoami và who am i. Sử dụng lệnh: # whoami hoặc # who am i
whoami

lan

who am i

may9!lan pts/0 Nov 15 06:07

 Lệnh who am i sẽ hiện kết quả đầy đủ hơn với tên máy đăng nhập, tên người dùng đang

đăng nhập, tên thiết bị và ngày giờ đăng nhập.

4.8 Để xác định thông tin người dùng với lệnh id

 Cú pháp lệnh: id [tùy-chọn] [người-dùng]

 Lệnh này sẽ đưa ra thông tin về người dùng được xác định trên dòng lệnh hoặc thông tin

về người dùng hiện thời.

 Các tuỳ chọn là:

♣− g, --group : chỉ hiển thị chỉ số nhóm người dùng.

♣− u, --user : chỉ hiển thị chỉ số của người dùng.

♣− - help : hiển thị trang trợ giúp và thoát.
id

uid=506(lan) gid=503(lan) groups=503(lan)

id -g

503

id -u

506

id root

uid=0(root)gid=0(root)groups=0(root),1(bin),2(daemon),

3(sys),4(adm),6(disk),10(wheel)

4.9 Xác định các tiến trình đang được tiến hành (lệnh w)

 Lệnh w cho phép xác định được thông tin về các quá trình đang được thực hiện trên hệ

thống và những người dùng tiến hành quá trình đó.

 Cú pháp lệnh: #w [người-dùng]

 Lệnh w đưa ra thông tin về người dùng hiện thời trên hệ thống và quá trình họ đang thực

hiện. N ếu chỉ ra người dùng trong lệnh thì chỉ hiện ra các quá trình liên quan đến người dùng

đó.
w

Formatted: Bullets and Numbering

 192

root tty2 - 2:14pm 13:03 9.30s 9.10s /usr/bin/mc -P

lan pts/1 192.168.2.213 3:20pm 0.00s 0.69s 0.10s w

root pts/2 :0 3:33pm 9:32 0.41s 0.29s /usr/bin/mc –P

5. Quản trị tài nguyên

5.1 Quản lý tài nguyên với lệnh quota

 Một công cụ tốt nhất để quản lý tài nguyên đĩa là quota. Quota được dùng để hiển thị

việc sử dụng và giới hạn đĩa của người dùng. Khi được gọi, quota sẽ quét tập tin /etc/fstab và

kiểm tra những file system trong tập tin này. Thông thường, quota dùng để giới hạn dung lượng

đĩa cứng mà ta cấp cho người dùng.

Giới hạn về cứng và mềm

 Để giúp cho việc giới hạn có hiệu quả, quota chia làm 2 loại giới hạn giới hạn cứng và

giới hạn mềm.

− Giới hạn cứng: không cho phép vượt quá dung lượng đĩa cho phép. N ếu user cố tình lưu

những thông tin vào thì những thông tin trước đó có thể bị xóa và đNy lên dần. Việc giới

hạn này thật mạnh mẽ nhưng cần thiết đối với một số user.

− Giới hạn mềm: cho phép user vượt quá dung lượng cho phép, nhưng sẽ nhận một lời

cảnh báo trước. Một ý kiến hay, ta cấu hình giới hạn mềm nhỏ hơn giới hạn cứng, và cấu

hình khi user vượt quá dung lượng cho phép hệ thống sẽ gửi một lời cảnh báo trước khi

cho phép user lưu dữ liệu.

Khi nào sử dụng quota?

 Không phải ta dùng quoata cho tất cả những filesystem. Chỉ có những filesystem nào cần

thiết chúng ta mới dùng quota.

 Và khi đó, chúng ta vào file /etc/fstab cấu hình như sau:
 /dev/hda3 /usr rw,usrquota,grpquota 1 3

Thiết lập quota

 N gười quản trị hệ thống sẽ thiết lập quota cho user trong file có tên quota.user nằm trong

filesystem mà chúng ta muốn cấu hình quota. Tương tự, chúng ta cũng sẽ thiết lập quota cho

nhóm trong file quota.group. N hững tập tin này ta chúng ta sẽ tạo ra.

 N hững lệnh sau đây hướng dẫn ta cách thiết lập quota cho filesystem /usr.
cd /usr

touch aquota.user

chmod 600 aquota.user

touch aquota.group

 193

chmod 600 aquota.group

 Ta sẽ dùng lệnh edquota để thiết lập quota. Lệnh này chỉ được dùng bởi user root. Với

lệnh này chúng ta có thể giới hạn dung lượng cho một hay nhiều user hoặc group cùng lúc. Ví

dụ như sau:
edquota hv1 hv2

 Ta có thể điều khiển lệnh quota một cách hiệu quả với những tùy chọn sau:

− g chỉnh sửa quota của group

− p sao chép quota của một user cho một user khác

− u chỉnh sửa quota cho user (mặc định của lệnh)

− t chỉnh sửa thời gian của giới hạn mềm.

 Sau khi thiết lập quota, ta phải bật quota lên bằng lệnh: # quotaon /dev/hda3

 Để bật quota kiểm tra tất cả những file system dùng lệnh: # quotaon ?a

 Lệnh quotaoff có tính năng ngược lại, tắt quota trên filesystem.

Lệnh quota

 Cú pháp của lệnh: quota [tùy chọn] [user] [group]

 N hững tùy chọn của lệnh quota.

− g hiển thị quota của group mà user này là một thành viên

− q chỉ hiển thị những filesystem có quota

− u hiển thị quota của user

Lệnh quotacheck

 Ta có thể sử dụng lệnh quotacheck tại bất cứ lúc nào để kiểm tra việc sử dụng đĩa hiện

hành.

5.2 Lệnh quản lý đĩa với lệnh du và df

Xem dung lượng đĩa đó sử dụng với lệnh du

 Linux cho phép người dùng xem thông tin về dung lượng đĩa đó được sử dụng bằng lệnh

du với cú pháp : # du [tùy-chọn]... [file]...

 Lệnh du liệt kê kích thước (tính theo kilobytes) của mỗi file thuộc vào hệ thống file cú

chứa file được chỉ trong lệnh.

 Các tuỳ chọn là:

− a liệt kê kích thước của tất cả các file có trong hệ thống file lưu trữ file.

− b, --bytes hiển thị kích thước theo byte.

− c, --total hiển thị cả tổng dung lượng được sử dụng trong hệ thống file.

 194

− D, --dereference-args liên kết đến nếu chúng nằm trên các thư mục khác.

− h, --human-readable hiển thị kích thước các file kèm theo đơn vị tính (ví dụ: 1K, 234M,

2G...).

− k, --kilobytes hiển thị kích thước tính theo kilobytes.

− L, --dereference tính cả kích thước của các file được liên kết tới.

− l, --count-links tính kích thước các file nhiều lần nếu được liên kết cứng.

− m, --megabytes tính kích thước theo megabytes.

− S, --separate-dirs không hiển thị kích thước của thư mục con.

− s đưa ra kích thước của hệ thống file có lưu trữ file.

− x, --one-file system bỏ qua các thư mục trên các hệ thống file khác.

− - help hiển thị trang trợ giúp và thoát.

Chú ý: lệnh du không cho phép có nhiều tùy chọn trên cùng một dòng lệnh. Ví dụ: lệnh sau cho
biết kích cỡ của các file trong thư mục /usr/doc/test:

du /usr/doc/test

28 ./TODO/1.0_to_1.5

24 ./TODO/lib++

16 ./TODO/unreleased

12 ./TODO/unstable

144 ./TODO

44 ./code

160 ./languages

56 ./licences

532 .

 N hìn vào màn hình có thể biết được kích thước của file./TODO/1.0_to_1.5 là 28 KB,

file./TODO/lib++ là 24 KB,..., và kích thước của thư mục hiện thời là 532 KB.

Kiểm tra dung lượng đĩa trống với lệnh df

 Cú pháp lệnh: # df [tùy-chọn]... [file]...

 Lệnh này hiển thị dung lượng đĩa còn trống trên hệ thống file chứa file. N ếu không có

tham số file thì lệnh này hiển thị dung lượng đĩa còn trống trên tất cả các hệ thống file được kết

nối.

 Các tùy chọn:

− a, --all bao gồm cả các file hệ thống có dung lượng là 0 block.

− - block-size thiết lập lại độ lớn của khối là cỡ byte.

− k, --kilobytes hiển thị dung lượng tính theo kilobytes.

 195

− l, --local giới hạn danh sách các file cục bộ trong hệ thống.

− m, --megabytes hiển thị dung lượng tính theo megabytes.

− t, --type=kiểu giới hạn danh sách các file hệ thống thuộc kiểu.

− T, --print-type hiển thị các kiểu của file hệ thống.

− - help đưa ra trang trợ giúp và thoát.

 Để chỉ ra được dung lượng đĩa còn trống trong Linux không phải là điều dễ làm. N gười

dùng có thể sử dụng lệnh df để làm được điều này, tuy nhiên kết quả của lệnh này chỉ cho biết

dung lượng đĩa đã được sử dụng và dung lượng đĩa còn trống của từng hệ thống file. N ếu muốn

biết tổng dung lượng đĩa còn trống là bao nhiêu, sẽ phải cộng dồn dung lượng đĩa còn trống của

từng hệ thống file.

 Ví dụ, lệnh: # df /mnt/floppy

sẽ cho kết quả như sau trên màn hình (dòng đầu tiên là tên cột):
Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda2 2174808 1378228 686104 67% /

none 0 0 0 - /proc

none 0 0 0 - /dev/pts

automount(pid411)0 0 0 - /misc

/dev/fd0 1423 249 1174 18% /mnt/floppy

có thể xác định được, đĩa mềm đã được sử dụng 18%, như vậy là còn 82% (tức là còn 1174 KB)
dung lượng đĩa chưa được sử dụng.

− Cột Filesystem chứa tên của thiết bị đĩa, cột 1k-blocks chứa dung lượng của thiết bị.

− Cột Used chứa dung lượng đĩa đã được sử dụng.

− Cột Available chứa dung lượng đĩa còn trống,

− Cột Use% chứa % dung lượng đĩa đã sử dụng

− Cột Mounted on chứa điểm kết gắn của thiết bị.

 Cách nhanh nhất để biết được dung lượng đĩa còn trống bao nhiêu là phải xác định được

tên của một thư mục bất kỳ có trong đĩa đó, sử dụng lệnh df với tham số file là tên của thư mục.

Sau đó đọc nội dung cột Available trên màn hình hiển thị để biết dung lượng đĩa còn trống.

Chẳng hạn, trên đĩa cứng đang sử dụng có thư mục /etc, khi đó gõ lệnh:
 # df /etc

kết quả hiển thị lên màn hình như sau cho biết đĩa còn có 466252 khối rỗi :

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda1 1984240 1417192 466252 75% /

 196

6 Truyền thông trong Linux

6.1. Lệnh đặt tên máy

 Lệnh #Hostname name, nếu ta muốn đặt tên đầy đủ(full domain name).
Hostname name.domainname

 Thông tin về tên máy nằm trong tập tin /etc/hosts bao gồm các thông tin sau:
Địa chỉ ip tên máy

may12

 N goài ra ta còn xem file mô tả thông tin về đường mạng /etc/networks
loopback 127.0.0.0

merlin-net 147.154.12.0

BNR 47.0.0.0

6.2. Lệnh ifconfig

 Khi sử dụng lệnh ifconfig kết quả thu được là:
eth0 Link encap:Ethernet HWaddr 00:02:55:07:63:07

 inet addr:203.113.130.201

 Bcast:203.113.130.223 Mask:255.255.255.224

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:3912830 errors:84463 dropped:0 overruns:0 frame:0

 TX packets:2402090 errors:0 dropped:0 overruns:0 carrier:0

 collisions:84463 txqueuelen:100

 RX bytes:2767096664 (2638.9 Mb) TX bytes:1265930467 (1207.2 Mb)

 Interrupt:29

eth1 Link encap:Ethernet HWaddr 00:05:1C:98:05:B1

 inet addr:10.10.0.10 Bcast:10.10.255.255 Mask:255.255.0.0

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:15389731 errors:0 dropped:0 overruns:0 frame:0

 TX packets:7768909 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:2578998337 (2459.5 Mb) TX bytes:1471928637 (1403.7 Mb)

lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:45868 errors:0 dropped:0 overruns:0 frame:0

 TX packets:45868 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:5338927 (5.0 Mb) TX bytes:5338927 (5.0 Mb)

 197

 Trong trường hợp này ta thấy máy hiện tại có 2 card mạng và được gán các địa chỉ tương
ứng như trên.
 Muốn chỉ xem các thông tin về một card mạng nào đó thôi ta dùng lệnh:

 # ifconfig eth0

 Muốn kích hoạt một card mạng ta dùng lệnh
 # ifconfig eth0 up

 Muốn tắt một card mạng ta dùng lệnh
 # ifconfig eth0 down

 Muốn đặt lại địa chỉ cho một card mạng ta dùng lệnh:
 # ifconfig eth0 172.16.9.15 netmask 255.255.0.0

6.3 Lệnh write

 Lệnh write được dùng để trao đổi giữa những người hiện đang cùng làm việc trong hệ

thống.

 Thông thường, một người dùng muốn liên hệ với người dùng khác, cần sử dụng lệnh

who: $who hiện thông tin như sau:
 user1 tty17 Oct 15 10:20

 user2 tty43 Oct 15 8:25

 user4 tty52 Oct 15 12:20

trong đó có tên người dùng, số hiệu terminal, ngày giờ vào hệ thống.

 Sau đó sử dụng lệnh write để chuyển thông báo cho nhau.
 $write <tên người dùng> [<tên trạm cuối>]

 cần gửi thông báo đến người dùng user1 có tên user2 sẽ gõ:
 $write user2 tty43

 N ếu người dùng user2 hiện không làm việc thì trên màn hình người dùng user1 sẽ hiện

ra: "user2 is not logged in" và hiện lại dấu mời shell.

 198

 N ếu người dùng user2 đang làm việc, máy người dùng user2 sẽ phát ra tiếng chuông và

trên màn hình hiện ra:
 Message from user1 on tty17 at <giờ, phút>

 Cùng lúc đó, tại máy của user1 màn hình trắng để hiện những thông tin gửi tới người

dùng user2. N gười gửi gõ thông báo của mình theo quy tắc:

 Kết thúc một dòng bằng cụm -o,

 Kết thúc dòng cuối cùng (hết thông báo) bằng cụm -oo.

 Để kết thúc kết nối với người dùng user2, người dùng user1 gõ ctrl-d.

 Để từ chối mọi việc nhận thông báo từ người khác, sử dụng lệnh không nhận thông báo:
 $mesg n (n - no)

 Một người khác gửi thông báo đến người này sẽ nhận được việc truy nhập không cho

phép permission denied.

 Để tiếp tục cho phép người khác gửi thông báo đến, sử dụng lệnh:
 $mesg y (y - yes)

6.4 Lệnh mail

 Lệnh mail cho phép gửi thư điện tử giữa các người dùng, song hoạt động theo chế độ

off-line (gián tiếp). Khi dùng lệnh write để truyền thông cho nhau thì đòi hỏi hai người gửi và

nhận đồng thời đang làm việc và cùng chấp nhận cuộc trao đổi đó.

 Cách thức sử dụng mail là khác hẳn: một trong hai người gửi hoặc nhận có thể không

đăng nhập vào hệ thống. Để đảm bào cách thức truyền thông gián tiếp (còn gọi là off-line) như

vậy, hệ thống tạo ra cho mỗi người dùng một hộp thư riêng.

 Khi một người dùng lệnh mail gửi thư đến một người khác thì thư được tự động cho vào

hộp thư của người nhận và người nhận sau đó cũng dùng lệnh mail để xem trong hộp thư có thư

mới hay không. Không những thế mail còn cho phép sử dụng trên mạng internet (địa chỉ mail

thường dưới dạng tên-login@máy.mạng.lĩnh-vực.quốc-gia).

 Lệnh mail chỉ yêu cầu người gửi (hoặc người nhận) login trong hệ thống. Việc nhận và

gửi thư được tiến hành từ một người dùng. Thư gửi đi cho người dùng khác, được lưu tại hộp

thư của hệ thống.

 199

 Tại thời điểm login hệ thống, người dùng có thể thấy được có thư mới khi trên màn hình

xuất hiện dòng thông báo "you have mail".

 Lệnh mail trong UN IX gồm 2 chức năng: gửi thư và quản lý thư. Tương ứng, có hai chế

độ làm việc với lệnh mail: mode lệnh (command mode) quản trị thư và mode soạn (compose

mode) cho phép tạo thư.

Mode soạn

 Mode soạn làm việc trực tiếp với một thư và gửi ngay cho người khác. Mode soạn thực

chất là sử dụng lệnh mail có tham số:
 $mail tên_người_nhận> Ví dụ, $mail user2

 Lệnh này cho phép soạn và gửi thư cho người nhận có tên được chỉ.

 Sau khi gõ lệnh, màn hình bị xóa và con trỏ soạn thảo nhấp nháy ở góc trên, trái để

người dùng gõ nội dung thư.

 Để kết thúc soạn thư, hãy gõ ctrl-d, màn hình của mail biến mất và dấu mời của shell lại

xuất hiện.

Chú ý: Dạng sau đây được dùng để gửi thư đã soạn trong nội dung một file nào đó (chú ý dấu

"<" chỉ dẫn thiết bị vào chuNn là nội dung file thay vì cho bàn phím):
 $mail tên_người_nhận < tên_file_nội_dung_thư

Ví dụ
$ mail user2 < thu1

 N ội dung thư từ File thu1 được gửi cho người nhận user2, dấu mời của shell lại hiện ra.

Cách làm trên đây hay được sử dụng trong gửi / nhận thư điện tử hoặc liên kết truyền thông vì

cho phép tiết kiệm được thời gian kết nối vào hệ thống, đặc biệt chi phí phải trả khi kết nối là

đáng kể.

Mode lệnh

 N hư đã nói sử dụng mode lệnh của mail để quản lý hộp thư. Vào mail theo mode lệnh

khi dùng lệnh mail không tham số:
 $mail

 200

 Sau khi gõ lệnh, màn hình mail ở mode lệnh được hiện ra với dấu mời của mode lệnh.

(phổ biến là dấu chấm hỏi "?") Tại đây người dùng sử dụng các lệnh của mail quản lý hệ thống

thư của mình.

� Cần trợ giúp gõ dấu chấm hỏi (màn hình có hai dấu ??): ? màn hình hiện ra dạng sau:

<số> Hiện thư số <số>

 (dấu cách) Hiện thư ngay phía trước

+ Hiện thư ngay tiếp theo

l cmd thực hiện lệnh cmd

dq xóa thư hiện thời và ra khỏi mail

m user gửi thư hiện thời cho người dùng

s tên-file ghi thư hiện thời vào file có tên

r [tên-file] trả lời thư hiện thời (có thể từ file)

d <số> xóa thư số

u khôi phục thư hiện thời

u <số> khôi phục thư số

m <user> ... chuyển tiếp thư tới các người dùng khác

q ra khỏi mail

� Thực hiện các lệnh theo chỉ dẫn trên đây để quản trị được hộp thư của cá nhân.

6.5 Lệnh talk

 Trong Linux cho phép sử dụng lệnh talk thay thế cho lệnh write.

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

 201

 202

TÀI LIỆU THAM KHẢO

[1] Mendel Cooper; Advanced Bash Script Guide Shell; 16 June 2002.

[2] Ellie Quigley; UNIX Shells by Example Fourth Edition, Prentice Hall PTR, September 24,

2004.

[3] Steve D. Pate; UNIX Filesystems: Evolution, Design, and Implementation(VERITAS Series);

2003.

[4] Kirk Bauer, Automating UNIX and Linux Administration; 2003.

[5] Kurt Wall, Mark Watson, and Mark Whitis; Linux Programming;1999.

[6] Roderick W. Smith;Advanced Linux Networking; Addison Wesley; June 11, 2002.

[7] Giáo trình hệ điều hành Unix, Đại học Công nghệ - Đại học Quốc gia Hà N ội; 2004.

 203

PHỤ LỤC

1. Giới thiệu một số phiên bản hệ điều hành Linux thông dụng hiện nay và

cách cài đặt

1.1 Hướng dẫn cài đặt hệ điều hành Redhat Linux 7.1

 Ta cài Linux từ CDROM. Redhat phiên bản 7.1 gồm có 5 đĩa. Ta chỉ cần 2 đĩa Disk 1 va
Dick 2 là đủ và cài trên máy hoàn toàn mới, chưa có cài hệ điều hành nào. Giả sử máy mới có
một ổ cứng chưa định dạng. Thiết lập CMOS để máy khởi động từ CDROM. Cho đĩa
CDROM Linux 1 vào để khởi động. Khi khởi động xong, màn hình hiện lên như sau :

 Từ đây, cho phộp ta cài đặt theo nhiều loại giao diện, ta gõ vào text để cài trong chế độ
text. Màn hình tiếp theo như sau:

 Sau đó hộp thoại chọn ngôn ngữ hiện lên cho ta chọn ngôn ngữ nào tuỳ ý. Ở đây ta chọn
English.

 204

 Tiếp theo chọn us

 Chương trình hiện lên bảng thông báo Red Hat Linux: Welcome to Red Hat Linux, nhấn
OK để bỏ qua.

Khi hộp thoại Installation Type xuất hiện, chọn Custom System, trong trường hợp này nó sẽ cho
ta chọn cài các phần mềm theo ý của ta. N ếu ta chọn các tuỳ chọn khác như Server System,
Workstation. Chọn Upgrade Existing Installation sẽ cho phép ta nâng cấp hệ điều hành Linux.

 205

 Do đĩa cứng mới hoàn toàn chưa định dạng nên xuất hiện thông báo sau. Ta chọn
Initilize

 Khi gặp bảng Automatic Partitioning, chọn Manual partition và OK

 Tiếp đến chọn Disk Druid

 206

 Chương trình định dạng đĩa của Linux mở ra.Theo vệt sáng ta thấy có 1 đĩa cứng gắn ở
IDE1 (sda), dung lượng là 4094 MB

 Đưa vệt sáng đến nút Add, nhấn EN TER để tạo partition mới, cửa sổ Edit N ew Partition
xuất hiện

 207

 Trước tiên, ta tạo Linux N ative, ở đây ta chọn tạm 1000 MB, nhấn TAB để chuyển qua
lại và thiết lập thụng số. Thêm dấu / vào mục Mount Point.

 Sau đó ta sẽ thấy partition 1 đó tạo xong

 N hấn Add để tạo tiếp Swap partition:

 208

 N hấn OK để kết thúc, CT sẽ hỏi có muốn lưu lại có thay đổi không. Chọn Yes

 N hấn tiếp OK để tiến hành format.

 209

 N hấn OK để tạo boot LILO. Trong các phiên bản sau này cũng có thêm một chương
trình GRUB có vai trò tương tự như LILO nhưng cú giao diện đồ hoạ.

Mặc định dựng Master Boot Record để khởi động Linux, nhấn OK.

N hấn tiếp OK.

 210

 N hấn OK để format bắt đầu.

 Sau đó đặt tên cho máy

Thiết lập cấu hình cho Firewall, chọn N o firewall , nhấn OK

Tiếp theo đó, thiết lập các cấu hình về phần cứng.

 211

Lưu ý: N hững minh hoạ dưới đây là được thiết lập theo cấu hình phần cứng máy hiện tại. các
máy khác có thể khác. Chọn loại chuột:

Chọn ngôn ngữ làm việc

Xác định múi giờ làm việc, chọn Asia/Saigon

 212

 Thiết lập mật khNu cho tài khoản người quản trị hệ thống (root)

 Mật khNu của root phải có ít nhất là 6 ký tự

 N hấn OK nếu không có thay đổi.

 213

 Sau khi tạo xong nhấn OK.

 Sau đó chọn các gói cài đặt (tùy ý), các phần mà ta thấy cần thiết.

 214

 N hấn OK khi chọn xong. Chọn loại card màn hình thích hợp.

 215

 N hấn OK để cài đặt

 Quá trình cài đặt bắt đầu

 Trong quá trình cài, chương trình yêu cầu đưa đĩa 2 vào

 216

 217

 Tiếp theo chương trình sẽ hỏi có muốn tạo đĩa boot hay không,

 218

Sau đố thiết lập các thông số khác nữa là hoàn tất

 219

 Sau khi khởi động máy, chúng ta thấy biểu tượng sau:

 220

1.2 Hướng dẫn sử dụng hệ điều hành Ubuntu và các phiên bản của nó

2. Cài đặt WEBMIN

3. Cài đặt WEBSERVER

4. Cài đặt FILE SERVER

 221

